• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 17
  • 14
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise do comportamento estrutural e funcional de um pavimento experimental com blocos pré-moldados de concreto. / Analysis of structural and functional behavior of an experimental pavement with precast concrete blocks.

Eric Ribeiro da Silva 10 November 2016 (has links)
Dentre a vasta gama de alternativas estruturais possíveis para a construção de pavimentos, os revestimentos com blocos pré-moldados de concreto têm sua aplicação consolidada em pavimentação de áreas portuárias. Além disso, em muitos países, este tipo de pavimento tem sido utilizado com sucesso em aplicações rodoviárias, aeroportuárias, em pátios industriais e em demais aplicações para tráfegos veiculares e de pedestres. No Brasil, no entanto, devido a insucessos em sua utilização, motivados, muitas vezes, pela inobservância de parâmetros técnicos relevantes a essa tecnologia, contribuíram para que este tipo de pavimento tenha sido subutilizado. Todavia, as recentes revisões nas normas nacionais que tratam deste tema, a criação de novas normatizações e a recente construção de importantes rodovias utilizando este tipo de revestimento, contribuem para o aperfeiçoamento de profissionais e a diminuição do prejulgamento desta tecnologia. Neste sentido, é de suma importância estudar o comportamento estrutural e funcional deste tipo de pavimento. De modo que, neste trabalho, foram estudadas quatro seções de dois trechos experimentais construídos entre julho e setembro de 2010. Foram realizadas avaliações destrutivas e não destrutivas para análise dos materiais, suas espessuras e confronto com os parâmetros construtivos oriundos do projeto e da literatura, bem como a verificação das condições para realização de retroanálise dos módulos de resiliência das camadas do pavimento. Os levantamentos deflectométricos apresentaram patamares muito elevados de deflexões reversíveis em todas as seções estudadas. Das aberturas de cavas e confronto com a estrutura de projeto, verificou-se incompatibilidades entre os materiais e espessuras das camadas do pavimento projetado x pavimento construído, destacando-se a condição verificada na camada de base por apresentar significativa desagregação do material, cujo projeto indicava utilização de concreto compactado com rolo (CCR), o que evidencia problemas no controle tecnológico dos materiais e falhas no gerenciamento da obra. Por meio das retroanálises foram verificadas diminuições significativas dos módulos de resiliência das camadas do pavimento, quando comparado com os parâmetros de projeto. Os índices de condições do pavimento (ICP) apontaram condições distintas nas seções avaliadas mesmo sujeitas ao mesmo tráfego de veículos. / Among the wide range of possible structural alternatives for the construction of pavements, interlocking concrete pavements are the orthodox solution for paving ports. Furthermore, in many countries, this type of pavement has been successfully used in highways, airport applications, in industrial areas and other applications for vehicular traffic and pedestrians. In Brazil, however, due to failures in its use, driven often by the lack of relevant technical parameters to this technology, contributed to the fact that this type of pavement has been misused. Although, recent reviews from the national standards that deal with this type of pavement, the creation of new standards and the recent construction of important highways using this type of structure, have contributed to the improvement of professionals and decreased the prejudice of this technology. In this sense, it is extremely important to study the structural and functional behavior of this type of pavement. Therefore, in this research it was studied two experimental sections built between July and September 2010 that carried out destructive and nondestructive evaluations for the analysis of materials, their thicknesses and constructive confrontation with the parameters derived from the project and the literature, as well verifying the conditions to accomplish the back calculation of the elastic modulus of the pavement layers. The displacement tests surveys demonstrated very high levels of reversible displacements in all studied sections. From the inspection pits openings and confrontation with the project structure, there is incompatibility between the materials and thicknesses of the layers of the designed pavement versus constructed pavement, the condition verified highlighting the base layer for introducing significant breakdown of the material, which design indicated use of roller-compacted concrete (RCC), which indicates problems in the quality control of materials and failures in the management. The back calculation showed that decreases were observed elastic modulus of the pavement layers when compared with the design parameters. Surveys concerning pavement condition index (PCI) showed different conditions for the evaluated sections even supporting the same traffic.
12

Strength and Deformation Characteristics of a Cement-Treated Reclaimed Pavement with a Chip Seal

