• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transverse Chromatic Aberration and Vision: Quantification and Impact across the Visual Field

Winter, Simon January 2016 (has links)
The eye is our window to the world. Human vision has therefore been extensively studied over the years. However, in-depth studies are often either limited to our central visual field, or, when extended to the periphery, only correct optical errors related to a narrow spectrum of light. This thesis extends the current knowledge by considering the full visible spectrum over a wide visual field. A broad spectrum means that the wavelength dependence of light propagation inside the eye has to be considered; the optics of the eye will therefore not form a retinal image in the same location for all wavelengths, a phenomenon called chromatic aberration. We present here a new methodology to objectively measure the magnitude of transverse chromatic aberration (TCA) across the visual field of the human eye, and show that the ocular TCA increases linearly with off-axis angle (about 0.21 arcmin per degree for the spectral range from 543 nm to 842 nm). Moreover, we have implemented adaptive psychophysical methods to quantify the impact of TCA on central and peripheral vision. We have found that inducing additional TCA degrades peripheral grating detection acuity more than foveal resolution acuity (more than 0.05 logMAR per arcmin of induced TCA peripherally compared to 0.03 logMAR/arcmin foveally). As stimuli to evaluate peripheral vision, we recommend gratings that are obliquely-oriented relative to the visual field meridian. The results of this thesis have clinical relevance for improving peripheral vision and are equally important for retinal imaging techniques. To limit the negative impacts of TCA on vision, inducing additional TCA should be avoided when the peripheral refractive errors are to be corrected, such as for people suffering from macular degeneration and central visual field loss. In retinal imaging applications, TCA leads to lateral offsets when imaging is performed in more than one wavelength. Consequently, the measurement of TCA together with careful pupil alignment and subsequent compensation can improve the functionality of these instruments. / Ögat är vårt fönster mot världen, och syn har mätts och studerats i stor utsträckning över åren. Trots detta är forskningen om mänsklig syn oftast begränsad till det centrala synfältet, och i studier av det perifera synfältet korrigeras optiska fel endast över ett smalt våglängdsområde. Denna avhandling vidgar forskningen om vår syn till att inkludera hela det synliga spektrumet över ett stort synfält. Ett brett spektrum innebär att vi måste ta hänsyn till våglängdsberoendet i ljusets brytning i ögat; ögats optik kan därför inte avbilda ett objekt till samma bildläge på näthinnan för alla våglängder, ett fenomen som kallas kromatisk aberration. Vi presenterar här en ny metod för att mäta mängden transversell kromatisk aberration (TCA) över ögats synfält och visar att ögats TCA ökar linjärt med vinkeln ut i synfältet (ungefär 0,21 bågminuter per grad från 543 nm till 842 nm). Dessutom har vi implementerat adaptiva psykofysiska mätmetoder för att kvantifiera effekten av TCA på central och perifer syn. Våra resultat visar att extra inducerad TCA påverkar den perifera förmågan att upptäcka sinusformade randmönster mer än den centrala förmågan att upplösa motsvarande ränder (mer än 0,05 logMAR per bågminut inducerad TCA i periferin jämfört med 0,03 logMAR/bågminut centralt). Vid utvärdering av perifer syn rekommenderar vi att använda sinusformade randmönster med en sned riktning jämfört med synfältsmeridianen. Resultaten som presenteras i avhandlingen har klinisk betydelse för att förbättra den perifera synen och är även viktiga för tekniker som avbildar ögats näthinna. För att begränsa den negativa effekt TCA har på synen ska man undvika att inducera extra TCA, t.e.x. när ögats perifera refraktiva fel korrigeras med glasögon för människor med makula degeneration och centralt synfältsbortfall. Vid avbildning av näthinnan ger ögats TCA förskjutningar mellan bilder i olika våglängder. Därför kan mätningar av TCA, tillsammans med välkontrollerad linjering av pupillens position och efterföljande kompensation, förbättra funktionen hos dessa instrument. / <p>QC 20160511</p>
2

