1 |
[en] SYNTHESIS AND CHARACTERIZATION OF LOW THERMAL EXPANSION OXIDES / [pt] SÍNTESE E CARACTERIZAÇÃO DE ÓXIDOS COM BAIXA EXPANSÃO TÉRMICAMONICA ARI SANO 19 February 2008 (has links)
[pt] Materiais que apresentam expansão térmica baixa ou negativa
possuem
grande potencial de emprego em diversas aplicações que
requerem resistência
ao choque térmico, assim como para aplicações
odontológicas, em placas de
circuitos eletrônicos, em componentes ópticos e para
produzir compósitos em
que compensam a expansão térmica positiva de outros
materiais. Por este
motivo, o estudo e a produção de materiais com expansão
térmica controlada
têm crescido nos últimos anos. No presente trabalho, foram
estudadas algumas
famílias de óxidos com estruturas que apresentam este tipo
de comportamento.
Foi avaliada a expansão térmica em três sistemas da família
A2M3O12 com o
intuito de produzir materiais com expansão térmica
controlada pela substituição
química do cátion A pelos cátions Al, Cr e Fe. Os sistemas
produzidos foram:
Cr2xFe2-2xMo3O12 (molibdato de cromo - ferro), Al2xCr2-
2xMo3O12 (molibdato de
alumínio - cromo) e Al2xFe2-2xMo3O12 (molibdato de
alumínio - ferro). Além
destes, o composto HfMgMo3O12 foi também sintetizado para
testar a viabilidade
de substituição dos cátions A trivalentes por um cátion
divalente e um
tetravalente. Foi possível obter soluções sólidas
monofásicas e seus parâmetros
de rede variam linearmente com o aumento no conteúdo do
cátion de maior
tamanho, conforme a lei de Vegard. Análise térmica
realizada por DSC permitiu
determinar a temperatura de transição de fase da estrutura
monoclínica (P21a) à
ortorrômbica (Pbcn). Os valores encontrados foram: para o
Al2Mo3O12, 200oC,
para o Cr2Mo3O12 , 403oC e para o Fe2Mo3O12, 512oC.
Coeficientes de expansão
térmica intrínsecos foram determinados por difração de
raios-X utilizando luz
síncrotron, encontrando-se valores bem reduzidos para todos
os sistemas
estudados, a saber: para o Al2Mo3O12, (alfa)l = 2,32 x 10-
6/oC, para o Cr2Mo3O12 , (alfa)l =
0,65 x 10-6/oC e para o Fe2Mo3O12, (alfa)l = 1,72 x 10-6/oC. / [en] Negative and low thermal expansion materials have important
potential
applications as resistance to thermal shock, as well as,
for odontological
applications, printed circuit boards, optical components
and to produce
composites to compensate the positive thermal expansion of
materials. For this
reason, the study and production of materials with
controlled thermal expansion
have increased in the recent years. In the present work,
some oxide families with
structures that present this type of behavior were
investigated. The thermal
expansion in three systems of A2M3O12 family was evaluated
in order to produce
materials with controlled thermal expansion through the
chemical substitution of
cation A with Al, Cr and Fe. The produced systems were:
Cr2xFe2-2xMo3O12
(chromium - iron molybdate), Al2xCr2-2xMo3O12 (chromium -
aluminum molybdate)
and Al2xFe2-2xMo3O12 (aluminum - iron molybdate). Besides
that, HfMgMo3O12 was
synthesized to test the viability of substitution of
trivalent cations for one divalent
plus one tetravalent. It was possible to obtain single-
phase solid solutions and
their lattice parameters increased linearly with the
increase of the largest cation
content, following the Vegard`s law. Thermal analysis
carried out by DSC allowed
the determination of the phase transition temperature from
monoclinic (P21a) to
orthorhombic (Pbcn) structure. The values were 200oC for
Al2Mo3O12, , 403oC for
Cr2Mo3O12 , and 512oC for Fe2Mo3O12. Intrinsic thermal
expansion coefficients
were determined by X-rays diffraction using syncrotron
radiation, and low values
were found for all studied systems: (alfa)1 = 2,32 x 10-
6/oC for Al2Mo3O12, (alfa)1 = 0,65 x
10-6/oC for Cr2Mo3O12 , and (alfa)1 = 1,72 x 10-6/oC for
Fe2Mo3O12.