Wilson, Bryan T. 17 March 2011 (has links) (PDF)
The objective of this research was to analyze the strength and deformation characteristics of a cement-treated base (CTB) constructed using full-depth reclamation, microcracked, and then surfaced with a single chip seal. In this field study, strength characteristics of the CTB layer were determined at the time of construction, and then both strength and deformation characteristics were evaluated after 9 months of low-volume, heavy truck traffic. After 9 months, observed distresses included transverse cracking, rutting, and chip seal joint failure. The loss of the chip seal was caused by poor chip seal construction practices and not a deficiency in the CTB layer. The importance of the role of the chip seal as a wearing course was made evident by these failures since the exposed CTB often exhibited material loss. The average ride qualities in and out of the wheel path were in the fair ride category; the roughness was not likely caused by trafficking but probably resulted from construction or climatic factors. Structural testing performed after 9 months of service indicated that the CTB stiffness and modulus were greater than the values measured after microcracking at the time of construction, indicating continued strength gain. However, trafficking over the 9-month period had caused significantly lower stiffnesses measured in the wheel paths than between the wheel paths. The average unconfined compressive strength (UCS) of the cores tested at 9 months was not significantly different than the average UCS of the field-compacted specimens tested at 6 weeks. Based on the observed performance of the CTB and chip seal evaluated in this research, recommendations for improved CTB performance include the use of a thicker and/or stiffer CTB layer, ensuring a smooth CTB surface during construction, and application of a double chip seal or equivalent.
13

Effect of High Percentages of Reclaimed Asphalt Pavement on Mechanical Properties of Cement-Treated Base Material

Tolbert, Jacob Clark 10 July 2014 (has links) (PDF)
Full-depth reclamation (FDR) is an increasingly common technique that is used to rehabilitate flexible pavements. Implementation of FDR on rehabilitation projects produces several desirable benefits. However, these benefits are not fully realized due to the fact that state department of transportation specifications typically limit the reclaimed asphalt pavement (RAP) content of pavement base material to 50 percent. The objective of this research was to evaluate the effects of RAP content, cement content, temperature, curing time, curing condition, and moisture state on the strength, stiffness, and deformation characteristics of cement-treated base (CTB) mixtures containing high percentages of RAP.For this research, one aggregate base material and one RAP material were used for all samples. RAP content ranged from 0 to 100 percent in increments of 25 percent, and low, medium, and high cement levels corresponding to 7-day unconfined compressive strength (UCS) values of 200, 400, and 600 psi, respectively, were selected for testing. Moisture-density, UCS, resilient modulus, and permanent deformation tests were performed for various combinations of factors, and several statistical analyses were utilized to evaluate the results of the UCS, resilient modulus, and permanent deformation testing.The results of this work show that CTB containing RAP can be made to achieve 7-day UCS values approaching 600 psi regardless of RAP content. With regards to stiffness, the data collected in this study indicate that the resilient modulus of CTB containing RAP is affected by temperature in the range from 72 to 140°F for the low cement level. Permanent deformation of CTB containing RAP is significantly affected by RAP content and cement level at the test temperature of 140°F. At the low cement level, temperature is also a significant variable. As the 7-day UCS reaches approximately 400 psi, permanent deformation is reduced to negligible quantities. The results of this research indicate that the inverse relationship observed between permanent deformation and 7-day UCS is statistically significant.Given that the principle conclusion from this work is that CTB with high RAP contents can perform satisfactorily as a base material when a sufficient amount of cement is applied, agencies currently specifying limits on the percentage of RAP that can be used as a part of reclaimed base material in the FDR process should reevaluate their policies and specifications with the goal of allowing the use of high RAP contents where appropriate.
14

Influence of Curing Temperature on Strength of Cement-treated Soil and Investigation of Optimum Mix Design for the Wet Method of Deep Mixing