Topics in Modern Lens Design

Reshidko, Dmitry, Reshidko, Dmitry January 2016 (has links)
Many advances have occurred in the field of optical design during the past decade. Some of the newer topics and concepts associated with the design and use of optical systems are complex and require comprehensive understanding of theory, expertise in state-of-the-art technology, and extensive computer simulations. This dissertation focuses on development of practical methods and tools for successful lens design and evaluation of state-of-the-art imaging and illumination systems. The dissertation addresses several current topics in modern optical engineering and utilizes approaches to provide insights into the inner workings of optical systems. Examples of modern mobile camera lenses are provided to show how specific methods can help to better understand these lens designs and to expand the imaging capabilities of miniature camera systems. Two simple but effective real ray tracing methods for correcting chromatic aberrations in imaging systems are described. The proposed methods separate monochromatic and chromatic aberration correction into two independent problems. This two-step approach provides effective alternatives in correcting chromatic aberrations. A number of unique calculations have been performed and some novel and interesting theoretical results, including the fourth-order theory of irradiance changes in axially symmetric optical systems, are reported. The specific relationships between the irradiance distribution and wavefront aberration coefficients to fourth order are derived for the first time. The practical case of relative illumination at the image plane of an optical system is also discussed in some detail.
3

Korekce zkreslení obrazu způsobeného čočkou pro virtuální realitu / Virtual Reality Lens Image Distortion Correction

Procházka, Tomáš January 2019 (has links)
Lenses in virtual reality headsets make it possible to put displays close to users' eyes and they provide users with wider field of view. However, they also distort the displayed image. Providing we know the lens distortion properties, it is possible to compensate for the distortion by displaying an image that is distorted in the opposite way. This thesis focuses on measurement of the distortion for an arbitrarily complex lens, while also considering chromatic aberration. A system capable of measuring of the distortion using just a camera attached to the virtual reality headset is designed and implemented. It is based on pattern detection and comparison of relative positions of points on the display and their correspondences in the distorted image. The result is a 2D distortion map that can be used to transform images such that they appear undistorted to the virtual reality headset users.
4

Rapid Detection of Flowing Objects in Microchannel Utilizing the Chromatic Aberration Effect under a Dark-field Illumination Scheme

Su, Shin-Yu 21 July 2012 (has links)
This research mainly develops a new z-position measurement based on the chromatic aberration effect. An objective-type dark-field illumination scheme is built to produce diascopic chromatic aberration light, and aimed to enhance the signal-to-noise ratio. The xenon lamp is adapted to create white light with continuous spectrum, besides, lens with low Abbe number is needed to extend the degree of chromatic aberration, so lens made of PMMA is as a chromatic aberration component. In the proposed system, the depths of samples in micro-channel is illuminated by the dispersed light and scatter the optical signals, which are captured by a low numerical aperture (N.A.) objective lens. After the simple normalization, the intensity ratio of two selected wavelengths 450 nm (blue light) and 670 nm (red light) from the scattered spectrum becomes a reliable index for the depth information of the detecting objects. By means of establishing the relationship between depth and intensity ratio, every object flowing through diagnosed spot is able to be determined the depth level by cross-referencing the database. By using spectrometer as detector, delicate moving components for light filtering or electrical stage for light scanning can be excluded for high-speed z-position detection. Furthermore, in order to identify the depth level of sample with high flowing rate, avalanche photodiodes are adapted to achieve rapid detection. The experimental results show that the relationship between depth and intensity ratio is a parabola curve, but in this research, the region which tends to behavior linearly is adapted. The proposed system provides a linear detection range of ¡Ó15 £gm for particles with a diameter of 20 £gm. The lens with high Abbe number only obtains ¡Ó10 £gm with linear detection range though, the resolution for size is better than PMMA. The BK7 lens is capable to discriminate the depth change of 2 £gm micro-beads, note that there is no limitation of depth discrimination in this system, because of the measurement is achieved by cross-referencing the linear line. The use of UV-Vis-NIR spectrometer enable this system to analyze the depths of the samples in flow rate 0.5 mm/s. To gain the higher performance, the two avalanche photodiodes are utilized, and the short(CWL=450 nm, ¡Ó20 nm) and long(CWL=650 nm, ¡Ó20 nm) band pass filter are also equipped to represent enhancements of blue and red ray. The effective detection range extends to ¡Ó25 £gm and has high linearity(R square=0.99285) after the optimization of light stop. In high flowing rate detection, this system is able to identify the depth of sample when the flow velocity is 4.167 mm/s, the calculated throughput is 126 particles/s. It also successfully analyzes the depth of flowing human erythrocytes under the flow velocity is 2.778 mm/s, the velocity which the developed system is capable to analyze is about 5-8 folds to the conventional micro-PIV system. With this novel and simple approach, there will be the quantified information from z-direction of flowing body for bio-analysis, and also benefits estimating the performance of micro structure or device in the microfluidic chip, also the analysis of flow field. Except for dynamical detection, this system also be capable to apply in a open and static situation, such as cell or tissue proliferation assay.
5

