• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 20
  • 19
  • 17
  • 10
  • 6
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 251
  • 251
  • 74
  • 65
  • 36
  • 35
  • 35
  • 34
  • 33
  • 31
  • 30
  • 27
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

A Bidirectional Lms Algorithm For Estimation Of Fast Time-varying Channels

Yapici, Yavuz 01 May 2011 (has links) (PDF)
Effort to estimate unknown time-varying channels as a part of high-speed mobile communication systems is of interest especially for next-generation wireless systems. The high computational complexity of the optimal Wiener estimator usually makes its use impractical in fast time-varying channels. As a powerful candidate, the adaptive least mean squares (LMS) algorithm offers a computationally efficient solution with its simple first-order weight-vector update equation. However, the performance of the LMS algorithm deteriorates in time-varying channels as a result of the eigenvalue disparity, i.e., spread, of the input correlation matrix in such chan nels. In this work, we incorporate the L MS algorithm into the well-known bidirectional processing idea to produce an extension called the bidirectional LMS. This algorithm is shown to be robust to the adverse effects of time-varying channels such as large eigenvalue spread. The associated tracking performance is observed to be very close to that of the optimal Wiener filter in many cases and the bidirectional LMS algorithm is therefore referred to as near-optimal. The computational complexity is observed to increase by the bidirectional employment of the LMS algorithm, but nevertheless is significantly lower than that of the optimal Wiener filter. The tracking behavior of the bidirectional LMS algorithm is also analyzed and eventually a steady-state step-size dependent mean square error (MSE) expression is derived for single antenna flat-fading channels with various correlation properties. The aforementioned analysis is then generalized to include single-antenna frequency-selective channels where the so-called ind ependence assumption is no more applicable due to the channel memory at hand, and then to multi-antenna flat-fading channels. The optimal selection of the step-size values is also presented using the results of the MSE analysis. The numerical evaluations show a very good match between the theoretical and the experimental results under various scenarios. The tracking analysis of the bidirectional LMS algorithm is believed to be novel in the sense that although there are several works in the literature on the bidirectional estimation, none of them provides a theoretical analysis on the underlying estimators. An iterative channel estimation scheme is also presented as a more realistic application for each of the estimation algorithms and the channel models under consideration. As a result, the bidirectional LMS algorithm is observed to be very successful for this real-life application with its increased but still practical level of complexity, the near-optimal tracking performa nce and robustness to the imperfect initialization.
192

Blind Channel Estimation Based On The Lloyd-max Algorithm Innarrowband Fading Channels And Jamming

Dizdar, Onur 01 June 2011 (has links) (PDF)
In wireless communications, knowledge of the channel coefficients is required for coherent demodulation. In this thesis, a blind channel estimation method based on the Lloyd-Max algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation points for the received signal using an iterative least squares approach. The algorithm is investigated for fast-frequency hopping systems with small block lengths and operating under partial-band and partial-time jamming for both detecting the jammer and estimating the channel. The performance of the Lloyd-Max channel estimation algorithm is compared to the performance of pilot-based channel estimation algorithms which also use the least squares approach and non-coherent demodulation and decoding.
193

A Study On Symbol Synchronization And Channel Estimation Form-ary Orthogonal Transmission

Karagozlu, Eren 01 September 2011 (has links) (PDF)
In this thesis, two key issues regarding M-ary orthogonal signaling systems, namely channel estimation and symbol timing recovery are investigated. Kasami codes, which are also called quasi orthogonal codes, are used for transmission of the information in place of orthogonal waveforms. In order to achieve symbol synchronization, a timing recovery scheme based on the Maximum Likelihood (ML) estimation of timing offset is proposed and the effects of proposed structure over the receiver performance are examined by using computer simulations. Moreover, the receiver performance of M-ary orthogonal signals transmitted over multipath fading channel is investigated. Least Square (LS) approach, based on the transmission of known training sequence, is used to estimate the channel impulse response. In addition to this, frame synchronization is employed at the receiver to extract the timing information by determining the start time of the received symbols. Computer simulations related to the proposed receiver structure are carried out in order to observe how the system performance is affected under multipath fading channel. Parameter selection guides regarding a good performance are also provided.
194

