• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 6
  • Tagged with
  • 24
  • 24
  • 17
  • 16
  • 16
  • 16
  • 16
  • 10
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Entwicklung und Verifizierung eines vorlochfreien mechanischen Fügeverfahrens zum Verbinden von Leichtmetallen und Faser-Kunststoff-Verbunden

Podlesak, Frank 27 April 2017 (has links)
Die Mischbauweise stellt eine Möglichkeit dar, insbesondere im Automobilbau, aber auch in anderen Industriezweigen Leichtbau zu betreiben. Dazu werden verschiedenartige Werkstoffe miteinander kombiniert. Vorzugsweise handelt es sich um Kombinationen aus faserverstärkten Kunststoffen und Leichtmetallen. Nach dem Motto “Der richtige Werkstoff am richtigen Ort” können so belastbare und gleichzeitig leichte Konstruktionen realisiert werden. Eine große Herausforderung besteht dabei jedoch im Fügen solch unterschiedlicher Werkstoffe. Aufgrund großer Unterschiede in Bindungsart und Schmelztemperatur sind klassische Fügeverfahren nicht anwendbar. Zum Verbinden von Metallen mit Faser- Verbund-Werkstoffen (FKV) wurden deswegen vorhandene Technologien adaptiert oder neue entwickelt. Im Rahmen dieser Dissertation wurde mit dem modifizierten Blindnieten ein neuer Lösungsansatz entwickelt, der sowohl mechanische als auch thermische Fügeverfahren miteinander kombiniert. Dazu wird ein rotierender Blindniet in sich überlappende Bleche getrieben und das darunter liegende Material unter Ausbildung einer Hülse aus dem Oberblech verdrängt. Anschließend wird der Niet ausgeformt und der Prozess ist abgeschlossen. Durch die Reibwärme wird die thermoplastische Matrix des FKV geschmolzen und die Fasern werden beweglich und können verdrängt werden. Dadurch kommt es zu einer geringeren Faserschädigungen und es können Delaminationen komplett vermieden werden. Untersuchungen wurden vorzugsweise an Materialkombinationen in Mischbauweise durchgeführt. Es wurden Aluminium- und Magnesiumbleche mit verschiedenen FKV mit Glas- oder Kohlefaserverstärkung gefügt. Für eine große Anwendungsbreite wurden ebenso Verbindungen von mehreren Metallblechen untersucht. Alle Kombinationen konnten so gefügt werden, dass in relativ kurzer Prozesszeit eine qualitativ hochwertige Verbindung entsteht. Mit einer geeigneten Parameterwahl sind Fügezeiten unter drei Sekunden möglich. Die mechanisch technologischen Gütewerten zeigen, dass mittels modifiziertem Blindnieten hergestellte Verbindungen mindestens die gleiche Lasten aufnehmen können, wie konventionelle Verfahren. Unter Scherbelastung kann die Belastbarkeit um bis zu 68 % gesteigert werden. Es hat sich gezeigt, dass mit dem neuen Verfahren eine wirtschaftliche Lösung für den Mischbau zur Verfügung steht. / Composite constructions provide an opportunity to introduce lightweight design in automotive and other industries. Therefore different kind of materials are combined. Preferably, these are combinations of fibre reinforced plastics and lightweight metal alloys. With the slogan 'the right material at the right place' tough and lightweight constructions can be realized. A big challenge the joining of these different materials. Because of big differences in the chemical bindings and in the melting temperature, conventional joining methods cannot be used. To join fibre reinforced plastics (FRP) existing processes were adapted or newly developed. In the course of this work with the modified blind riveting a new approach was developed, which combines mechanical and thermal joining processes. Therefore a rotating blind rivet is penetrated through two overlapping sheets by deforming the sheet material. After that the rivet is set and the process finished. Because of the friction heat the thermoplastic matrix of the FRP is slightly melted and the fibres can be moved without breaking them. Investigations were done mainly with lightweight material combinations. Sheets made out of aluminum and magnesium were joined with glass or carbon fibre reinforced plastic sheets. For a wider application field also combinations of two metal sheets were investigated. All combinations could be joined in a relatively short cycle time and high quality. So it is possible to reach a joining time of under 3 seconds. Under shear load the strength of joints made by modified blind riveting can be up to 68 % higher than conventional riveted joints. It has been shown that the new process can be exploited economically.
12

