471 |
Recriação conceitual e pós-colonialidade: “ciência” e “religião” nas obras do escritor indiano Amitav GhoshLemos, Gisele Cardoso de 31 August 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2015-12-11T11:16:50Z
No. of bitstreams: 1
giselecardosodelemos.pdf: 1950421 bytes, checksum: 5d956c19538a640bfa5a8e77dcd04747 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2015-12-11T15:02:15Z (GMT) No. of bitstreams: 1
giselecardosodelemos.pdf: 1950421 bytes, checksum: 5d956c19538a640bfa5a8e77dcd04747 (MD5) / Made available in DSpace on 2015-12-11T15:02:15Z (GMT). No. of bitstreams: 1
giselecardosodelemos.pdf: 1950421 bytes, checksum: 5d956c19538a640bfa5a8e77dcd04747 (MD5)
Previous issue date: 2015-08-31 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho busca analisar as apropriações que o escritor indiano em língua inglesa Amitav Ghosh faz das noções ocidentais de ciência e religião em suas respectivas obras The Calcutta Chromosome e The Circle of Reason, por meio de diálogos, tensões e negociações destas noções com paradigmas filosófico-religiosos de caráter inclusivista e dialógico da civilização indiana, que são matrizes existenciais que perpassam gerações e influenciam inclusive a contemporaneidade da Índia. Para esse fim, esse trabalho privilegia a literatura ficcional como ferramenta crítica para as discussões sobre ciência e religião, uma vez que a ficção propicia a contextualização das coisas/seres, ou seja, a apreensão destes em sua totalidade. Com isso, também buscamos apresentar uma contextualização histórica, linguística, literária, científica e filosófico-religiosa para que sejam mais bem compreendidas algumas escolhas de Amitav Ghosh, a saber: a língua inglesa, o gênero literário romance, as temáticas da medicina tropical e da frenologia e a apropriação da doutrina da transmigração da alma (ātma), a lei do karma e a teoria dos guṇas, discutidas em fontes como os Upaniṣads e o Bhagavad-gītā. Como ferramentas de análise utilizamos, sobretudo, teorias pós-coloniais de subalternidade, tradições unitaristas da filosofia hindu, as obras não-ficcionais do próprio autor e as obras dos mais importantes críticos literários de Ghosh. Com as análises literárias mostramos que Ghosh, além de por em prática a tradição inclusivista indiana, ele demonstra a superioridade do ―domínio espiritual‖ sobre o ―domínio material‖, (conceitos cunhados por Partha Chatterjee) e reabilita a noção de uma racionalidade ocidental excludente tornando-a uma razão iluminadora e libertadora. / This study analyzes the appropriations of Western notions of science and religion by the Indian writer in English Amitav Ghosh, in his respective works The Calcutta Chromosome and The Circle of Reason, through dialogues, tensions, and negotiations between these notions and religious and philosophical paradigms of the Indian civilization, characterized by its inclusive and dialogical characteristics. These paradigms form an existential matrix that crosses generations and even influences contemporary India. To this end, this work focuses on fictional literature as a critical tool for the discussion on science and religion, since fiction provides contextualization for things/beings, that is, the comprehention of these in their entirety. With this, we also seek to provide a historical, linguistic, literary, scientific, philosophical and religious context in order to better understand some of Amitav Ghosh‘s choices, namely the English language, the novel as literary genre, the themes of tropical medicine and phrenology and the appropriation of the doctrine of transmigration of the soul (saṃsāra), the law of karma and the theory of guṇas discussed in sources such as the Upaniṣads and the Bhagavad-gītā. As tools of analysis, we use especially postcolonial theories of subalternity, unitarian traditions of Hindu philosophy, nonfictional works of the author himself and the works of the most important literary critics of Ghosh‘s work. With literary analysis we show that Ghosh, besides using the inclusivist Indian tradition, demonstrates the superiority of ―spiritual domain‖ over the ―material domain‖ (concepts coined by Partha Chatterjee) and also rehabilitates the notion of an exclusionary Western rationality transforming it into an enlightening and liberating reason.
