• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cracking and Roughness of Asphalt Pavements Constructed Using Cement-Treated Base Materials

Hanson, Jonathan Russell 20 March 2006 (has links) (PDF)
While cement treatment is a proven method for improving the strength and durability of soils and aggregates, cement hydration causes shrinkage strains in the cement-treated base (CTB) that can lead to reflection cracking in asphalt surfaces. Cracking may then cause increased pavement roughness and lead to poor ride quality. The overall purpose of this research was to utilize data collected through the Long-Term Pavement Performance (LTPP) program to investigate the use and classification of CTB layers and evaluate the relative impact of cement content on the development of roughness and cracking in asphalt concrete (AC) pavements constructed using CTB layers. The data included 52 LTPP test sites, which represented 13 different states and one Canadian province, with cement contents ranging from 3.0 to 9.5 percent by weight of dry aggregate. Statistical procedures were utilized to identify the factors that were most correlated to the observed pavement performance and to develop prediction equations that transportation agencies can use to estimate the amount of roughness for a given pavement at a given age and the amount of distress associated with a particular crack severity level for a given pavement. The data collected for this study suggest that wide ranges of cement contents are used to stabilize soils within individual American Association of State Highway and Transportation Officials soil classifications. The data also suggest that CTBs comprising flexible pavement structures are constructed mainly on rural facilities. A backward-selection model development technique was used to develop sets of prediction equations for roughness and cracking. Age, AC thickness, CTB thickness, and cement content were determined to be significant predictors of International Roughness Index, while age, air freezing index, AC thickness, CTB thickness, cement content, and traffic loads in thousands of equivalent single-axle loads were determined to be significant predictors of low-severity, medium-severity, and high-severity block, fatigue, longitudinal (wheel-path and non-wheel-path), and transverse cracking in AC pavements constructed using CTB layers. Investigation of the relationships between CTB modulus and the development of roughness and cracking is recommended for further study.
2

Contractor Variability in Construction of Cement Treated Base Layers

Rogers, Maile Anne 19 July 2006 (has links) (PDF)
The primary purposes of this research were to identify construction factors most correlated to specific mechanical properties of cement-treated base (CTB) layers and to determine which construction factors exhibit comparatively high variability within individual construction sections of the two pavement reconstruction projects included in this study. In addition, differences between construction sections tested in this research were evaluated. The research focused on the construction of CTB layers in two pavement reconstruction projects in northern Utah, one along Interstate 84 (I-84) near Morgan and one along U.S. Highway 91 (US-91) near Richmond. The significant predictor variables associated with California bearing ratio (CBR), Clegg impact value (CIV), 7-day unconfined compressive strength (UCS), and 28-day UCS at the I-84 sites include reclaimed asphalt pavement (RAP) content; cement content; amounts of aggregate particles finer than the No. 8, No. 50, and No. 200 sieves; 7-day moisture content, and 28-day moisture content. The significant predictors of the same response variables on US-91 were in-situ moisture content, cement content, amount of aggregate particles finer than the No. 50 sieve, time between mixing and compaction in the field, dry density in the field, 7-day dry density, 7-day moisture content, 28-day dry density, and 28-day moisture content. The factors that were found to be the most variable on both I-84 and US-91 were CBR, cement content, time between mixing and compaction in the field, and time between mixing and compaction for each of the manually compacted specimens. On I-84, 16 of 27 factors were found to be significantly different between the sites, while 17 of 26 factors were found to be significantly different between the sites on US-91. The results of this research suggest that tighter specifications are warranted with respect to RAP content, cement content, and time between mixing and compaction. Concerning full depth recycling (FDR) projects, milling plans should be utilized to achieve improved uniformity in RAP content, and inspection protocols for encouraging improved control of cement content should be implemented during construction to ensure high-quality work. Compaction should be performed as soon as possible after mixing to minimize the adverse effects of cement hydration on the ability to achieve maximum dry density in the field.
3