Analysis of the shear-out failure mode for CFRP connections joined by forming

Wilhelm, Maximilian Felix, Füssel, Uwe, Richter, Thomas, Riemer, Matthias, Foerster, Martin 22 October 2019 (has links)
In this paper, we look at the shear-out failure of carbon fiber reinforced plastics connections in the automotive industry. Contrary to the aircraft industry, the boundary conditions of automotive applications favor this failure mode strongly. Moreover, the use of other joining technologies than that used in the aircraft industry, such as joining by forming, leads to new challenges. The different influences, typical for joining by forming, on ultimate shear-out strength were first investigated separately and then transferred and validated on connections related to praxis by an analytical model. Special attention was given to effects that resulted from oversized pre-holes, acting clamping forces, and the reduced quality of the laminates in the immediate vicinity of the joint due to the joining process.
13

Embedded sensing and actuating in CFRP composite structures - concept and technology demonstration for tailored embeddable sensor-actuator layers (TEmSAL)

Hornig, Andreas, Frohberg, Richard, Bätzel, Tim, Gude, Maik, Modler, Niels 21 May 2024 (has links)
Carbon fibre reinforced plastic (CFRP) materials are of interest for the aerospace and aviation industry to master growing economic and ecological challenges. In contrast to conventional metallic materials, they offer both higher specific material properties, such as strengths, stiffnesses, and an increased energy absorption capacity in case of impact loading scenarios. Additionally, the possibility of integrating functional elements, such as actuators and sensors, predestine CFRP for the development of more lightweight structural components. In this study, a generic composite structure is instrumented with embedded piezo ceramic sensor elements. A technology for TEmSAL is presented and applied within an autoclave manufacturing process. Aspects of the designing process, manufacturing and instrumentation as well as experimental impact sensing and self-actuation results are presented and discussed.
14

Großflächige Oberflächenmodifizierung mittels Plasmatechnologie bei Atmosphärendruck / Large-scale surface modification by means of atmospheric pressure plasma technology