Ju, Hwanik 15 January 2019 (has links)
The Deep Mixing Method (DMM) is a widely used, in-situ ground improvement technique that modifies and improves the engineering properties of soil by blending the soil with a cementitious binder. Laboratory specimens were prepared to represent soil improved by the wet method of deep mixing, in which the binder is delivered in the form of a cement-water slurry. To study the influence of curing temperature on the strength of the treated soil, specimens were cured in temperature-controlled water baths for the desired curing time. After curing, unconfined compressive strength (UCS) tests were conducted on the specimens. To investigate the optimum mix design for the wet method of deep mixing, UCS tests were performed to measure the strength of cured specimens, and laboratory miniature vane shear tests were conducted on uncured specimens to measure the undrained shear strength (su), which is used to represent the consistency of the mixture right after mixing. The consistency is important for field mixing because a softer mixture is easier to mix thoroughly. Based on the UCS test results, an equation that can provide a good fit to the strength data of the cured binder-treated soil is proposed. When the curing temperature was changed during curing, the UCS of the specimen cured at a low temperature and then cured at a high temperature was greater than the UCS of the specimen cured at a high temperature first. This seems to be due to different effects of elevated curing temperatures at early and late curing times on the cement reaction rates, such that elevating the curing temperature later produces a more constant reaction rate, which contributes to the reaction efficiency. An optimum mix design that minimizes the amount of binder while satisfying both a target strength of the cured mixture and a target consistency of the uncured mixture can be established by using the fitted equations for UCS and su. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases. / Master of Science / The Deep Mixing Method (DMM) is a ground improvement technique widely used to improve the strength and stiffness of loose sands, soft clays, and organic soils. The DMM is useful for both inland and coastal construction. There are two types of deep mixing. The dry method of deep mixing involves adding the binder in the form of dry powder, and the wet method of deep mixing involves mixing binder-water slurry with the soil. The strength of the cured mixture is significantly influenced by the amount of added cement and water, the curing time, and the curing temperature. This research evaluates the influence of curing temperature on the strength of cured cement-treated soil mixture. Mixture proportions and curing conditions also influence the consistency of the mixture right after mixing, which is important because it affects the amount of mixing energy necessary to thoroughly mix the binder slurry with the soil. This research developed and evaluated fitting equations that correlate the cured mixture strength and the uncured mixture consistency with mixture proportions and curing conditions. These fitting equations can then be used to select an economical and practical mix design method that minimizes the amount of binder needed to achieve both the desired cured strength and uncured consistency. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases.
15

Early Age Assessment of Cement Treated Materials

Young, Tyler B. 21 March 2007 (has links)
In order to avoid the occurrence of early-age damage, cement-treated base (CTB) materials must be allowed to cure for a period of time before the pavement can be opened to traffic. The purpose of this research was to evaluate the utility of the soil stiffness gauge (SSG), heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), dynamic cone penetrometer, and falling-weight deflectometer for assessing early-age strength gain of cement-stabilized materials. Experimentation was performed at four sites on a pavement reconstruction project along Interstate 84 near Morgan, Utah, and three sites along Highway 91 near Richmond, Utah; cement stabilization was used to construct CTB layers at both locations. Each site was stationed to facilitate repeated measurements at the same locations with different devices and at different curing times. Because of the considerable attention they have received in the pavement construction industry for routine quality control and quality assurance programs, the SSG, CIST, and PFWD were the primary focus of the research. Statistical techniques were utilized to evaluate the sensitivity to curing time, repeatability, and efficiency of these devices. In addition, the ruggedness and ease of use of each device were evaluated. The test results indicate that the CIST data were more sensitive to curing time than the SSG and PFWD data at the majority of the cement-treated sites during the first 72 hours after construction. Furthermore, the results indicate that the CIST is superior to the other instruments with respect to repeatability, efficiency, ruggedness, and ease of use. Because the CIST is less expensive than the SSG and PFWD, it is more likely to be purchased by pavement engineers and contractors involved with construction of CTBs. For these reasons, this research suggests that the CIST offers greater overall utility than the SSG or PFWD for monitoring early-age strength gain of CTB. Further research is needed to identify appropriate threshold CIST values at which CTB layers develop sufficient strength to resist permanent deformation or marring under different types of trafficking.
16

[en] ANALYSIS OF THE CEMENT-TREATED AGGREGATE BASE MATERIAL BEHAVIOR WITH A TIRE RUBBER ADDITION FOR PAVEMENTS BASE APPLICATIONS / [pt] ANÁLISE DO COMPORTAMENTO DE BRITA GRADUADA TRATADA COM CIMENTO COM A ADIÇÃO DE BORRACHA DE PNEUS PARA APLICAÇÃO EM CAMADAS DE BASE DE PAVIMENTOS