Long-Term Modulus of Microcracked Cement-Treated Base Layers

McDivitt, Patrick Matthew 14 April 2023 (has links)
The objective of this research was to measure and analyze the long-term modulus values of cement-treated base (CTB) layers constructed in Utah using microcracking. Because modulus values of pavement layers are among the most influential inputs affecting mechanistic-empirical pavement design, obtaining reasonable estimates of modulus values is critical. Testing was performed with a portable falling-weight deflectometer, also called a lightweight deflectometer, and modulus values were backcalculated with the computer program BAKFAA. Testing occurred at five asphalt pavement sites in northern Utah, where reconstruction with full-depth reclamation and cement stabilization, in the form of cement slurry, was performed approximately 2 to 14 years previously. Unconfined compressive strength (UCS) data collected for the CTB materials during earlier projects were compiled for all five sites. The correlation between backcalculated CTB modulus values, which ranged from 42 to 433 ksi, and 7-day UCS values, which ranged from 366 to 559 psi, was analyzed, and uniformity and sensitivity analyses were performed. Based on the results of this research, a new correlation is proposed for estimating the long-term modulus values of microcracked CTB layers constructed in a seasonally cold climate, such as northern Utah. For an average 7-day UCS of 450 psi, a CTB modulus value of 114 ksi would be estimated using this correlation, whereas a much higher modulus value of 630 ksi would be estimated from an existing correlation chart that was published in 1972 before microcracking was developed as a CTB construction practice. The results of the uniformity analyses indicate that statistically significant spatial variability in the CTB modulus values exists at each site. In comparison to a proposed maximum threshold coefficient of variation of 40 percent presented in the literature for aspects of CTB construction, the CTB modulus at all of the sites would be characterized as having low uniformity, with values ranging from 42.9 to 90.3 percent. The results of the sensitivity analyses indicate that backcalculated CTB modulus values are sensitive to typical deviations from design values that may occur in pavement layer thicknesses and suggest that CTB modulus estimation errors may range from -22,561 to 62,097 psi, or -3.73 to 10.81 percent, for pavements similar to those studied in this research when the actual asphalt and CTB layer thicknesses are different than the assumed values by up to 0.25 or 0.50 in., respectively.
4

Strength and Deformation Characteristics of a Cement-Treated Reclaimed Pavement with a Chip Seal

Wilson, Bryan T. 17 March 2011 (has links) (PDF)
The objective of this research was to analyze the strength and deformation characteristics of a cement-treated base (CTB) constructed using full-depth reclamation, microcracked, and then surfaced with a single chip seal. In this field study, strength characteristics of the CTB layer were determined at the time of construction, and then both strength and deformation characteristics were evaluated after 9 months of low-volume, heavy truck traffic. After 9 months, observed distresses included transverse cracking, rutting, and chip seal joint failure. The loss of the chip seal was caused by poor chip seal construction practices and not a deficiency in the CTB layer. The importance of the role of the chip seal as a wearing course was made evident by these failures since the exposed CTB often exhibited material loss. The average ride qualities in and out of the wheel path were in the fair ride category; the roughness was not likely caused by trafficking but probably resulted from construction or climatic factors. Structural testing performed after 9 months of service indicated that the CTB stiffness and modulus were greater than the values measured after microcracking at the time of construction, indicating continued strength gain. However, trafficking over the 9-month period had caused significantly lower stiffnesses measured in the wheel paths than between the wheel paths. The average unconfined compressive strength (UCS) of the cores tested at 9 months was not significantly different than the average UCS of the field-compacted specimens tested at 6 weeks. Based on the observed performance of the CTB and chip seal evaluated in this research, recommendations for improved CTB performance include the use of a thicker and/or stiffer CTB layer, ensuring a smooth CTB surface during construction, and application of a double chip seal or equivalent.
5

Effect of High Percentages of Reclaimed Asphalt Pavement on Mechanical Properties of Cement-Treated Base Material