Kotte, Liliana 23 May 2016 (has links) (PDF)
Die Oberflächenmodifizierung mittels Plasma bei Atmosphärendruck ist eine bekannte und etablierte Technologie. Sie gewinnt aktuell aufgrund der rasant wachsenden Markt- und Entwicklungsnachfrage im Automotive- und Luftfahrttechnikbereich mit deren hohen Anforderungen an Neuentwicklungen auf dem Gebiet der Leichtbau-Komposite immer mehr an Bedeutung. Forderungen, die oftmals an die eingesetzten Plasmaquellen gestellt werden, sind (a) die Behandlungsmöglichkeit großer Oberflächen bei (b) gleichzeitig variierenden Arbeitsabständen von einigen Zentimetern für die Bearbeitung fertiger Bauteilgruppen, (c) die Einsatzmöglichkeit verschiedenster Prozessgase für die Erzeugung einer Vielzahl von spezifischen funktionellen Oberflächengruppen sowie (d) die Integration der Plasmaquelle in die Prozesskette z. B. in Form der Installation an einem Roboterarm. Diese Anforderungen werden derzeit nur durch die LARGE-Plasmaquelle (Long Arc Generator), eine lineare Gleichspannungslichtbogen-Plasmaquelle, erfüllt. Mit ihr sind Flächen auf einer Breite bis zu 350 mm bei Prozessgeschwindigkeiten von bis zu 100 m min-1 bearbeitbar. Ziel der vorliegenden Arbeit war es, die Einsatzgebiete der LARGE-Plasmatechnologie aufzuzeigen und sie zur Industriereife für großflächige Oberflächenmodifizierungen zu entwickeln. Dazu erfolgte eine Optimierung und Weiterentwicklung der Plasmaquelle, konkret dem Elektroden- und Gasverteilerdesign sowie der Stromversorgung. So wurde dem Stromgenerator erstmalig ein PPS-Modul (Puls-Power-Supply-Modul) zur Reglung des Stromes zugeschaltet. Mit diesem wird der Lichtbogenstrom in eine hochfrequente 20 kHz-Schwingung versetzt. Der Strom schwankt dadurch um eine Amplitude von ± 5 – 20 A. Das verhindert ein Festbrennen des Lichtbogenfußpunktes auf der Elektrode und führt so zur Stabilisierung des Lichtbogens. Durch die Plasmaquellenoptimierung und –weiterentwicklung konnte der Argonanteil vollständig reduziert und erstmals 100 % Druckluft als Plasmagas verwendet werden. Um das Potenzial der LARGE-Plasmaquelle für die großflächige Oberflächenmodifizierung zu demonstrieren, wurden vier konkrete Anwendungen aus der Industrie ausgewählt. So wurden zum einen zwei Beispiele aus der Luftfahrttechnik zum strukturellen Kleben mit epoxidharzbasiertem Klebstoffsystem betrachtet und systematisch untersucht: die SiO2-Schichtabscheidung zur Verbesserung der Haftung der Titanlegierungen Ti-6Al-4V und Ti-15V-3Cr-3Sn-3Al und die Plasmabehandlung von CFK zur Umwandlung von silikonbasierten Trennmittelrückständen zur Verbesserung der Adhäsion beim Kleben. Es konnte gezeigt werden, dass mit der LARGE-Plasmatechnologie zwei Materialgruppen erfolgreich plasmabehandelt werden können. Damit ist sie derzeit das einzige Plasmaverfahren bei Atmosphärendruck, mit dem SiO2-Haftvermittlerschichten auf Titanlegierungen sowie eine Trennmittelmodifizierung auf CFK-Oberflächen mit einem variablen Arbeitsbereich von 2 - 6 cm erfolgreich abgeschieden bzw. umgewandelt werden können. Zum anderen wurden zwei Beispiele aus dem Automotivbereich untersucht und der erfolgreiche Einsatz der LARGE-Plasmatechnologie demonstriert: die Plasmafunktionalisierung von Polypropylen zur Verbesserung der Adhäsion von wasserbasierten Lacken sowie die Plasmafeinreinigung und Entfettung von Aluminium. Auf der Grundlage der Ergebnisse dieser Arbeit zur großflächigen Atmosphärendruck-Oberflächenmodifizierung wurde ein Mobiler LARGE für den Einsatz vor Ort aufgebaut. Mit ihm wird die Marktreife und Konkurrenzfähigkeit dieser Plasmaquelle demonstriert.
15

Modified Phenol-Formaldehyde Resins for C-Fiber Reinforced Composites: Chemical Characteristics of Resins, Microstructure and Mechanical Properties of their Composites

Kim, Young Eun 06 January 2011 (has links) (PDF)
This work correlates the chemistry of phenol-formaldehyde (PF) resins, its functionalities with their microstructural and mechanical properties in composite materials. The main focus is put on the development of the pores in dependence on the chemical composition of the resins and their influence on the structure of the material. Chemical characteristics of the synthesized resins are analyzed and physical/mechanical properties of the matrices based on PF resins are determined. Differences in the chemical properties are detected e.g. by FT-IR and NMR spectroscopy. They indicate the existence of similar molecular basic structure units, but different network conditions of the resins. DSC investigations point on different reaction mechanisms and temperatures; they reveal also their changed thermal behavior. The bulk matrix behavior differs from that of the composite based on the same resin due to the three dimensional stress and strain fields in the composites. The structure of the CFRP composites is strongly depended on the fiber/matrix interaction. The fiber matrix bonding (FMB) strength controls the load transfer via shear forces and therefore the segmentation of the fiber bundles.
16

Untersuchung des Anwendungspotenzials der Hochfrequenzwirbelstrommesstechnik zur Charakterisierung dielektrischer Eigenschaften von Epoxidharzen und Faserverbundmaterialien