|
2 |
Influência da razão combustível-oxidante nas características de óxidos nanoestruturados sintetizados por combustão em soluçãoToniolo, Juliano Cantarelli January 2009 (has links)
Com o aumento do uso do método de síntese por combustão em solução para obtenção de pós cerâmicos, há uma crescente percepção da necessidade de se entender as características únicas deste processo. Esta tese apresenta uma investigação baseada na obtenção de diferentes pós nanoestruturados: Al2O3-α (alumina), Cr2O3 (crômia), Fe2O3-α (hematita), Fe3O4 (magnetita), NiO (bunsenita) e CoO, Co3O4 (óxidos de cobalto), como opção para futuras aplicações. Estes foram caracterizados via ATD, BET, DRX, MET, MEV, VSM, XPS e FTIR. O foco particular deste trabalho é o estudo da razão combustível-oxidante e sua influência nas características dos materiais resultantes. Outros parâmetros de combustão foram identificados e também devidamente avaliados, tais como: tipo de chama, temperatura, gases gerados e composição química dos reagentes precursores. O cálculo termodinâmico da reação de combustão em solução mostrou que, quando a razão combustível-oxidante aumenta, obtêm-se uma elevação da temperatura de chama adiabática e da quantidade de gás produzida, definindo características do particulado como morfologia, tamanho de cristalito, área superficial e nível de agregação. A formação dos óxidos e metais seguiu um comportamento termodinâmico esperado, conforme energia livre de Gibbs. Menores tamanhos de cristalito foram obtidos sempre na condição deficiente em combustível para todos os sistemas estudados. Já a temperatura foi o principal parâmetro de reação que governou a taxa de crescimento e concorreu com a geração de gases para a formação dos cristalitos em certas condições redutoras. Os resultados deste trabalho melhoraram significativamente o entendimento do efeito da razão combustível-oxidante no comportamento das características físicas dos pós. Esta correlação foi avaliada com intuito de fornecer base de conhecimento para possível aplicação desta tecnologia na otimização ou desenvolvimento de novos sistemas de pós. / With the increasing use of solution combustion synthesis method for powder obtaining, there is a growing realization of the need to understand the unique characteristics of this process. This thesis presents the novel investigation of this technique specifically based upon some nanostructured powders such as α - Al2O3 (alumina), Cr2O3 (eskolite), α - Fe2O3 (hematite), Fe3O4 (magnetite), NiO (bunsenite), and CoO, Co3O4 (cobalt oxides) as a core option for future applications. These were characterized via DTA, BET, XRD, TEM, SEM, VSM, XPS, and FTIR. The particular focus of this work is based on the study of the fuel-to-oxidant ratio influence to the characteristics of the resulting materials. Other combustion parameters were identified and also proper appraised as flame type, temperature, gas generation, and chemical composition of precursor reagents. The thermodynamic calculation of the combustion reaction shows that as fuel-tooxidant ratio increases the amount of gas produced, and adiabatic flame temperature also increases. Powder characteristics as morphology, crystallite size, surface area and aggregation degree are mainly governed by the flame temperature, and generation of gases. The oxide and metals formation followed a thermodynamic behavior as expected, conform to Gibbs free energy. Lower crystallite sizes were always obtained by fuel-lean condition for all studied systems. The temperature was the main reaction parameter controlling the growth rate, while it competed with generation of gases to form crystallites under certain reducing conditions. The outcomes of this work have significantly improved the understanding of the fuelto- oxidant ratio effects on the behavior of the physical characteristics of powders. This correlation has been drawn in order to provide a knowledge basis for possible application of this technology to optimize or develop new powder systems.
|
3 |
Influência da razão combustível-oxidante nas características de óxidos nanoestruturados sintetizados por combustão em soluçãoToniolo, Juliano Cantarelli January 2009 (has links)
Com o aumento do uso do método de síntese por combustão em solução para obtenção de pós cerâmicos, há uma crescente percepção da necessidade de se entender as características únicas deste processo. Esta tese apresenta uma investigação baseada na obtenção de diferentes pós nanoestruturados: Al2O3-α (alumina), Cr2O3 (crômia), Fe2O3-α (hematita), Fe3O4 (magnetita), NiO (bunsenita) e CoO, Co3O4 (óxidos de cobalto), como opção para futuras aplicações. Estes foram caracterizados via ATD, BET, DRX, MET, MEV, VSM, XPS e FTIR. O foco particular deste trabalho é o estudo da razão combustível-oxidante e sua influência nas características dos materiais resultantes. Outros parâmetros de combustão foram identificados e também devidamente avaliados, tais como: tipo de chama, temperatura, gases gerados e composição química dos reagentes precursores. O cálculo termodinâmico da reação de combustão em solução mostrou que, quando a razão combustível-oxidante aumenta, obtêm-se uma elevação da temperatura de chama adiabática e da quantidade de gás produzida, definindo características do particulado como morfologia, tamanho de cristalito, área superficial e nível de agregação. A formação dos óxidos e metais seguiu um comportamento termodinâmico esperado, conforme energia livre de Gibbs. Menores tamanhos de cristalito foram obtidos sempre na condição deficiente em combustível para todos os sistemas estudados. Já a temperatura foi o principal parâmetro de reação que governou a taxa de crescimento e concorreu com a geração de gases para a formação dos cristalitos em certas condições redutoras. Os resultados deste trabalho melhoraram significativamente o entendimento do efeito da razão combustível-oxidante no comportamento das características físicas dos pós. Esta correlação foi avaliada com intuito de fornecer base de