Blind Adaptive Receivers for Precoded SIMO DS-CDMA System

Li, Meng-Yi 08 August 2008 (has links)
The system capacity of the direct-sequence code division multiple access (DS-CDMA) system is limited mainly due to the multiple access interference (MAI), this is basically due to the incomplete orthogonality of spreading codes between different users. In wireless communication environments, the use of DS-CDMA system over multipath channels will introduce the effect of inter-symbol interference (ISI), thus the system performance might degrade, dramatically. To circumvent the above-mentioned problems many adaptive multiuser detectors are proposed, such as the minimum mean square error (MMSE) criteria subject to certain constraints. Unfortunately, with the MMSE receiver it requires an extra training sequence, which decreases the spectral efficiency. To increase the spectral efficiency, the blind adaptive receivers are adopted. In the conventional approach the blind adaptive receiver is developed based on the linear constrained minimum variance (LCMV) criteria, which can be viewed as the constrained version of the minimum output energy (MOE) criteria. Other alternative of designing the blind adaptive receiver is to use the linear constrained constant modulus (LCCM) criteria. In general, the LCCM receiver could achieve better robustness due to the changing environment of channel. With the above-mentioned adaptive linearly constrained multi-user receivers, we are able to reduce the effects of ISI and MAI and achieve desired system performance. However, for worse communication link, the conventional adaptive multi-user detector might not achieve desired performance and suppress interference effectively. In this thesis, we consider a new approach, in which the pre-coder similar to the Orthogonal Frequency Division Multiplexing (OFDM) systems is introduced in the transmitter of the DS-CDMA system. In the receiver, by using the characteristics of pre-coder we could remove the effect of ISI, effectively, and follows by the adaptive multi-user detector to suppress the MAI. Two most common use pre-coders of the OFDM systems are the Cyclic Prefix (CP) or Zero Padding (ZP). Thus the pre-coded DS-CDMA systems associated with the adaptive blind linearly constrained receiver could be employed to further improve the system performance with the cost of decreasing the spectral efficiency.
195

Channel estimation and signal detection for wireless relay

Ma, Jun 15 November 2010 (has links)
Wireless relay can be utilized to extend signal coverage, achieve spatial diversity by user cooperation, or shield mobile terminals from adverse channel conditions over the direct link. In a two-hop multi-input-multi-output (MIMO) amplify-and-forward (AF) relay system, the overall noise at the destination station (DS) consists of the colored noise forwarded from the relay station (RS) and the local white noise. We propose blind noise correlation estimation at the DS by utilizing statistics of the broadband relay channel over the RS-DS hop, which effectively improves signal detection at the DS. For further performance improvement, we also propose to estimate the two cascaded MIMO relay channels over the source-RS and the RS-DS links at the DS based on the overall channel between the source and the DS and the amplifying matrix applied at the RS. To cancel cross-talk interference at a channel-reuse-relay-station (CRRS), we utilize the random forwarded signals of the CRRS as equivalent pilots for local coupling channel estimation and achieve a much higher post signal-to-interference ratio (SIR) than the conventional dedicated pilots assisted cancellers without causing any in-band interference at the DS. When an OFDM-based RS is deployed on a high-speed train to shield mobile terminals from the high Doppler frequency over the direct link, inter-subchannel interference (ICI) mitigation is required at the RS. By utilizing statistics of the channel between the base station and the train, we develop both full-rate and reduced-rate OFDM transmission with inherent ICI self-cancellation via transmit and/or receive preprocessing, which achieve significant performance improvement over the existing ICI self-cancellation schemes.
196