Tolbert, Jacob Clark 10 July 2014 (has links) (PDF)
Full-depth reclamation (FDR) is an increasingly common technique that is used to rehabilitate flexible pavements. Implementation of FDR on rehabilitation projects produces several desirable benefits. However, these benefits are not fully realized due to the fact that state department of transportation specifications typically limit the reclaimed asphalt pavement (RAP) content of pavement base material to 50 percent. The objective of this research was to evaluate the effects of RAP content, cement content, temperature, curing time, curing condition, and moisture state on the strength, stiffness, and deformation characteristics of cement-treated base (CTB) mixtures containing high percentages of RAP.For this research, one aggregate base material and one RAP material were used for all samples. RAP content ranged from 0 to 100 percent in increments of 25 percent, and low, medium, and high cement levels corresponding to 7-day unconfined compressive strength (UCS) values of 200, 400, and 600 psi, respectively, were selected for testing. Moisture-density, UCS, resilient modulus, and permanent deformation tests were performed for various combinations of factors, and several statistical analyses were utilized to evaluate the results of the UCS, resilient modulus, and permanent deformation testing.The results of this work show that CTB containing RAP can be made to achieve 7-day UCS values approaching 600 psi regardless of RAP content. With regards to stiffness, the data collected in this study indicate that the resilient modulus of CTB containing RAP is affected by temperature in the range from 72 to 140°F for the low cement level. Permanent deformation of CTB containing RAP is significantly affected by RAP content and cement level at the test temperature of 140°F. At the low cement level, temperature is also a significant variable. As the 7-day UCS reaches approximately 400 psi, permanent deformation is reduced to negligible quantities. The results of this research indicate that the inverse relationship observed between permanent deformation and 7-day UCS is statistically significant.Given that the principle conclusion from this work is that CTB with high RAP contents can perform satisfactorily as a base material when a sufficient amount of cement is applied, agencies currently specifying limits on the percentage of RAP that can be used as a part of reclaimed base material in the FDR process should reevaluate their policies and specifications with the goal of allowing the use of high RAP contents where appropriate.
6

Effects of Environmental Factors on Construction of Soil-Cement Pavement Layers

Michener, John E. 24 September 2008 (has links)
The specific objectives of this research were to quantify the effects of certain environmental factors on the relative strength loss of soil-cement subjected to compaction delay and to develop a numerical tool that can be easily used by engineers and contractors for determining a maximum compaction delay time for a given project. These objectives were addressed through extensive laboratory work and statistical analyses. The laboratory work involved testing an aggregate base material and a subgrade soil, each treated with two levels of cement. Environmental factors included in the experimentation were wind speed, temperature, and relative humidity, and three levels of each were evaluated in combination with varying compaction delay times. The primary response variables in this research were relative compaction and relative strength. The findings indicate that relative strength is sensitive to variability among the selected independent variables within the ranges investigated in this research, while relative compaction is not. Inferring relative strength from relative compaction is therefore not a reliable approach on soil-cement projects. Consistent with theory, higher wind speed, higher air temperature, lower relative humidity, and higher compaction delay time generally result in lower relative strength. With the nomographs developed in this research, the maximum delay time permitted for compaction of either a base or subgrade material similar to those tested in this research can be determined. Knowing in advance how much time is available for working the soil-cement will help contractors schedule their activities more appropriately and ultimately produce higher quality roads. When acceptable compaction delays are not obtainable due to adverse environmental conditions, a contractor may consider using set retarder, mixing at water contents above OMC, or constructing at night as possible solutions for achieving target relative strength values.
7

Early Age Assessment of Cement Treated Materials

Young, Tyler B. 21 March 2007 (has links)
In order to avoid the occurrence of early-age damage, cement-treated base (CTB) materials must be allowed to cure for a period of time before the pavement can be opened to traffic. The purpose of this research was to evaluate the utility of the soil stiffness gauge (SSG), heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), dynamic cone penetrometer, and falling-weight deflectometer for assessing early-age strength gain of cement-stabilized materials. Experimentation was performed at four sites on a pavement reconstruction project along Interstate 84 near Morgan, Utah, and three sites along Highway 91 near Richmond, Utah; cement stabilization was used to construct CTB layers at both locations. Each site was stationed to facilitate repeated measurements at the same locations with different devices and at different curing times. Because of the considerable attention they have received in the pavement construction industry for routine quality control and quality assurance programs, the SSG, CIST, and PFWD were the primary focus of the research. Statistical techniques were utilized to evaluate the sensitivity to curing time, repeatability, and efficiency of these devices. In addition, the ruggedness and ease of use of each device were evaluated. The test results indicate that the CIST data were more sensitive to curing time than the SSG and PFWD data at the majority of the cement-treated sites during the first 72 hours after construction. Furthermore, the results indicate that the CIST is superior to the other instruments with respect to repeatability, efficiency, ruggedness, and ease of use. Because the CIST is less expensive than the SSG and PFWD, it is more likely to be purchased by pavement engineers and contractors involved with construction of CTBs. For these reasons, this research suggests that the CIST offers greater overall utility than the SSG or PFWD for monitoring early-age strength gain of CTB. Further research is needed to identify appropriate threshold CIST values at which CTB layers develop sufficient strength to resist permanent deformation or marring under different types of trafficking.
8