conhecimento para possível aplicação desta tecnologia na otimização ou desenvolvimento de novos sistemas de pós. / With the increasing use of solution combustion synthesis method for powder obtaining, there is a growing realization of the need to understand the unique characteristics of this process. This thesis presents the novel investigation of this technique specifically based upon some nanostructured powders such as α - Al2O3 (alumina), Cr2O3 (eskolite), α - Fe2O3 (hematite), Fe3O4 (magnetite), NiO (bunsenite), and CoO, Co3O4 (cobalt oxides) as a core option for future applications. These were characterized via DTA, BET, XRD, TEM, SEM, VSM, XPS, and FTIR. The particular focus of this work is based on the study of the fuel-to-oxidant ratio influence to the characteristics of the resulting materials. Other combustion parameters were identified and also proper appraised as flame type, temperature, gas generation, and chemical composition of precursor reagents. The thermodynamic calculation of the combustion reaction shows that as fuel-tooxidant ratio increases the amount of gas produced, and adiabatic flame temperature also increases. Powder characteristics as morphology, crystallite size, surface area and aggregation degree are mainly governed by the flame temperature, and generation of gases. The oxide and metals formation followed a thermodynamic behavior as expected, conform to Gibbs free energy. Lower crystallite sizes were always obtained by fuel-lean condition for all studied systems. The temperature was the main reaction parameter controlling the growth rate, while it competed with generation of gases to form crystallites under certain reducing conditions. The outcomes of this work have significantly improved the understanding of the fuelto- oxidant ratio effects on the behavior of the physical characteristics of powders. This correlation has been drawn in order to provide a knowledge basis for possible application of this technology to optimize or develop new powder systems.
|
4 |
Influência da razão combustível-oxidante nas características de óxidos nanoestruturados sintetizados por combustão em soluçãoToniolo, Juliano Cantarelli January 2009 (has links)
Com o aumento do uso do método de síntese por combustão em solução para obtenção de pós cerâmicos, há uma crescente percepção da necessidade de se entender as características únicas deste processo. Esta tese apresenta uma investigação baseada na obtenção de diferentes pós nanoestruturados: Al2O3-α (alumina), Cr2O3 (crômia), Fe2O3-α (hematita), Fe3O4 (magnetita), NiO (bunsenita) e CoO, Co3O4 (óxidos de cobalto), como opção para futuras aplicações. Estes foram caracterizados via ATD, BET, DRX, MET, MEV, VSM, XPS e FTIR. O foco particular deste trabalho é o estudo da razão combustível-oxidante e sua influência nas características dos materiais resultantes. Outros parâmetros de combustão foram identificados e também devidamente avaliados, tais como: tipo de chama, temperatura, gases gerados e composição química dos reagentes precursores. O cálculo termodinâmico da reação de combustão em solução mostrou que, quando a razão combustível-oxidante aumenta, obtêm-se uma elevação da temperatura de chama adiabática e da quantidade de gás produzida, definindo características do particulado como morfologia, tamanho de cristalito, área superficial e nível de agregação. A formação dos óxidos e metais seguiu um comportamento termodinâmico esperado, conforme energia livre de Gibbs. Menores tamanhos de cristalito foram obtidos sempre na condição deficiente em combustível para todos os sistemas estudados. Já a temperatura foi o principal parâmetro de reação que governou a taxa de crescimento e concorreu com a geração de gases para a formação dos cristalitos em certas condições redutoras. Os resultados deste trabalho melhoraram significativamente o entendimento do efeito da razão combustível-oxidante no comportamento das características físicas dos pós. Esta correlação foi avaliada com intuito de fornecer base de conhecimento para possível aplicação desta tecnologia na otimização ou desenvolvimento de novos sistemas de pós. / With the increasing use of solution combustion synthesis method for powder obtaining, there is a growing realization of the need to understand the unique characteristics of this process. This thesis presents the novel investigation of this technique specifically based upon some nanostructured powders such as α - Al2O3 (alumina), Cr2O3 (eskolite), α - Fe2O3 (hematite), Fe3O4 (magnetite), NiO (bunsenite), and CoO, Co3O4 (cobalt oxides) as a core option for future applications. These were characterized via DTA, BET, XRD, TEM, SEM, VSM, XPS, and FTIR. The particular focus of this work is based on the study of the fuel-to-oxidant ratio influence to the characteristics of the resulting materials. Other combustion parameters were identified and also proper appraised as flame type, temperature, gas generation, and chemical composition of precursor reagents. The thermodynamic calculation of the combustion reaction shows that as fuel-tooxidant ratio increases the amount of gas produced, and adiabatic flame temperature also increases. Powder characteristics as morphology, crystallite size, surface area and aggregation degree are mainly governed by the flame temperature, and generation of gases. The oxide and metals formation followed a thermodynamic behavior as expected, conform to Gibbs free energy. Lower crystallite sizes were always obtained by fuel-lean condition for all studied systems. The temperature was the main reaction parameter controlling the growth rate, while it competed with generation of gases to form crystallites under certain reducing conditions. The outcomes of this work have significantly improved the understanding of the fuelto- oxidant ratio effects on the behavior of the physical characteristics of powders. This correlation has been drawn in order to provide a knowledge basis for possible application of this technology to optimize or develop new powder systems.