Constellation Design under Channel Uncertainty

Giese, Jochen January 2005 (has links)
<p>The topic of this thesis is signaling design for data transmission through wireless channels between a transmitter and a receiver that can both be equipped with one or more antennas. In particular, the focus is on channels where the propagation coefficients between each transmitter--receiver antenna pair are only partially known or completetly unknown to the receiver and unknown to the transmitter.</p><p>A standard signal design approach for this scenario is based on separate training for the acquisition of channel knowledge at the receiver and subsequent error-control coding for data detection over channels that are known or at least approximately known at the receiver. If the number of parameters to estimate in the acquisition phase is high as, e.g., in a frequency-selective multiple-input multiple-output channel, the required amount of training symbols can be substantial. It is therefore of interest to study signaling schemes that minimize the overhead of training or avoid a training sequence altogether.</p><p>Several approaches for the design of such schemes are considered in this thesis. Two different design methods are investigated based on a signal representation in the time domain. In the first approach, the symbol alphabet is preselected, the design problem is formulated as an integer optimization problem and solutions are found using simulated annealing. The second design method is targeted towards general complex-valued signaling and applies a constrained gradient-search algorithm. Both approaches result in signaling schemes with excellent detection performance, albeit at the cost of significant complexity requirements.</p><p>A third approach is based on a signal representation in the frequency domain. A low-complexity signaling scheme performing differential space--frequency modulation and detection is described, analyzed in detail and evaluated by simulation examples.</p><p>The mentioned design approaches assumed that the receiver has no knowledge about the value of the channel coefficients. However, we also investigate a scenario where the receiver has access to an estimate of the channel coefficients with known error statistics. In the case of a frequency-flat fading channel, a design criterion allowing for a smooth transition between the corresponding criteria for known and unknown channel is derived and used to design signaling schemes matched to the quality of the channel estimate. In particular, a constellation design is proposed that offers a high level of flexibility to accomodate various levels of channel knowledge at the receiver.</p>
197

Παραμετρικές τεχνικές εκτίμησης καναλιού σε συστήματα μετάδοσης τύπου OFDM / Channel estimation for OFDM transmission based on parametric channel modeling