Ισοστάθμιση χρωματικών αποκλίσεων σε ψηφιακή φωτογραφία

Λιολιούσης, Μιχαήλ 19 January 2010 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι να παρουσιαστούν μερικές από τις πιο αξιοσημείωτες τεχνικές για την Ισοστάθμιση των Χρωματικών Αποκλίσεων σε ψηφιακή φωτογραφία. Αρχικά δίνονται κάποια γενικά στοιχεία για την ψηφιακή φωτογραφία, τα χρωματικά μοντέλα και συγκεκριμένα το μοντέλο RGB, την ψηφιακή καταγραφή της εικόνας καθώς και οι στοιχειώδεις λειτουργίες της ανθρώπινης όρασης. Στο δεύτερο κεφάλαιο αναλύονται οι βασικές έννοιες της χρωματικής απόκλισης και παραθέτονται με ορισμούς και παραδείγματα τα δυο βασικά είδη χρωματικών αποκλίσεων που είναι η αξονική χρωματική απόκλιση (longitudinal or axial aberration) και η πλευρική χρωματική απόκλιση (transverse or lateral aberration). Το τρίτο κεφάλαιο είναι μια αναλυτική περιγραφή τριών μεθόδων ισοστάθμισης/περιορισμού των χρωματικών αποκλίσεων. Δίνεται η θεωρητική ανάλυση κάθε μιας, η περιγραφή της πειραματικής διαδικασίας που ακολουθείται καθώς επίσης και τα συμπεράσματα που προκύπτουν από την εφαρμογή τους. Τέλος, στο τέταρτο κεφάλαιο δίνονται δυο διαφορετικοί τύποι σχεδιασμού φακού Gauss, που αποβάλλουν αποτελεσματικά την αρχική χρωματική παρέκκλιση χρησιμοποιώντας έναν αποδοτικό γενετικό αλγόριθμο (GA). / Aim of this Diploma Thesis Project is to present the most remarkable techniques of the Compensation of Chromatic Aberrations appeared in digital images. Initially are given certain general elements for the digital photograph, the chromatic models and especially the RGB model, the digital imaging process and the elementary operations of the human sight system. In the second chapter the basic significations of chromatic aberrations are analysed. Also, definitions and examples support the two basic types of chromatic distortions that are the longitudinal or axial aberrations and the transverse or lateral aberrations. The third chapter is a complete description of three methods of the compensation of chromatic distortions. It is given the theoretical analysis for each one, the full description of the experimental process that is followed and the conclusions that result from their application. Finally, in the last chapter, two different types of Gauss lens design, which effectively eliminate primary chromatic aberration, are presented using an efficient genetic algorithm (GA).
6