|
5 |
Διεπιφανειακές ιδιότητες συστημάτων κεραμικών οξειδίων (δομικών και λειτουργικών) σε επαφή με ρευστές φάσειςΤριανταφύλλου, Γεώργιος 17 September 2012 (has links)
Τα προηγμένα (δομικά ή λειτουργικά) κεραμικά θεωρούνται ως τα πλέον κατάλληλα υλικά για εφαρμογές όπου απαιτούνται υψηλές θερμοκρασίες. Διαθέτουν μία σειρά από πλεονεκτήματα όπως π.χ. αντοχή σε θερμικούς αιφνιδιασμούς, υψηλή σκληρότητα, αντοχή σε φθορά και διάβρωση και μεγάλο εύρος στις τιμές των ηλεκτρικών τους ιδιοτήτων. Από τεχνολογική άποψη ενδιαφέρον παρουσιάζει ο συνδυασμός τους με μεταλλικές φάσεις με στόχο την συνένωση υλικών ή την παρασκευή σύνθετων κεραμομεταλλικών υλικών. Κεραμικές ενώσεις οξειδίων μπορεί να χρησιμοποιηθούν στην τεχνολογία των κελιών καυσίμου στερεού ηλεκτρολύτη (SOFC) ως μονωτικά ή στεγανωτικά υλικά. Ιδιαίτερο ενδιαφέρον παρουσιάζει η αλληλεπίδραση τους στην διεπιφάνεια σε επαφή με άργυρο και κράματα με βάση τον άργυρο για χρήση ως εναλλακτικών, σε αντικατάσταση των υαλοκεραμικών, συγκολλητικών μεταξύ των στρώσεων των μεμονωμένων στοιβάδων των SOFC. Σημαντικό ρόλο στη μικροδομή και τις ιδιότητες των υλικών αυτών παίζουν τα φαινόμενα διαβροχής και η ισχύς του δεσμού που αναπτύσσεται στη διεπιφάνεια κεραμικού / μετάλλου, καθώς και οι επιφανειακές και διεπιφανειακές ενέργειες των υλικών ή των συστημάτων των υλικών που βρίσκονται σε επαφή. Για το λόγο αυτό η γνώση των επιφανειακών και διεπιφανειακών μεγεθών είναι απαραίτητη για την πρόβλεψη των ιδιοτήτων των συστημάτων σε επαφή.
Σκοπός της παρούσας εργασίας είναι η μελέτη της συνάφειας και των διεπιφανειακών ιδιοτήτων σε συστήματα κεραμικών οξειδίων σε επαφή με ρευστές μεταλλικές φάσεις και ιδιαίτερα σε συστήματα του κεραμικών οξειδίων σε επαφή με ρευστές μεταλλικές φάσεις αργύρου, με τελικό σκοπό την εφαρμογή των συστημάτων αυτών στην τεχνολογία των SOFC.
