• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 27
  • 24
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 54
  • 41
  • 38
  • 36
  • 26
  • 22
  • 21
  • 21
  • 20
  • 20
  • 19
  • 18
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Evaluation Of The Photo-induced Structural Mechanisms In Chalcogenide

Lopez, Cedric 01 January 2004 (has links)
Chalcogenide glasses and their use in a wide range of optical, electronic and memory applications, has created a need for a more thorough understanding of material property variation as a function of composition and in geometries representative of actual devices. This study evaluates compositional dependencies and photo-induced structural mechanisms in As-S-Se chalcogenide glasses. An effective fabrication method for the reproducible processing of bulk chalcogenide materials has been demonstrated and an array of tools developed, for the systematic characterization of the resulting material's physical and optical properties. The influence of compositional variation on the physical properties of 13 glasses within the As-S-Se system has been established. Key structural and optical differences have been observed and quantified between bulk glasses and their corresponding as-deposited films. The importance of annealing and aging of the film material and the impact on photosentivity and long term behavior important to subsequent device stability have been evaluated. Photo-induced structures have been created in the thin films using bandgap cw and sub-bandgap femtosecond laser sources and the exposure conditions and their influence on the post-exposure material properties, have been found to have different limitations and driving mechanisms. These mechanisms largely depend on both structural and/or electronic defects, whether initially present in the chalcogenide material or created upon exposure. These defect processes, largely studied previously in individual binary material systems, have now been shown to be consistently present, but varying in extent, across the ternary glass compositions and exposure conditions examined. We thus establish the varying photo-response of these defects as being the major reason for the optical variations observed. Nonlinear optical material properties, as related to the multiphoton processes used in our exposure studies, have been modeled and a tentative explanation for their variation in the context of composition and method of evaluation is presented.
62

Direct Nonlinear Optics Measurements Of Raman Gain In Bulk Glasses And Estimates Of Fiber Performance

Stegeman, Robert 01 January 2006 (has links)
The need for more bandwidth in communications has stimulated the search for new fiberizable materials with properties superior to fused silica which is the current state-of-the-art. One of the key properties is Raman gain by which a pump beam amplifies a signal beam of longer wavelength. An apparatus capable of directly measuring the spectral dependence and absolute magnitude of the material Raman gain coefficient using nonlinear optics techniques has been built. Using radiation from a 1064 nm Nd:YAG laser as the pump and from a tunable Optical Parametric Generator and Amplifier as the signal, the Raman gain spectrum was measured for different families of glass samples with millimeter thickness. A number of glass families were investigated. Tellurites with added oxides of tungsten, niobium, and thallium produced the largest Raman gain coefficients of any oxide family reported to date, typically 30-50 times higher than that of fused silica. On the other hand, phosphate families were found with spectrally broad Raman gain response, 5 times broader than fused silica and flat to [plus or minus] dB over the full spectral range in some compositions. Although the chalcogenides were found to photodamage easily, coefficients 50 - 80 times that of fused silica were measured. Finally, a numerical study was undertaken to predict the theoretical performance and noise properties of tellurite fibers for communications. Included in the computer modeling were linear loss; the interaction among multiple pumps and signals; forward and/or backward propagating pump beams; forward, backward and double Rayleigh scattering; noise properties of amplifiers; excess noise, etc. This led to a comparison of the optical signal-to-noise characteristics for Raman gain in a tellurite versus a silica fiber.
63

Distribution of Laser Induced Heating in Multi-Component Chalcogenide Glass and its Associated Effects

Sisken, Laura 01 January 2014 (has links)
Chalcogenide glasses are well known to have good transparency into the infrared spectrum. These glasses though tend to have low thresholds as compared to oxide glasses for photo-induced changes and thermally-induced changes. Material modification such as photo-induced darkening, bleaching, refractive index change, densification or expansion, ablation of crystallization have been demonstrated, and are typically induced by a thermal furnace-based heat treatment, an optical source such as a laser, or a combination of photo-thermal interactions. Solely employing laser-based heating has an advantage over a furnace, since one has the potential to be able to spatially modify the materials properties with much greater precision by moving either the beam or the sample. The main properties of ChG glasses investigated in this study were the light-induced and thermally-induced modification of the glass through visible microscopy, white light interferometry, and Raman spectroscopy. Additionally computational models were developed in order to aid in determining what temperature rise should be occurring under the conditions used in experiments. It was seen that ablation, photo-expansion, crystallization, and melting could occur for some of the irradiation conditions that were used. The above bandgap energy simulations appeared to overestimate the maximum temperature that should have been reached in the sample, while the below bandgap energy simulations appeared to underestimate the maximum temperature that should have been reached in the sample. Ultimately, this work produces the ground work to be able to predict and control dose, and therefore heating, to induce localized crystallization and phase change.
64

Topological origin of glass formation, rigidity and stress transitions, conductivity and fragility in specially homogeneous Heavy Metal Oxide and Chalcogenide systems

Chakraborty, Shibalik 17 October 2014 (has links)
No description available.
65

Low-Temperature Solution-Phase Synthesis of Chalcogenide and Carbide Materials

Morasse, Rick Albert Lionel 24 May 2018 (has links)
No description available.
66

SELF-ORGANIZATION AND AGING IN NETWORK GLASSES

CHAKRAVARTY, SWAPNAJIT 30 June 2003 (has links)
No description available.
67

Reversibility Windows, Non-Aging and Nano Scale Phase Separation Effects in Bulk Germanium-Phosphorus-Sulfide Glasses