Λατίφης, Κωνσταντίνος 16 May 2007 (has links)
Η εργασία αυτή ασχολείται με το πρόβλημα της εκτίμησης καναλιού σε συστήματα μετάδοσης OFDM. Το πρόβλημα αυτό συγκεντρώνει έντονο ερευνητικό ενδιαφέρον τα τελευταία χρόνια, καθώς συναντάται σε ένα ευρύ πεδίο εφαρμογών. Η άγνωστη συνάρτηση μεταφοράς του καναλιού στα ασύρματα συστήματα μετάδοσης, καθιστά απαραίτητη την εκτίμησή του πριν από οποιαδήποτε διαδικασία μετάδοσης. Στη συγκεκριμένη μεταπτυχιακή εργασία, αντικείμενο εξέτασης αποτελεί η επίδραση καναλιού με μη γραμμικά χαρακτηριστικά σε συστήματα μετάδοσης OFDM. Αρχικά, παρουσιάζεται ένας βελτιωμένος αλγόριθμος εκτίμησης καναλιού, ο οποίος βασίζεται σε ένα παραμετρικό μοντέλο. Η απόκριση συχνότητας του καναλιού εκτιμάται χρησιμοποιώντας ένα μοντέλο με L μονοπάτια. Γίνεται χρήση της μεθόδου ESPRIT για την αρχική εκτίμηση των πολυδρομικών καθυστερήσεων, ενώ η διαδικασία παρακολούθησης γίνεται με την τεχνική IPIC DLL. Με γνωστή την πληροφορία για τις πολυδρομικές καθυστερήσεις, εκτιμάται η απόκριση του καναλιού στο πεδίο της συχνότητας με τη μέθοδο του ελαχίστου μέσου τετραγωνικού σφάλματος. Ιδιαίτερης μνείας χρήζει το κριτήριο MDL (Minimum Description Length) που χρησιμοποιείται για την εύρεση των ενεργών μονοπατιών του καναλιού. Σύμφωνα με το κριτήριο, υπολογίζεται ο ιδιοχώρος, δηλαδή οι ιδιοτιμές και τα ιδιοδιανύσματα, του πίνακα αυτοσυσχέτισης του καναλιού. Ο ιδιοχώρος αυτός εμφανίζει ιδιαίτερη δομή και μπορεί να αναλυθεί σε κάθετους μεταξύ τους υποχώρους: τον υποχώρο του σήματος (signal subspace) και αυτόν του θορύβου (noise subspace). Έχει αποδειχθεί ότι η χρήση παραμετρικού μοντέλου καναλιού μπορεί να μειώσει δραστικά τις διαστάσεις του υποχώρου του σήματος και κατά συνέπεια να βελτιώσει την απόδοση της εκτίμησης του καναλιού. Στη συνέχεια εξετάζεται η δυνατότητα εφαρμογής του αλγόριθμου PAST κατά τη διαδικασία παρακολούθησης των πολυδρομικών καθυστερήσεων και η σύγκρισή του με την απόδοση του IPIC DLL. Ο αλγόριθμος PAST έχει χαμηλή υπολογιστική πολυπλοκότητα καθώς στηρίζεται σε αναδρομικές τεχνικές παρακολούθησης του ιδιοχώρου. Στα πλαίσια της μεταπτυχιακής εργασίας έγινε συγκριτική μελέτη των τεχνικών εκτίμησης καναλιού σε συστήματα μετάδοσης OFDM. Περιγράφονται τα βασικά χαρακτηριστικά των κυριότερων αλγορίθμων της βιβλιογραφίας και στη συνέχεια παρουσιάζονται τα αποτελέσματα των προσομοιώσεων σε περιβάλλον MATLAB. Με βάση τη θεωρητική μελέτη των μεθόδων εκτίμησης και τα αποτελέσματα των προσομοιώσεων, εξάγονται συμπεράσματα για τη βελτίωση της απόδοσης που παρουσιάζουν σε σχέση με τις μη παραμετρικές τεχνικές. Τέλος, υλοποιήθηκε ένας νέος αλγόριθμος για την εύρεση του υποχώρου του σήματος, ο οποίος βελτιώνει σημαντικά την απόδοση του κριτηρίου MDL. / The basic concept in this thesis is the problem of Channel Estimation in multipath fading chanels. The method we use is based on parametric channel modeling. Firstly, we use the MDL (Minimum Descreption Length) criterium in order to estimate the number of paths in the channel. Next the ESPRIT method calculates the Time Delays for every estimated path. The second part of the algorithm is used for tracking of time delays. We firstly use an IPIC DLL (InterPath Interference Cancellation Delay Locked Loop) technique and then the path gains are calculated via a MMSE estimator. There is also a study in Subspace Tracking problem. We use the PAST and PASTd algorithms to calculate the signal subspace for every OFDM symbol transmited. The two techniques we described increase the SER performance of the non parametric channel estimator by 2dB and the MSE performance by 5dB. We also describe a new algorithm which has better performance than the MDL criterium.
198

Estimation and Effects of Imperfect System Parameters on the Performance of Multi-Relay Cooperative Communications Systems