Gäbler, Simone 09 January 2018 (has links) (PDF)
Die dielektrischen Eigenschaften, also die Interaktion mit elektrischen Feldern, sind ein wichtiger Qualitätsparameter der Matrix in Faserverbundmaterialien und allgemein in Harzen. Sie werden bisher mit Hilfe von kapazitiven Verfahren oder Hochfrequenzverfahren wie z. B. der Mikrowellentechnik gemessen. Allerdings können beide Verfahren nicht an elektrisch leitfähigen Materialien wie Kohlenstofffaserverstärkten Kunststoffen (CFK) eingesetzt werden und auch bei der Anwendung der Methoden an Kunststoffen oder elektrisch isolierenden Faserverbundmaterialien gibt es Nachteile. So benötigt die kapazitive Messtechnik meist eine spezielle Probenpräparation für quantitative Messungen und erreicht eine vergleichsweise schlechte Ortsauflösung beim Permittivitätsmapping. Die vorliegende Arbeit widmet sich daher der Untersuchung einer alternativen, in diesem Kontext neuen Methode zur Charakterisierung dielektrischer Eigenschaften: Die Hochfrequenzwirbelstrommesstechnik, welche bisher zur Messung der elektrischen Leitfähigkeit und magnetischen Permeabilität genutzt wird, wird theoretisch und praktisch hinsichtlich ihres Anwendungspotentials zur Permittivitätsmessung an Epoxidharzen und Faserverbundwerkstoffen diskutiert. Dabei werden zuerst Grundlagen wie Anwendungsfelder für die Nutzung dielektrischer Eigenschaften von Harzen und Verbundwerkstoffen zur Qualitätssicherung bzw. gängige Messverfahren erläutert. Anschließend wird theoretisch gezeigt, warum dielektrische Eigenschaften auf das Hochfrequenzwirbelstrom (HFWS)-Signal wirken. Dabei werden sowohl die Maxwell-Gleichungen genutzt, als auch Finite Elemente (FE)-Simulationen. Der Schwerpunkt der Forschungsarbeit liegt dann auf der experimentellen Untersuchung der Permittivitätsmessung mittels HFWS. Es werden verschiedene Anwendungsfälle betrachtet: von zeitlich kontinuierlichen Permittitivitätsänderungen (am Beispiel der Aushärtung von Epoxidharzen), über lokale Permittivitätsabweichungen (in Folge von Defekten, Textureigenschaften oder thermischen Überlasten) bis hin zu quantitativen Permittivitätsmessungen (zur Materialcharakterisierung bzw. Alterungsuntersuchung). Dabei kann gezeigt werden, dass es möglich ist, die Permittivität von Faserverbundwerkstoffen und Epoxidharzen mittels HFWS zu charakterisieren, selbst wenn das zu prüfende Material elektrisch nicht leitfähig ist.
17

Großflächige Oberflächenmodifizierung mittels Plasmatechnologie bei Atmosphärendruck