CIRO LOYOLA TESSARI 25 April 2018 (has links)
[pt] Este trabalho apresenta um estudo técnico experimental sobre a utilização de borracha moída de pneu (BMP) como adição, juntamente com cimento Portland à brita graduada simples (BGS), no intuito de avaliar a aplicabilidade desse material em camadas de base de pavimentos rodoviários. Como resultado obtémse uma BGTC - Brita graduada tratada com cimento, com adição de BMP. O principal objetivo da adição de borracha na BGTC é reduzir o fissuramento, que é um problema comum em bases cimentadas. Para melhor comparação dos resultados das misturas com adições de borracha foi realizada uma mistura de BGTC sem adições, a qual foi tratada como mistura padrão neste estudo, com 3 por cento, 4 por cento e 5 por cento de cimento. O agregado granítico selecionado para esta pesquisa é proveniente de jazida situada no município de Cariacica/ES e foi escolhido por ter apresentado bom desempenho nos ensaios de caracterização. A partir da análise granulométrica realizada na borracha, selecionou-se para esse estudo a fração passante na peneira de 2,38mm e retida na peneira de 1,19 mm. Foram estuadas as seguintes porcentagens de adição de BMP: 0,5 por cento, 1,0 por cento, 1,5 por cento, 2,5 por cento, 3,5 por cento e 4,5 por cento. As amostras foram submetidas a ensaios de compactação, compressão simples, compressão diametral, triaxial de cargas repetidas e microscopia eletrônica de varredura. Os ensaios de compressão simples foram realizados com tempos de cura de 7, 28 e 56 dias. Os ensaios de compressão diametral foram realizados com tempos de cura de 28 e 56 dias. Os ensaios triaxiais de carga repetida foram realizados com tempo de cura de 56 dias. Os resultados obtidos foram satisfatórios, sendo dependentes do teor de BMP utilizados e do tempo de cura. Dentre as composições de BMP estudadas, a que apresentou o melhor comportamento foi a que possuia adição de 1,5 por cento de borracha e 56 dias de cura. Esta adição apesar de reduzir a RCS e a RTCD em 30 por cento e 28 por cento respectivamente, proporcionou melhoria no comportamento resiliente e menor perda de resistência na região pós pico perante o ensaio de RCS. Tal fato ressalta o emprego positivo de borracha de pneu triturada em camadas de base de pavimentos rodoviários, tanto sob a ótica da engenharia de pavimentos quanto em relação a questões ambientais e econômicas. / [en] This work presents a technical and experimental study on the use of tire rubber as an addition, together with Portland cement, to a simple graded gravel, in order to evaluate the applicability of this material in the base layers of road pavements. As a result, cement-treated graded gravel with the addition of rubber is obtained. The main objective of the addition of rubber is to reduce cracking, which is a common problem in cemented bases. A standard mixture of cement-treated graded gravel was carried out for better comparison between the mixtures with additions of 3 percent, 4 percent and 5 percent of cement. The granitic aggregate selected for this research came from the municipality of Cariacica/ES and was selected because it presented an appropriate performance in the characterization tests. From the granulometric analysis performed on this material, the fraction passing the sieve 2,38 mm and retained in the sieve 1,19 mm, was selected for this study. In this study were selected 0,5 percent, 1,0 percent, 1,5 percent, 2,5 percent, 3,5 percent and 4,5 percent additions of rubber. The blends were subjected to compaction, direct compression, split tensile, cyclic triaxial and scanning electron microscope tests. Direct compression tests were performed with cure times of 7, 28 and 56 days. Split tensile tests were performed with curing time of 28 and 56 days. Cyclic triaxial tests were performed with curing time os 56 days. The results were satisfactory, being dependent on the content of rubber and the curing time. Among the blends that were analyzed, 1,5 percent of addition and 56 days of curing time leaded to the best results. Despite the reduction of 30 percent and 28 percent in the compression and tensile resistances, this amount of rubber addition provided a better resilient behavior and a higher post pick resistance in the compression test. This fact highlights the positive use of tire rubber in pavement base layers, not only from the standpoint of pavement engineering, but promoting gains of sustainability and economy as well.
17

Improvement Of Strength Of Soils At High Water Content Using Pozzolanic Materials

Narendra, B S 07 1900 (has links) (PDF)
No description available.
18

Use of the Clegg Impact Soil Tester to Access Rutting Susceptiblity of Cement-Treated Base Material Under Early Trafficking