MEHRPOUYAN, HANI 17 September 2012 (has links)
To date the majority of research in the area of cooperative communications focuses on maximizing throughput and reliability while assuming perfect channel state information (CSI) and synchronization. This thesis, seeks to address performance enhancement and system parameter estimation in cooperative networks while relaxing these idealized assumptions. In Chapter 3 the thesis mainly focuses on training-based channel estimation in multi-relay cooperative networks. Channel estimators that are capable of determining the overall channel gains from source to destination antennas are derived. Next, a new low feedback and low complexity scheme is proposed that allows for the coherent combining of signals from multiple relays. Numerical and simulation results show that the combination of the proposed channel estimators and optimization algorithm result in significant performance gains. As communication systems are greatly affected by synchronization parameters, in Chapter 4 the thesis quantitatively analyzes the effects of timing and frequency offset on the performance of communications systems. The modified Cramer-Rao lower bound (MCRLB) undergoing functional transformation, is derived and applied to determine lower bounds on the estimation of signal pulse amplitude and signal-to-noise ratio (SNR) due to timing offset and frequency offset, respectively. In addition, it is shown that estimation of timing and frequency offset can be decoupled in most practical settings. The distributed nature of cooperative relay networks may result in multiple timing and frequency offsets. Chapters 5 and 6 address multiple timing and frequency offset estimation using periodically inserted training sequences in cooperative networks with maximum frequency reuse, i.e., space-division multiple access (SDMA) networks. New closed-form expressions for the Cramer-Rao lower bound (CRLB) for multiple timing and multiple frequency offset estimation for different cooperative protocols are derived. The CRLBs are then applied in a novel way to formulate training sequence design guidelines and determine the effect of network protocol and topology on synchronization parameter estimation. Next, computationally efficient estimators are proposed. Numerical results show that the proposed estimators outperform existing algorithms and reach or approach the CRLB at mid-to-high SNR. When applied to system compensation, simulation results show that application of the proposed estimators allow for synchronized cooperation amongst the nodes within the network. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-07-29 16:52:50.272
199

Wireless Channel Estimation With Applications to Secret Key Generation

Movahedian, Alireza 14 October 2014 (has links)
This research investigates techniques for iterative channel estimation to maximize channel capacity and communication security. The contributions of this dissertation are as follows: i) An accurate, low-complexity approach to pilot-assisted fast-fading channel estimation for single-carrier modulation with a turbo equalizer and a decoder is proposed. The channel is estimated using a Kalman filter (KF) followed by a zero-phase filter (ZPF) as a smoother. The combination of the ZPF with the KF of the channel estimator makes it possible to reduce the estimation error to near the Wiener bound. ii) A new semi-blind channel estimation technique is introduced for multiple-input-multiple-output channels. Once the channel is estimated using a few pilots, a low-order KF is employed to progressively predict the channel gains for the upcoming blocks. iii) The capacity of radio channels is investigated when iterative channel estimation, data detection, and decoding are employed. By taking the uncertainty in decoded data bits into account, the channel Linear Minimum Mean Square Error (LMMSE) estimator of an iterative receiver with a given pilot ratio is obtained. The derived error value is then used to derive a bound on capacity. It is shown that in slow fading channels, iterative processing provides only a marginal advantage over non-iterative approach to channel estimation. Knowing the capacity gain from iterative processing versus purely pilot-based channel estimation helps a designer to compare the performance of an iterative receiver against a non-iterative one and select the best balance between performance and cost. iv) A Radio channel is characterized by random parameters which can be used to generate shared secret keys by the communicating parties when the channel is estimated. This research studies upper bounds on the rate of the secret keys extractable from iteratively estimated channels. Various realistic scenarios are considered where the transmission is half-duplex and/or the channel is sampled under the Nyquist rate. The effect of channel sampling interval, fading rate and noise on the key rate is demonstrated. The results of this research can be beneficial for the design and analysis of reliable and secure mobile wireless systems. / Graduate / 0544
200

Channel Estimation For Ofdm Systems

Gurel, Ilker - 01 November 2005 (has links) (PDF)
In this thesis, various pilot symbol aided channel estimation and tracking methods are investigated and their performances are compared for an OFDM system with packet based communication on HF channel. For the HF channel, Watterson HF channel model is used. The compared methods are least squares (LS) channel estimation, linear minimum mean square error (LMMSE) channel estimation, least mean squares (LMS) channel tracking, recursive least squares (RLS) channel tracking, constant position model based Kalman filter channel tracking, and constant velocity model based Kalman filter channel tracking. For LMS and RLS methods some adaptive approaches are also investigated.

Page generated in 0.1351 seconds