Kotte, Liliana 25 February 2016 (has links)
Die Oberflächenmodifizierung mittels Plasma bei Atmosphärendruck ist eine bekannte und etablierte Technologie. Sie gewinnt aktuell aufgrund der rasant wachsenden Markt- und Entwicklungsnachfrage im Automotive- und Luftfahrttechnikbereich mit deren hohen Anforderungen an Neuentwicklungen auf dem Gebiet der Leichtbau-Komposite immer mehr an Bedeutung. Forderungen, die oftmals an die eingesetzten Plasmaquellen gestellt werden, sind (a) die Behandlungsmöglichkeit großer Oberflächen bei (b) gleichzeitig variierenden Arbeitsabständen von einigen Zentimetern für die Bearbeitung fertiger Bauteilgruppen, (c) die Einsatzmöglichkeit verschiedenster Prozessgase für die Erzeugung einer Vielzahl von spezifischen funktionellen Oberflächengruppen sowie (d) die Integration der Plasmaquelle in die Prozesskette z. B. in Form der Installation an einem Roboterarm. Diese Anforderungen werden derzeit nur durch die LARGE-Plasmaquelle (Long Arc Generator), eine lineare Gleichspannungslichtbogen-Plasmaquelle, erfüllt. Mit ihr sind Flächen auf einer Breite bis zu 350 mm bei Prozessgeschwindigkeiten von bis zu 100 m min-1 bearbeitbar. Ziel der vorliegenden Arbeit war es, die Einsatzgebiete der LARGE-Plasmatechnologie aufzuzeigen und sie zur Industriereife für großflächige Oberflächenmodifizierungen zu entwickeln. Dazu erfolgte eine Optimierung und Weiterentwicklung der Plasmaquelle, konkret dem Elektroden- und Gasverteilerdesign sowie der Stromversorgung. So wurde dem Stromgenerator erstmalig ein PPS-Modul (Puls-Power-Supply-Modul) zur Reglung des Stromes zugeschaltet. Mit diesem wird der Lichtbogenstrom in eine hochfrequente 20 kHz-Schwingung versetzt. Der Strom schwankt dadurch um eine Amplitude von ± 5 – 20 A. Das verhindert ein Festbrennen des Lichtbogenfußpunktes auf der Elektrode und führt so zur Stabilisierung des Lichtbogens. Durch die Plasmaquellenoptimierung und –weiterentwicklung konnte der Argonanteil vollständig reduziert und erstmals 100 % Druckluft als Plasmagas verwendet werden. Um das Potenzial der LARGE-Plasmaquelle für die großflächige Oberflächenmodifizierung zu demonstrieren, wurden vier konkrete Anwendungen aus der Industrie ausgewählt. So wurden zum einen zwei Beispiele aus der Luftfahrttechnik zum strukturellen Kleben mit epoxidharzbasiertem Klebstoffsystem betrachtet und systematisch untersucht: die SiO2-Schichtabscheidung zur Verbesserung der Haftung der Titanlegierungen Ti-6Al-4V und Ti-15V-3Cr-3Sn-3Al und die Plasmabehandlung von CFK zur Umwandlung von silikonbasierten Trennmittelrückständen zur Verbesserung der Adhäsion beim Kleben. Es konnte gezeigt werden, dass mit der LARGE-Plasmatechnologie zwei Materialgruppen erfolgreich plasmabehandelt werden können. Damit ist sie derzeit das einzige Plasmaverfahren bei Atmosphärendruck, mit dem SiO2-Haftvermittlerschichten auf Titanlegierungen sowie eine Trennmittelmodifizierung auf CFK-Oberflächen mit einem variablen Arbeitsbereich von 2 - 6 cm erfolgreich abgeschieden bzw. umgewandelt werden können. Zum anderen wurden zwei Beispiele aus dem Automotivbereich untersucht und der erfolgreiche Einsatz der LARGE-Plasmatechnologie demonstriert: die Plasmafunktionalisierung von Polypropylen zur Verbesserung der Adhäsion von wasserbasierten Lacken sowie die Plasmafeinreinigung und Entfettung von Aluminium. Auf der Grundlage der Ergebnisse dieser Arbeit zur großflächigen Atmosphärendruck-Oberflächenmodifizierung wurde ein Mobiler LARGE für den Einsatz vor Ort aufgebaut. Mit ihm wird die Marktreife und Konkurrenzfähigkeit dieser Plasmaquelle demonstriert.
18

Untersuchung des Anwendungspotenzials der Hochfrequenzwirbelstrommesstechnik zur Charakterisierung dielektrischer Eigenschaften von Epoxidharzen und Faserverbundmaterialien