Reese, Garth B. 02 May 2007 (has links) (PDF)
In order to avoid the occurrence of early-age damage, cement-treated base (CTB) materials must be allowed to cure for a period of time before the pavement can be opened to traffic. Trafficking of a CTB before sufficient strength gain has occurred can lead to marring or rutting of the treated layer. The specific objectives of this research were to examine the correlation between Clegg impact values (CIVs) determined using a heavy Clegg impact soil tester and rut depths measured in newly constructed CTB and subsequently establish a threshold CIV at which rutting should not occur.The experimental work included field testing at several locations along United States Highway 91 near Smithfield, Utah, and laboratory testing at the Brigham Young University (BYU) Highway Materials Laboratory. In both the field and laboratory test programs, ruts were created in CTB layers using a specially manufactured heavy wheeled rutting device (HWRD). In the field, ruts caused by repeated passes of a standard pickup and a water truck were also evaluated. The collected data were analyzed using regression to identify a threshold CIV above which the CTB should not be susceptible to unacceptable rutting. From the collected data, one may conclude that successive wheel passes each cause less incremental rutting than previous passes and that CTB similar to the material tested in this research should experience only negligible rutting at CIVs greater than about 35. The maximum rut depth measured in either field or laboratory rutting tests was less than 0.35 in. in this research, probably due to the high quality limestone base material utilized to construct the CTB. In identifying a recommended threshold CIV at which CTB layers may be opened to early trafficking, researchers proposed a maximum tolerable rut depth of 0.10 in. for this project, which corresponds to a CIV of approximately 25. Because a CIV of 25 is associated with an acceptably minimal rut depth even after 100 passes of the HWRD, is achievable within a reasonable amount of time under normal curing conditions, and is consistent with earlier research, this threshold is recommended as the minimum average value that must be attained by a given CTB construction section before it can be opened to early trafficking. Use of the proposed threshold CIV should then ensure satisfactory performance of the CTB under even heavy construction traffic to the extent that the material properties do not differ greatly from those of the CTB evaluated in this research.
19

Design and Construction of Pavements in Cold Regions: State of the Practice

Smith, Brad Steven 07 December 2006 (has links) (PDF)
The effects of frost action introduce many challenges in the design and construction of roadways in cold regions throughout the United States. The penetration of frost into pavement structures can lead to differential frost heave during winter and thaw weakening during spring. Both of these damage mechanisms lead to premature pavement distress, structural deterioration, and poor ride quality. Because the availability of naturally occurring non-frost-susceptible pavement base materials is rapidly diminishing in many areas while project budgets remain largely inadequate, pavement engineers are utilizing alternative materials and techniques to minimize such damage. The purpose of this research was to investigate and document the state of the practice concerning the design and construction of pavements in cold regions. In particular, the various methods and standards employed for characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses were explored. A comprehensive literature review was performed, and a questionnaire survey was conducted of various state DOTs throughout the United States that are involved with the design and maintenance of roadways. The study was directed primarily at identifying practices utilized by state DOTs in climates with freezing temperatures. The information obtained in this research represents a unique compilation of standards of practice that have been developed by DOTs based on years of experience and research in their respective jurisdictions. While this research allows engineers at state DOTs to compare their pavement design and construction practices with those of other states represented in the survey, consulting engineers and engineers in local governments involved in characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses can also benefit from this work.
20

Evaluation of Portable Devices for Monitoring Microcracking of Cement-Treated Base Layers

Hope, Charles A. 17 March 2011 (has links) (PDF)
A relatively new method used to reduce the amount of cement-treated base (CTB) shrinkage cracking is microcracking of the CTB shortly after construction. Three portable instruments used in this study for monitoring the microcracking process include the heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), and soil stiffness gauge (SSG). The specific objectives of this research were 1) to evaluate the sensitivity of each of the three portable instruments to microcracking, and 2) to compare measurements of CTB stiffness reduction obtained using the three devices. The test locations included in this study were Redwood Drive and Dale Avenue in Salt Lake City, Utah; 300 South in Spanish Fork, Utah; and a private access road in Wyoming. Experimental testing in the field consisted of randomized stationing at each site; sampling the CTB immediately after the cement was mixed into the reclaimed base material; compacting specimens for laboratory testing; and testing the CTB immediately after construction, immediately before microcracking, immediately after each pass of the vibratory roller during the microcracking process, and, in some instances, three days after microcracking. Several linear regression analyses were performed after data were collected using the CIST, PFWD, and SSG during the microcracking process to meet the objectives of this research. Results from the statistical analyses designed to evaluate the sensitivity of each of the three portable instruments to microcracking indicate that the PFWD and SSG are sensitive to microcracking, while the CIST is insensitive to microcracking. Results from the statistical analyses designed to compare measurements of CTB stiffness reduction demonstrate that neither of the instrument correlations involving the CIST are statistically significant. Only the correlation between the PFWD and SSG was shown to be statistically significant. Given the results of this research, engineers and contractors should utilize the PFWD or SSG for monitoring microcracking of CTB layers. The heavy CIST is unsuitable for monitoring microcracking and should not be used. For deriving target CTB stiffness reductions measured using either the PFWD or SSG from specified targets measured using the other, engineers and contractors should utilize the correlation chart developed in this research.

Page generated in 0.0773 seconds