Στο πρώτο μέρος της εργασίας, εξετάσθηκε η επίδραση του διαλυτοποιημένου οξυγόνου στην επιφανειακή ενέργεια του ρευστού άργυρου και του ρευστού χαλκού. Από τις εξισώσεις που εξήχθησαν είναι δυνατός ο προσδιορισμός της επιφανειακής ενέργειας τους για δεδομένη θερμοκρασία και μερική πίεση οξυγόνου. Υπολογίσθηκε η ελεύθερη ενέργεια προσρόφησης του οξυγόνου στην επιφάνεια του ρευστού χαλκού, μέχρι τον κορεσμό. Διατυπώθηκε επίσης μία σχέση για τον υπολογισμό της διαλυτότητας ενός οξειδίου στα ρευστά μέταλλα σε εξάρτηση με την θερμοκρασία και την μερική πίεση του οξυγόνου στην ατμόσφαιρα του πειράματος. Στη συνέχεια, με χρήση ενός συνδυασμού βιβλιογραφικών και πειραματικών δεδομένων σχετικά με τις τιμές της επιφανειακής ενέργειας και τις γωνίας επαφής σε συστήματα κεραμικών οξειδίων σε επαφή με διάφορα ρευστά μέταλλα βελτιστοποιήθηκε μια εμπειρική σχέση η οποία, σε δεδομένη θερμοκρασία, συνδέει άμεσα την επιφανειακή ενέργεια των στερεών οξειδίων με την επιφανειακή ενέργεια των ρευστών μετάλλων και τη γωνία επαφής. Μέσω αυτής της σχέσης είναι δυνατή η εκτίμηση της επιφανειακής ενέργειας ενός στερεού οξειδίου ή της γωνίας επαφής σε μη διαβρέχοντα και μη αντιδρώντα συστήματα κεραμικών οξειδίων / ρευστών μετάλλων, με την προϋπόθεση ότι η μερική διαλυτοποίηση οξυγόνου του κεραμικού μέσα στο ρευστό μέταλλο δεν επηρεάζει τις διεπιφανειακές ιδιότητες του συστήματος. Η σχέση αυτή επαληθεύθηκε
για διάφορα συστήματα κεραμικών οξειδίων / ρευστών μετάλλων και επιπλέον εφαρμόσθηκε για τον προσδιορισμό της επιφανειακής ενέργειας του πολυκρυσταλλικού οξειδίου Y2O3 μετά από πειράματα διαβροχής από ρευστό άργυρο, του πολυκρυσταλλικού οξειδίου 3YTZ (3mol% Yttria partial stabilized zirconia) και του μικτού πολυκρυσταλλικού οξειδίου 85wt% MgO + 15 wt% MgAl2O4, μετά από πειράματα διαβροχής με ρευστό άργυρο.
Στο δεύτερο μέρος της εργασίας πραγματοποιήθηκαν πειράματα διαβροχής κεραμικών οξειδίων από τήγμα αργύρου σε οξειδωτικές συνθήκες (αέρας) για να εξετασθεί η επίδραση του οξυγόνου στις διεπιφανειακές ιδιότητες του συστήματος, καθώς η τεχνολογία των SOFC απαιτεί οι διεργασίες αυτές να πραγματοποιούνται σε συνθήκες περιβάλλοντος. Διαπιστώθηκε ότι η παρουσία οξυγόνου βελτιώνει τη διαβρεξιμότητα στα συστήματα κεραμικών / μετάλλου αυξάνοντας την ισχύ του δεσμού στην διεπιφάνεια, όμως η γωνία θ παραμένει θ > 90◦ (κακή διαβροχή). Σημαντική ελάττωση της γωνίας επαφής επιτυγχάνεται με προσθήκη διεπιφανειακά ενεργών συστατικών στο τήγμα του συγκολλητικού μετάλλου αυξάνοντας σημαντικά το έργο συνάφειας και ως εκ τούτου την ισχύ του δεσμού στην διεπιφάνεια κεραμικού/μετάλλου. Για τον ίδιο λόγο πραγματοποιήθηκαν πειράματα διαβροχής κεραμικών οξειδίων από οξείδια με βάση το βόριο και το λίθιο, στον αέρα, με σκοπό να εξετασθεί η συνοχή μεταξύ των φάσεων σε επαφή. Τέλος εξετάσθηκε η διαβροχή του χάλυβα Crofer 22 APU, ο οποίος χρησιμοποιείται στην τεχνολογία των SOFC, από τις ίδιες ρευστές φάσεις, με στόχο να εξετασθεί η δυνατότητα χρήσης τους ως συγκολλητικές φάσεις σε κελιά καυσίμου στερεού ηλεκτρολύτη. / Advanced ceramics (structural or functional) are considered to be the most
suitable for use in high temperature applications. They have a number of advantages,
such as resistance to thermal shocks, high hardness, wear and corrosion resistance
and a wide range in the values of their electrical properties. Special interest is
being manifested in the compounds of ceramics with metals and metal alloys, in
the field of materials joining and the production of composite materials. Ceramic
compounds are used in the field of solid oxide fuel cells (SOFC) as insulators
and sealing materials. Particular interest has been stimulated in the interaction in
the interface of ceramics in contact with liquid silver and silver based alloys, as
alternatives to the glass-ceramics sealing materials in SOFC stacks. In all of these
cases the surface and interfacial energies of the materials or the materials systems
used, as well as the wetting and bonding phenomena at the interface, play a key
role in obtaining materials with the desired properties and microstructure.