Gäbler, Simone 08 June 2017 (has links)
Die dielektrischen Eigenschaften, also die Interaktion mit elektrischen Feldern, sind ein wichtiger Qualitätsparameter der Matrix in Faserverbundmaterialien und allgemein in Harzen. Sie werden bisher mit Hilfe von kapazitiven Verfahren oder Hochfrequenzverfahren wie z. B. der Mikrowellentechnik gemessen. Allerdings können beide Verfahren nicht an elektrisch leitfähigen Materialien wie Kohlenstofffaserverstärkten Kunststoffen (CFK) eingesetzt werden und auch bei der Anwendung der Methoden an Kunststoffen oder elektrisch isolierenden Faserverbundmaterialien gibt es Nachteile. So benötigt die kapazitive Messtechnik meist eine spezielle Probenpräparation für quantitative Messungen und erreicht eine vergleichsweise schlechte Ortsauflösung beim Permittivitätsmapping. Die vorliegende Arbeit widmet sich daher der Untersuchung einer alternativen, in diesem Kontext neuen Methode zur Charakterisierung dielektrischer Eigenschaften: Die Hochfrequenzwirbelstrommesstechnik, welche bisher zur Messung der elektrischen Leitfähigkeit und magnetischen Permeabilität genutzt wird, wird theoretisch und praktisch hinsichtlich ihres Anwendungspotentials zur Permittivitätsmessung an Epoxidharzen und Faserverbundwerkstoffen diskutiert. Dabei werden zuerst Grundlagen wie Anwendungsfelder für die Nutzung dielektrischer Eigenschaften von Harzen und Verbundwerkstoffen zur Qualitätssicherung bzw. gängige Messverfahren erläutert. Anschließend wird theoretisch gezeigt, warum dielektrische Eigenschaften auf das Hochfrequenzwirbelstrom (HFWS)-Signal wirken. Dabei werden sowohl die Maxwell-Gleichungen genutzt, als auch Finite Elemente (FE)-Simulationen. Der Schwerpunkt der Forschungsarbeit liegt dann auf der experimentellen Untersuchung der Permittivitätsmessung mittels HFWS. Es werden verschiedene Anwendungsfälle betrachtet: von zeitlich kontinuierlichen Permittitivitätsänderungen (am Beispiel der Aushärtung von Epoxidharzen), über lokale Permittivitätsabweichungen (in Folge von Defekten, Textureigenschaften oder thermischen Überlasten) bis hin zu quantitativen Permittivitätsmessungen (zur Materialcharakterisierung bzw. Alterungsuntersuchung). Dabei kann gezeigt werden, dass es möglich ist, die Permittivität von Faserverbundwerkstoffen und Epoxidharzen mittels HFWS zu charakterisieren, selbst wenn das zu prüfende Material elektrisch nicht leitfähig ist.
19

Modified Phenol-Formaldehyde Resins for C-Fiber Reinforced Composites: Chemical Characteristics of Resins, Microstructure and Mechanical Properties of their Composites