Vempati, Udaya K. 26 September 2005 (has links)
No description available.
68

Intermediate Phase, Molecular Structure, Aging and Network Topology of Ternary Ge<sub>x</sub>Sb<sub>x</sub>Se<sub>100-2x</sub> Glasses

Gunasekera, Kapila J. 03 August 2010 (has links)
No description available.
69

Correlating Melt Dynamics with Glass Topological Phases in Especially Homogenized Equimolar GexAsxS100-2x Glasses using Raman Scattering, Modulated- Differential Scanning Calorimetry and Volumetric Experiments

Almutairi, Badriah Saad 27 September 2020 (has links)
No description available.
70

Mechanical, Structural, Thermal and Electrical Studies on Indium and Silver Doped Ge-Te Glasses having Possible PCM Applications

Sreevidya Varma, G January 2014 (has links) (PDF)
The Science behind amorphous Chalcogenide materials opened up new technologies in the arena of Phase Change Memories. The Ovonic universal phase change memory is called universal because it can replace flash memory, DRAM and SRAM. These are not only basic computer memory devices but also are becoming the driving force for the ongoing revolutionary growth of cell phones and other mobile devices, which are in desperate need of memory providing higher density, faster speed and lower power consumption. In this thesis, compositional dependence of various properties of different chalcogenide glasses are investigated, to explore the possibility of their application in Phase Change Memories. Efforts are also made to understand the effect of rigidity and extended rigidity transition on the composition dependence of properties investigated. This thesis comprises of 9 chapters; a brief summary is given below. Chapter 1 deals with fundamental aspects of amorphous semiconductors with a particular reference to chalcogenide glasses. The advantages and applications of chalcogenide glasses are also described. Chapter 2 outlines preparation and characterization of the glasses investigated. The sample preparation and various experimental setup used in the present thesis work like Raman Scattering, Nanoindentation, Alternating Differential Scanning Calorimetry (ADSC), Photo-thermal Deflection Spectroscopy (PDS), Electrical Switching are summarized here. Chapter 3 deals with Micro-Raman studies in Ge15Te85-x Inx Glasses. Micro-Raman studies reveal that as-quenched Ge15Te85-xInx samples exhibit two prominent peaks, at 123 and 155 cm-1. In thermally annealed samples, the peaks at 120 cm-1 and 140 cm-1, which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm-1 and 141 cm-1. The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-ageing and are more stable. Chapter 4 explains nanoindentation studies undertaken on Ge15Te85-xInx glasse (1 ≤ x ≤ 11). Nanoindentation studies on Ge15Te85-xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3 ≤ x ≤ 7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 ≤ x ≤ 7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Chapter 5 deals with crystallization kinetics of Ge15Te85-xInx glasses. The crystallization kinetics of Ge15Te85Inx glasses have been studied by non-isothermal method. The composition dependence of Tg and Tc at different heating rates, is investigated. The activation energy of crystallization is calculated using the Kissinger’s plot. It is found that the composition dependence of the glass transition temperature, Tg and the crystallization temperature, Tc, the activation energy of crystallization, Ec, and the stability factor, (ΔT= Tc-Tg) exhibit specific signatures of intermediate phase in the composition rang 3 ≤ x ≤ 7 and Chemical Threshold at x = 9. Chapter 6 explains Alternating Differential Scanning Calorimetric and XRD studies on silver doped Ge15Te80In5 glasses. X-ray diffraction studies on quaternary Ge15Te80-xIn5Agx glasses (2 ≤ x ≤ 24) reveal the presence of Te, GeTe, Ag8GeTe6, AgTe, In2Te3 and In4Te3. Thermal studies on quaternary Ge15Te80-xIn5Agx glasses exhibit signatures of Intermediate Phase (IP) in the variation of Tg, ∆HNR and ∆Cp with Ag addition in the composition range 8 ≤ x ≤ 16. The composition x = 16 has been identified to be the Chemical Threshold (CT) based on the saturation of flexible Ag-Te bonds. Micro-Raman, molar volume, thermal diffusivity studies on Ge15Te80-xIn5Agx glasses reveal a clear evidence of intermediate phase in the composition range 8 ≤ x ≤ 16 as depicted in the ADSC studies. Chapter 7 deals with Micro-Raman studies on as-quenched Ge15Te80-xIn5Agx glasses reveal the presence of tetrahedral structural units. Further, the Raman peak positions are found to shift with silver addition. In addition, specific signatures of the Intermediate Phase (IP) are observed in the composition dependence of Raman frequencies and corresponding intensities of different modes in the composition range, 8 ≤ x ≤ 16. In thermally annealed samples, the observed Raman peaks can be attributed to crystalline tellurium and silver lattice vibrational modes; significant increase in intensity is observed at 93 and 141cm-1 with silver addition in annealed samples, suggesting an increase in silver lattice vibrational modes. Also, the compositional dependence of density, molar volume and thermal diffusivity confirms the presence of the intermediate phase. Chapter 8 contains the current-voltage characteristics and electrical switching behavior of Ge15Te80-xIn5Agx glasses. The glasses are found to exhibit memory type switching for 3mA current in the voltage range 70 -120 V, for a sample thickness 0.3 mm. But when the current is lowered to 1mA the samples exhibit threshold switching. The compositional studies indicate the presence of an intermediate phase in the composition range 8 ≤ x ≤ 16. SET-RESET studies have been carried out using a triangular pulse of 6 mA amplitude for SET and 21 mA amplitude for RESET for a sample thickness 0.3 mm. Raman studies on SET and RESET indicates SET state resemble annealed samples and RESET state resemble as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x =10, 12, 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are suitable for PCM devices. Chapter 9 summarizes the significant results obtained and explains the scope of this thesis.

Page generated in 0.0518 seconds