The aim of the present work is the study of adhesion and interfacial properties
in ceramic oxide / liquid metal systems, particularly in systems of ceramic oxides
in contact with liquid silver and silver-based alloys, with the ultimate aim of
implementing such systems in the SOFC technology.
In the first part of this work, the effect of the dissoluted oxygen on the surface
energy of liquid copper and liquid silver was examined. The equations that were
deriverd can be used to calculate their surface energy as a function of the
temperature and the partial pressure of the oxygen. The free energy of the oxygen
adsorption in the surface of the liquid copper was calculated, until saturation.
Also, an equation that allows to calculate the solubility of an oxide in a liquid
metal was deriverd, as a function of the temperature and the oxygen partial pressure.
Moreover, from the combination of literature and experimental data of interfacial
energies and contact angles in non-wetting and non-reactive ceramic oxide/liquid
metal systems where the limited solubility of oxygen of the ceramic oxides into
the liquid metalls has no effect on the interfacial properties, has led to an empirical
relationship which correlates at a given temperature the surface energy of the oxides with the contact angle and the surface energy of the liquid metal. This
relationship allows either the calculation of the surface energy of an oxide from
known values of the surface energy of a liquid metal and the contact angle,
or conversely, the estimation of the contact angle value, as well as the work
of adhesion, for known surface energy of the oxide. The formulated empirical
relationship has been applied to additional non-wetting and non-reactive systems
of oxides in contact with liquid metals and the results showed good agreement
with literature data. In addition, the empirical formula was used to calculate the
surface energies of the polycrystalline oxides Y2O3 and 3YTZ (3mol% Yttria
partial stabilized zirconia) as well as the 85wt% MgO + 15 wt% MgAl2O4 mixed
oxide, after wetting experiments with liquid copper and/or liquid silver in an Ar-
4%H2 atmosphere.
In the second part of this work, the effect of the oxygen on the the interfacial
properties of the ceramics / liquid silver systems was examined by wetting
experiments, in order to achieve conditions similar to the SOFC operating
conditions. The results showed that the presence of the oxygen improves the
wetability in the ceramic / liquid metal systems, increasing the bond in the interface
but the angle remains θ > 90◦ (non wetting systems). The addition of interfacial
active compounds in the liquid metal led to a significant decrease in the contact
angle value, with the simultaneous increase in the work of adhesion, and so
to the increase in the strength of the bond. For this purpose and in order to
examine the adhesion between the two phases, wetting experiments with lithium
and borium based oxides took place. Finally, the above liquid phases were used
in wetting experiments on steel substrate (Crofer 22 APU) in order to investigate
the potential usage of them as sealing and insulators in SOFC technology.
|
6 |
Customized ceramic granules for laser powder bed fusion of aluminum oxidePfeiffer, Stefan 04 August 2022 (has links)
Die Implementierung von Laser Powder Bed Fusion bei Aluminiumoxidkeramiken ist aufgrund einer geringen Temperaturwechselbeständigkeit, Bauteilverdichtung, Pulverfließfähigkeit und Lichtabsorption eine große Herausforderung. In dieser Arbeit wurden diese Prob-leme mit unterschiedlichen Ansätzen adressiert. Sprühgetrocknete Aluminiumoxid Granulate wurde zur Verbesserung der Laserabsorption (über 80 % Verbesserung) mit farbigen Nano-Oxidpartikeln dotiert. Es wurden verschiedene Partikelpackungstheorien und Pulverbehand-lungen getestet, um die Pulverbettdichte und damit die Dichte des endgültigen Bauteils (Dichten bis zu 98,6 %) zu erhöhen. Die Pulverqualität wurde durch Schütt und Rütteldichte, Feuchtigkeitsgehalt, Partikelgrößenverteilung, Hausner-Verhältnis, Lawinenwinkel und Oberflächenfraktal charakterisiert. Des Weiteren wurde der Zusatz geeigneter Stoffe zur Verringerung der Rissbildung durch thermische Spannungen getestet. Die In-situ-Bildung von Phasen mit geringer und negativer Wärmeausdehnung reduzierte die Rissbildung in den lasergefertigten Oxidkeramiken stark.:1 Introduction 1
1.1 Motivation 1
1.2 State of the art . 2
1.3 Aim of the project 2
2 Literature review 5
2.1 Additive manufacturing by laser powder bed fusion 5
2.1.1 Classification and process description 5
2.1.2 Advantages against other AM processes 9
2.1.3 Challenges of laser powder bed fusion 12