Kim, Young Eun 06 January 2011 (has links)
This work correlates the chemistry of phenol-formaldehyde (PF) resins, its functionalities with their microstructural and mechanical properties in composite materials. The main focus is put on the development of the pores in dependence on the chemical composition of the resins and their influence on the structure of the material. Chemical characteristics of the synthesized resins are analyzed and physical/mechanical properties of the matrices based on PF resins are determined. Differences in the chemical properties are detected e.g. by FT-IR and NMR spectroscopy. They indicate the existence of similar molecular basic structure units, but different network conditions of the resins. DSC investigations point on different reaction mechanisms and temperatures; they reveal also their changed thermal behavior. The bulk matrix behavior differs from that of the composite based on the same resin due to the three dimensional stress and strain fields in the composites. The structure of the CFRP composites is strongly depended on the fiber/matrix interaction. The fiber matrix bonding (FMB) strength controls the load transfer via shear forces and therefore the segmentation of the fiber bundles.:1 Introduction 2 Theoretical Overview 2.1 Phenol-Formaldehyde Resins 2.1.1 Overview 2.1.2 Reactions of phenol-formaldehyde resin 2.1.2.1 Addition reaction 2.1.2.2 Condensation reaction 2.1.2.3 Curing 2.1.3 Application of phenol-formaldehyde resin 2.2 Carbon-Fiber 2.2.1 PAN type carbon fiber 2.2.2 Pitch type carbon fiber 2.2.3 Application of carbon fiber 2.3 Composites 2.3.1 Carbon fiber composites 2.3.2 Matrix 2.3.3. Interfaces 2.3.3.1 Carbon fiber side interface between carbon fiber and matrix 2.3.3.2 Matrix side interface between carbon fiber and matrix 2.3.3.3 Toughening of fiber-reinforced polymer 3 Goal and Works 3.1 Problem and Motivation 3.2 Objective and Works plan 4 Experiments and Methods 4.1 Materials 4.1.1 Chemical reagents 4.1.2 Carbon fiber weave 4.2 Synthesis of Resin 4.3 Fabrication of Matrix 4.4. Measurement methods and Experimental approach 4.4.1 Chemical analysis 4.4.2 Microstructure characterization 4.4.3 Mechanical test 5 Chemical characterization of modified phenol-formaldehyde resin 5.1 Fourier Transformed Infrared spectroscopy (FT-IR) 5.1.1 Introduction 5.1.2 Preparation and Measurement 5.1.3 Results and Discussion 5.2 Nuclear Magnetic Resonance spectroscopy (NMR) 5.2.1 Liquid 13C Nuclear Magnetic Resonance spectroscopy 5.2.1.1 Introduction 5.2.1.2 Preparation and Measurement 5.2.1.3 Results and Discussion 5.2.2 Solid 13C CP-MAS Nuclear Magnetic Resonance spectroscopy 5.2.2.1 Introduction 5.2.2.2 Preparation and Measurement 5.2.2.3 Results and Discussion 5.3 Simultaneous Thermal Analysis (STA) 5.3.1 Introduction 5.3.2 Preparation and Measurement 5.3.3 Results and Discussion 5.3.3.1 Simultaneous Thermal Analysis 5.3.3.2 Different Scanning Calorimetry 5.4 Conclusion 6 Microstructural Characterization 6.1 Porosity 6.1.1 Introduction 6.1.2 Preparation and Measurement 6.1.3 Results and Discussion 6.1.3.1 Density 6.1.3.2 Porosity 6.2 Morphology 6.2.1 Introduction 6.2.2 Preparation and Measurement 6.2.3 Results and Discussion 6.2.3.1 Optical Microscopy 6.3.3.2 Scanning Electron Microscopy 6.3.3.2.1 Observation of the bulk matrix 6.2.3.2.2 Structural observation of the composite 6.3 Conclusion 7 Mechanical Properties 7.1 Hardness test 7.1.1 Introduction 7.1.2 Preparation and Measurement 7.1.3 Results and Discussion 7.2 Micro-bending test 7.2.1 Introduction 7.2.2 Preparation and Measurement 7.2.3 Results and Discussion 7.3 Conclusion 8 Summary and Conclusion 8.1 Summary 8.2 Conclusion 9 References
20

Magnetoelastische Sensoren für die Überwachung von mechanischen Verformungen in Verbundwerkstoffen

Wielage, Bernhard, Mäder, Thomas, Weber, Daisy, Mucha, Herbert 08 March 2013 (has links)
Eine ortsauflösende Spannungs- und Dehnungssensortechnik soll durch die Nutzung magnetostriktiver Materialien auf der Oberfläche von Kohlenstoffeinzelfasern (C-Fasern) und Mikrofeinstrukturierung dieser Schichten erzeugt und zur elektronischen Überwachung des Belastungszustandes von sicherheits- oder servicerelevanten Faserverbundbauteilen eingesetzt werden. Eine auf lokaler Gasphasenabscheidung und Mikrostrukturierung mittels der Focused Ion Beam (FIB)-Technik beruhende Sensorfabrikationsmethode wurde gemeinsam mit dem Institut für Mikrotechnologie Hannover (imt) entwickelt. Mehrschichtig mittels CVD und PVD bedampfte und zusätzlich galvanisch beschichtete C-Fasern weisen neuartige Eigenschaften auf, die im vorgestellten Vorhaben am Lehrstuhl für Verbundwerkstoffe (LVW) charakterisiert wurden. Insbesondere die Untersuchung der verschiedenen Schichten sowie deren Interfaces nehmen eine bedeutende Rolle ein.

Page generated in 0.0363 seconds