Achromatic Liquid Crystal Electro-Optical Devices Based On a Twisted Vertical Alignment Configuration

Chang, Kai-Han 18 April 2018 (has links)
No description available.
7

Structured light for three-dimensional microscopy

Krzewina, Leo G 01 June 2006 (has links)
The conventional light microscope is an indispensable tool for many physical and life science applications, but is of limited usefulness for three-dimensional imaging due to its increasingly narrow depth of field at high magnifications. Focused regions may be obscured by defocused neighbors or noise from extraneous light sources and subsurface scattering. By rejecting light originating from outside the depth of focus it is possible to minimize these problems. When a contiguous series of such focused slices, or optical sections, are obtained along an axis of an extended object they may be combined to form a complete, focused three-dimensional surface image. Here, a variety of methods to obtain optical sections in a reflective setup are presented. The first employs an optical feedback loop through a spatial light modulator (SLM) to selectively illuminate focused regions. The SLM is a flexible electro-optical device that also allows (non-feedback) experiments of an intensity modulated light source resulting in illumination with a linear structure. This structured illumination microscopy is an established sectioning technique, which requires three frame captures per axial position. By developing a color grid and exploiting the red, green, and blue channels of a CCD camera, the three frames have been reduced to one. The speed increase comes at a cost and the limiting effects of chromatic aberration are discussed. Digital holography offers an alternative to axial scanning by allowing the surface to be reconstructed from a single exposure. Use of multiple wavelength illumination with this extended focus imaging is proposed and preliminary results are shown.
8

EFEITOS DA ABERRAÇÃO CROMÁTICA LONGITUDINAL E DA TEMPERATURA SOBRE O ESPALHAMENTO RAMAN CONFOCAL DE GRAFENO / EFFECTS OF LONGITUDINAL CHROMATIC ABERRATION AND OF THE TEMPERATURE ON RAMAN SCATTERING CONFOCAL OF GRAPHENE

Leite, Girlane Castro Costa 29 September 2011 (has links)
Made available in DSpace on 2016-08-18T18:19:30Z (GMT). No. of bitstreams: 1 Dissertacao Girlane.pdf: 2233662 bytes, checksum: e187d35550c694d6e69d8bc6b2ca20db (MD5) Previous issue date: 2011-09-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Raman scattering phenomena has far been widely used as an experimental methodology for probing materials properties. In the last decade, the combination of microscopy and spectroscopy aspects has been largely used in the study of materials in low dimensions, especially carbon nanotubes and graphene. Graphene is a two-dimensional material that has one hexagonal structure. Due to its excellent crystalline quality, this material has shown great prospects of strategic applications in the near future. The majority of the studies reported on graphene are carried out by using confocal microscopes, which relies on the longitudinal chromatic aberration. This optical effect is related to intrinsic limitation of any lens to focus light with different wavelength at the same focal plane. In this work, we examine the effect of longitudinal chromatic aberration and also the effect of irradiance on the Raman spectra of graphene. Consistent with the results of literature, we found that the intensity of the Raman signal for the G mode increases linearly with the number of layers, up to the limit of six layers identified in our samples. We also found a strong dependence of the Raman intensity with longitudinal chromatic aberration. Owing to this effect, the intensity of the G peak was underestimated in about 20%, while the intensity of G peak appeared 56% below the real value. Measurement performed to confirm the effect of longitudinal chromatic aberration showed an aberration of 1,8 μm/eV for Raman scattering and 2,0 μm/eV by using pure reflectometry. Measurements in graphene with defects revealed a strong dependence of peak frequency with focal position and laser power as well. Changes of 6 cm-1 in G' mode was observed for laser power between 44 e 175 μW. / A microscopia Raman é uma das técnicas experimentais mais versáteis e tem sido muito utilizada no estudo das propriedades físicas de materiais. A microscopia confocal em combinação com a espectroscopia Raman tem levado a obtenção de imagens de estruturas em escala nanométrica. Estas ferramentas conjugadas têm sido amplamente utilizadas no estudo de propriedades de materiais em baixas dimensões, como nanotubos de carbono e grafeno. O grafeno é um material bidimensional que possui uma estrutura hexagonal. Devido à sua excelente qualidade cristalina, esse material tem apresentado grandes perspectivas de aplicações estratégicas no futuro próximo. Neste trabalho foram discutidos os efeitos da aberração cromática longitudinal e o efeito da irradiância sobre espectros Raman do grafeno obtidos por um microscópio Raman confocal. Consistente com os resultados da literatura, a intensidade do sinal Raman para o modo G aumentou linearmente com o número de camadas, até o limite de 6 camadas identificadas nas nossas amostras. Os resultados obtidos mostraram forte dependência da intensidade do sinal com a aberração cromática longitudinal. Por causa deste efeito, a intensidade do pico G foi subavaliada em cerca de 20%, enquanto a intensidade do pico G foi subavaliada em aproximadamente 56%. Medidas realizadas para confirmar o efeito da aberração cromática longitudinal mostraram uma aberração de 1,8 μm/eV para o espalhamento Raman e 2,0 μm/eV para o espalhamento Rayleigh. Medidas em grafeno com defeitos revelaram a grande dependência na posição dos picos com posição focal ou com a potência do laser. Mudanças de 6 cm-1 no modo G foram observadas para potências entre 44 e 175 μW.
9