2.1.4 State of the art of laser powder bed fusion of aluminum oxide based ceramics 13
2.1.4.1 Powder bed preparation and impact on the process 13
2.1.4.2 Critical rating of the powder bed preparation techniques 17
2.1.4.3 Processing methods and properties 19
2.1.4.4 Part properties 26
2.2 Theoretical and experimental considerations for powder bed preparation 35
2.2.1 Spray granulation 35
2.2.2 Particle packing theories 39
2.3 Mechanisms for particle dispersing 41
2.3.1 DLVO-theory 41
2.3.2 Surface charge and electrical double layer 43
2.4 Conceptualization of new ideas for laser powder bed fusion of aluminum oxide 45
2.4.1 Densification, powder flowability and absorption issue 46
2.4.2 Reduction of crack formation 47
3 Doped spray-dried granules to solve densification and absorption issue in laser powder bed fusion of alumina 55
3.1 Dispersing of aluminum oxide, iron oxide and manganese oxide 55
3.1.1 Experimental 55
3.1.2 Particle characterization 57
3.1.3 Saturation amount evaluation of dispersant 59
3.1.4 Particle size distributions after dispersing 62
3.1.4.1 Particle size distributions of alumina powders 62
3.1.4.2 Particle size distribution of dopant 67
3.2 Packing density increase of spray-dried granules 76
3.2.1 Experimental 77
3.2.2 Influence of solid load and particle ratio on granules 83
3.2.3 Influence of dopant shape and multimodal distributions on granules 84
3.2.4 Evolution of pH-value during slurry preparation and slurry stability after mixing of all components 85
3.2.5 Influence of slurry viscosity on yield of granules 88
3.2.6 Addition of coarse alumina to spray-dried granules 89
3.2.7 Application of Andreasen model on mixtures of ceramic particles with spray-dried granules 94
3.2.8 Thermal pre-treatment of granules 98
3.2.9 Influence of surface tension of slurry on granule size and density 110
3.3 Investigation of laser manufactured parts 114
3.3.1 Experimental 115
3.3.2 Influence of different iron oxide dopants and multimodal particle distributions within granules 118
3.3.3 Influence of coarse alumina variation 121
3.3.4 Influence of thermal pre-treatment of powders 127
3.3.5 Grain structure of laser additive manufactured parts 135
3.3.6 Thermal expansion of laser processed parts 137
3.3.7 Influence of thermal pre-treatment and laser processing on manganese amount within granules and laser additive manufactured parts 138
4 Additives to reduce crack formation in selective laser melting and sintering of alumina 143
4.1 Experimental 144
4.2 Additives to reduce thermal stresses 150
4.2.1 Selective laser melting with mullite additives 150
4.2.2 Amorphous alumina formation by rare earth oxide doping 160
4.2.3 Formation of aluminum titanate by use of reduced titanium oxide 169
4.2.3.1 Dispersing of titanium oxide nanoparticles in water 170
4.2.3.2 Thermal treatment of Al2O3/TiO2 granules under argon/hydrogen atmosphere 172
4.2.3.3 Laser manufacturing of parts 178
4.2.4 In-situ formation of negative thermal expansion materials 187
4.2.4.1 Dispersing of zirconia and tungsten oxide nanoparticles 187
4.2.4.2 Influence of spray drying process parameters 191
4.2.4.3 Preparation of final powders for laser powder bed fusion 197
4.2.4.4 Laser manufacturing of layers and parts 200
4.3 Mechanical properties of laser processed parts 205
5 Flowability and inner structure of customized granules 209
5.1 Experimental 209
5.2 Comparison of flowability in terms of Hausner ratio, Avalanche angle and surface fractal measurements 211
5.2.1 Influence of coarse alumina AA18 variation 211
5.2.2 Influence of thermal pre-treatment of powders 213
5.2.3 Influence of dopant content within granules 216
5.2.4 Flowability of zirconia-tungsten oxide granules and alumina granules with mullite or rare earth oxide addition 219
5.2.5 Flowability of titanium oxide doped alumina powders 221
5.3 Cross sections of customized granules to image inner structure 224
6 Summary, conclusions and outlook 233
6.1 Summary and conclusions 233
6.2 Outlook 241
References 245
List of Figures 260
List of Tables 269 / The implementation of laser powder bed fusion of aluminum oxide ceramics is challenging due to a low thermal shock resistance, part densification, powder flowability and light absorptance. In this work, these challenges have been addressed by different approaches. Spray-dried alumina granules were doped with colored oxide nanoparticles to improve the laser absorption (improvement by over 80%). Different particle packing theories and powder treatments were tested to increase the powder bed density and therefore, the final part density (densities up to 98.6%). The powder quality was characterized by apparent and tapped density, moisture content, particle size distribution, Hausner ratio, avalanche angle and sur-face fractal. Furthermore, the addition of suitable was tested to reduce crack formation caused by thermal stresses. The in-situ formation of low and negative thermal expansion phases strongly reduced the crack formation in the laser manufactured oxide ceramic parts.:1 Introduction 1