Use of the Clegg Impact Soil Tester to Access Rutting Susceptiblity of Cement-Treated Base Material Under Early Trafficking

Reese, Garth B. 02 May 2007 (has links) (PDF)
In order to avoid the occurrence of early-age damage, cement-treated base (CTB) materials must be allowed to cure for a period of time before the pavement can be opened to traffic. Trafficking of a CTB before sufficient strength gain has occurred can lead to marring or rutting of the treated layer. The specific objectives of this research were to examine the correlation between Clegg impact values (CIVs) determined using a heavy Clegg impact soil tester and rut depths measured in newly constructed CTB and subsequently establish a threshold CIV at which rutting should not occur.The experimental work included field testing at several locations along United States Highway 91 near Smithfield, Utah, and laboratory testing at the Brigham Young University (BYU) Highway Materials Laboratory. In both the field and laboratory test programs, ruts were created in CTB layers using a specially manufactured heavy wheeled rutting device (HWRD). In the field, ruts caused by repeated passes of a standard pickup and a water truck were also evaluated. The collected data were analyzed using regression to identify a threshold CIV above which the CTB should not be susceptible to unacceptable rutting. From the collected data, one may conclude that successive wheel passes each cause less incremental rutting than previous passes and that CTB similar to the material tested in this research should experience only negligible rutting at CIVs greater than about 35. The maximum rut depth measured in either field or laboratory rutting tests was less than 0.35 in. in this research, probably due to the high quality limestone base material utilized to construct the CTB. In identifying a recommended threshold CIV at which CTB layers may be opened to early trafficking, researchers proposed a maximum tolerable rut depth of 0.10 in. for this project, which corresponds to a CIV of approximately 25. Because a CIV of 25 is associated with an acceptably minimal rut depth even after 100 passes of the HWRD, is achievable within a reasonable amount of time under normal curing conditions, and is consistent with earlier research, this threshold is recommended as the minimum average value that must be attained by a given CTB construction section before it can be opened to early trafficking. Use of the proposed threshold CIV should then ensure satisfactory performance of the CTB under even heavy construction traffic to the extent that the material properties do not differ greatly from those of the CTB evaluated in this research.
9

Evaluation of Portable Devices for Monitoring Microcracking of Cement-Treated Base Layers

Hope, Charles A. 17 March 2011 (has links) (PDF)
A relatively new method used to reduce the amount of cement-treated base (CTB) shrinkage cracking is microcracking of the CTB shortly after construction. Three portable instruments used in this study for monitoring the microcracking process include the heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), and soil stiffness gauge (SSG). The specific objectives of this research were 1) to evaluate the sensitivity of each of the three portable instruments to microcracking, and 2) to compare measurements of CTB stiffness reduction obtained using the three devices. The test locations included in this study were Redwood Drive and Dale Avenue in Salt Lake City, Utah; 300 South in Spanish Fork, Utah; and a private access road in Wyoming. Experimental testing in the field consisted of randomized stationing at each site; sampling the CTB immediately after the cement was mixed into the reclaimed base material; compacting specimens for laboratory testing; and testing the CTB immediately after construction, immediately before microcracking, immediately after each pass of the vibratory roller during the microcracking process, and, in some instances, three days after microcracking. Several linear regression analyses were performed after data were collected using the CIST, PFWD, and SSG during the microcracking process to meet the objectives of this research. Results from the statistical analyses designed to evaluate the sensitivity of each of the three portable instruments to microcracking indicate that the PFWD and SSG are sensitive to microcracking, while the CIST is insensitive to microcracking. Results from the statistical analyses designed to compare measurements of CTB stiffness reduction demonstrate that neither of the instrument correlations involving the CIST are statistically significant. Only the correlation between the PFWD and SSG was shown to be statistically significant. Given the results of this research, engineers and contractors should utilize the PFWD or SSG for monitoring microcracking of CTB layers. The heavy CIST is unsuitable for monitoring microcracking and should not be used. For deriving target CTB stiffness reductions measured using either the PFWD or SSG from specified targets measured using the other, engineers and contractors should utilize the correlation chart developed in this research.
10

Performance analysis of bases for flexible pavement

Mahasantipiya, Sedtha January 2000 (has links)
No description available.

Page generated in 0.1794 seconds