Korekce snímků / Picture correction

Sedlo, Petr January 2016 (has links)
This work is focussed on different unwanted effects that damage a digitally acquired image. An image acquired using a digital camera can suffer from a series of defects. First, the noise is concerned. It occures due to discretisation. Next, there are the defects including vignetting, radial image distortion, chromatic aberration. In my thesis I also worked on backlight image compensation and panorama creation from an image sequence. For backlight images we need to increase the brightness in the dark parts of the image, so that the details became more visible. At panorama creation we are careful about brightness evenness in partial images, which is usually not conserved and consequently we try to find a suitable boundary-line to connect images and smooth it. The fundamental part of my work was writing the algorithms that are able to compensate these defects at least partly. For this aim I took use of the Matlab environment.
10

Simulation of Optical Aberrations for Comet Interceptor’s OPIC Instrument

Bührer, Maximilian January 2020 (has links)
In space exploration optical imaging is one of the key measurements conducted, with a vast majority of missions heavily relying on optical data acquisition to examine alien worlds. One such endeavor is ESA’s F-class mission Comet Interceptor, a multi-element spacecraft expected to be launched in 2028. It consists of a primary platform and two sub-spacecraft, one of which carrying the Optical Periscopic Imager for Comets (OPIC). An accurate prediction of the generated imagery is of undeniable importance as mission planning and instrument design strongly depend on the real-world output quality of the camera system. In the case of OPIC, the collected image data will be used to reconstruct three dimensional models of targeted celestial bodies. Furthermore, the sub-spacecraft faces a risk of high velocity dust impacts, leading to a limited number of data samples to be broadcasted back to the primary spacecraft before collision. Testing image prioritization algorithms and reconstruction methods prior to mission start requires accurate computer-generated images. Camera sensors and lens systems are subjected to various optical distortions and aberrations that degrade the final image. Popular render engines model those effects to a certain degree only and as a result produce content that is looking too perfect. While more sophisticated software products exist, they often come with compatibility limitations and other drawbacks. This report discusses the most important optical aberrations, as well as their relevance for optical instruments in space applications with a particular focus on the Comet Interceptor mission. The main part of this work is however the implementation of a dedicated software tool that simulates a variety of optical aberrations complementing the basic camera model of the Blender render engine. While its functionality is mostly demonstrated for OPIC, the software is designed with a broad range of usage scenarios in mind.

Page generated in 0.1507 seconds