1.1 Motivation 1
1.2 State of the art . 2
1.3 Aim of the project 2
2 Literature review 5
2.1 Additive manufacturing by laser powder bed fusion 5
2.1.1 Classification and process description 5
2.1.2 Advantages against other AM processes 9
2.1.3 Challenges of laser powder bed fusion 12
2.1.4 State of the art of laser powder bed fusion of aluminum oxide based ceramics 13
2.1.4.1 Powder bed preparation and impact on the process 13
2.1.4.2 Critical rating of the powder bed preparation techniques 17
2.1.4.3 Processing methods and properties 19
2.1.4.4 Part properties 26
2.2 Theoretical and experimental considerations for powder bed preparation 35
2.2.1 Spray granulation 35
2.2.2 Particle packing theories 39
2.3 Mechanisms for particle dispersing 41
2.3.1 DLVO-theory 41
2.3.2 Surface charge and electrical double layer 43
2.4 Conceptualization of new ideas for laser powder bed fusion of aluminum oxide 45
2.4.1 Densification, powder flowability and absorption issue 46
2.4.2 Reduction of crack formation 47
3 Doped spray-dried granules to solve densification and absorption issue in laser powder bed fusion of alumina 55
3.1 Dispersing of aluminum oxide, iron oxide and manganese oxide 55
3.1.1 Experimental 55
3.1.2 Particle characterization 57
3.1.3 Saturation amount evaluation of dispersant 59
3.1.4 Particle size distributions after dispersing 62
3.1.4.1 Particle size distributions of alumina powders 62
3.1.4.2 Particle size distribution of dopant 67
3.2 Packing density increase of spray-dried granules 76
3.2.1 Experimental 77
3.2.2 Influence of solid load and particle ratio on granules 83
3.2.3 Influence of dopant shape and multimodal distributions on granules 84
3.2.4 Evolution of pH-value during slurry preparation and slurry stability after mixing of all components 85
3.2.5 Influence of slurry viscosity on yield of granules 88
3.2.6 Addition of coarse alumina to spray-dried granules 89
3.2.7 Application of Andreasen model on mixtures of ceramic particles with spray-dried granules 94
3.2.8 Thermal pre-treatment of granules 98
3.2.9 Influence of surface tension of slurry on granule size and density 110
3.3 Investigation of laser manufactured parts 114
3.3.1 Experimental 115
3.3.2 Influence of different iron oxide dopants and multimodal particle distributions within granules 118
3.3.3 Influence of coarse alumina variation 121
3.3.4 Influence of thermal pre-treatment of powders 127
3.3.5 Grain structure of laser additive manufactured parts 135
3.3.6 Thermal expansion of laser processed parts 137
3.3.7 Influence of thermal pre-treatment and laser processing on manganese amount within granules and laser additive manufactured parts 138
4 Additives to reduce crack formation in selective laser melting and sintering of alumina 143
4.1 Experimental 144
4.2 Additives to reduce thermal stresses 150
4.2.1 Selective laser melting with mullite additives 150
4.2.2 Amorphous alumina formation by rare earth oxide doping 160
4.2.3 Formation of aluminum titanate by use of reduced titanium oxide 169
4.2.3.1 Dispersing of titanium oxide nanoparticles in water 170
4.2.3.2 Thermal treatment of Al2O3/TiO2 granules under argon/hydrogen atmosphere 172
4.2.3.3 Laser manufacturing of parts 178
4.2.4 In-situ formation of negative thermal expansion materials 187
4.2.4.1 Dispersing of zirconia and tungsten oxide nanoparticles 187
4.2.4.2 Influence of spray drying process parameters 191
4.2.4.3 Preparation of final powders for laser powder bed fusion 197
4.2.4.4 Laser manufacturing of layers and parts 200
4.3 Mechanical properties of laser processed parts 205
5 Flowability and inner structure of customized granules 209
5.1 Experimental 209
5.2 Comparison of flowability in terms of Hausner ratio, Avalanche angle and surface fractal measurements 211
5.2.1 Influence of coarse alumina AA18 variation 211
5.2.2 Influence of thermal pre-treatment of powders 213
5.2.3 Influence of dopant content within granules 216
5.2.4 Flowability of zirconia-tungsten oxide granules and alumina granules with mullite or rare earth oxide addition 219
5.2.5 Flowability of titanium oxide doped alumina powders 221
5.3 Cross sections of customized granules to image inner structure 224
6 Summary, conclusions and outlook 233
6.1 Summary and conclusions 233
6.2 Outlook 241
References 245
List of Figures 260
List of Tables 269
|
Page generated in 0.062 seconds