|
472 |
développement d'approches de correction des myoblastes issus de patients atteints de la dystrophie facio-scapulo-humérale / Development of Correction Approaches for Myoblasts from Patients with Facio-Scapulohumeral DystrophyDib, Carla 05 September 2018 (has links)
La dystrophie Facio-Scapulo-Humérale est caractérisée par une faiblesse musculaire progressive et asymétrique. Elle affecte principalement les muscles faciaux, scapulaires et huméraux. L’association de plusieurs évènements épigénétiques à trois facteurs génétiques de la région subtélomérique du chromosome 4 résulte en un changement dans l’organisation chromatinienne la rendant permissive à l’expression aberrante des gènes de la région 4q35. Les myoblastes DFSH présentent des défauts de différenciation in vitro et des dérégulations dans des voies majeures comme celle de la réponse cellulaire au stress oxydant et de la différenciation myogénique. L’enjeu génétique et épigénétique complexe dans la DFSH et les limitations de la thérapie cellulaire dans son contexte laissent la DFSH jusque-là incurable. Toutefois les avancées dans les thérapies cellulaires et génétiques des myopathies ouvrent des horizons pour de futures applications dans le cadre de la DFSH.Le travail de thèse s’articule autour de trois thématiques. Premièrement, nous démontrons la faisabilité de la correction phénotypique et fonctionnelle des myotubes DFSH in vitro par la fusion de 50% de myoblastes normaux avec des myoblastes DFSH. Ensuite, nous évaluons deux approches d’édition génomique. Dans la première approche, nous ciblons le site de rattachement du chromosome 4 à la matrice nucléaire, FR-MAR avec la protéine CTCF à l’aide du système CRISPR/dCas9 en vue du rétablissement de l’organisation chromatinienne et de la fonction isolatrice de FR-MAR. Dans la deuxième, nous échangeons par translocation les régions homologues 4q35 et 10q26 dans le but de corriger les myoblastes DFSH comme les trois facteurs génétiques du locus 4q35 ne sont pathogéniques que sur un fond génétique lié au chromosome 4. Finalement, nous étudions le rôle du stress oxydant dans la DFSH. / Facio-Scapulo-Humeral dystrophy is characterized by progressive and asymmetrical muscle weakness. It mainly affects the facial, scapular and humeral muscles. The association of several epigenetic events with three genetic factors of the subtelomeric region of chromosome 4 results in a chromatin organization modification making it permissive to the aberrant expression of genes in the 4q35 region. FSHD myoblasts exhibit differentiation defects in vitro and dysregulations in major pathways such as the cellular response to oxidative stress and myogenic differentiation. The limitations of cell therapy and the complex genetic and epigenetic interplay in FSHD leave it, till now, incurable. However advances in cellular and genetic therapies of myopathies open up new horizons for future applications in the FSHD context. The thesis work is structured around three themes. First, we demonstrate the feasibility of phenotypic and functional correction of FSHD myotubes in vitro by fusing 50% of normal myoblasts with FSHD myoblasts. Next, we evaluate two genomic editing approaches. In the first one, we target the site of attachment of chromosome 4 to the nuclear matrix, FR-MAR with the CTCF protein using the CRISPR / dCas9 system for the purpose of restoring the chromatin organization and the insulating function of FR-MAR. In the second one, we exchange the homologous regions 4q35 and 10q26 by translocation in order to correct the FSHD myoblasts as the three genetic factors of the 4q35 locus are pathogenic only on a genetic background linked to chromosome 4. Finally, we study the role of the oxidative stress in the FSHD.
|
473 |
Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosisMedhi, D., Goldman, Alastair S.H., Lichten, M. 01 October 2019 (has links)
Yes / Abstract
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions.
|
474 |
Specialised transcription factoriesXu, Meng January 2008 (has links)
The intimate relationship between the higher-order chromatin organisation and the regulation of gene expression is increasingly attracting attention in the scientific community. Thanks to high-resolution microscopy, genome-wide molecular biology tools (3C, ChIP-on-chip), and bioinformatics, detailed structures of chromatin loops, territories, and nuclear domains are gradually emerging. However, to fully reveal a comprehensive map of nuclear organisation, some fundamental questions remain to be answered in order to fit all the pieces of the jigsaw together. The underlying mechanisms, precisely organising the interaction of the different parts of chromatin need to be understood. Previous work in our lab hypothesised and verified the “transcription factory” model for the organisation of mammalian genomes. It is widely assumed that active polymerases track along their templates as they make RNA. However, after allowing engaged polymerases to extend their transcripts in tagged precursors (e.g., Br-U or Br-UTP), and immunolabelling the now-tagged nascent RNA, active transcription units are found to be clustered in nuclei, in small and numerous sites we call “transcription factories”. Previous work suggested the transcription machinery acts both as an enzyme as well as a molecular tie that maintains chromatin loops, and the different classes of polymerases are concentrated in their own dedicated factories. This thesis aims to further characterise transcription factories. Different genes are transcribed by different classes of RNA polymerase (i.e., I, II, or III), and the resulting transcripts are processed differently (e.g., some are capped, others spliced). Do factories specialise in transcribing particular subsets of genes? This thesis developed a method using replicating minichromosomes as probes to examine whether transcription occurs in factories, and whether factories specialise in transcribing particular sets of genes. Plasmids encoding the SV40 origin of replication are transfected into COS-7 cells, where they are assembled into minichromosomes. Using RNA fluorescence in situ hybridisation (FISH), sites where minichromosomes are transcribed are visualised as discrete foci, which specialise in transcribing different groups of genes. Polymerases I, II, and III units have their own dedicated factories, and different polymerase II promoters and the presence of an intron determine the nuclear location of transcription. Using chromosome conformation capture (3C), minichromosomes with similar promoters are found in close proximity. They are also found close to similar endogenous promoters and so are likely to share factories with them. In the second part of this thesis, I used RNA FISH to confirm results obtained by tiling microarrays. Addition of tumour necrosis factor alpha (TNF alpha) to human umbilical vein endothelial cells induces an inflammatory response and the transcription of a selected sub-set of genes. My collaborators used tiling arrays to demonstrate a wave of transcription that swept along selected long genes on stimulation. RNA FISH confirmed these results, and that long introns are co-transcriptionally spliced. Results are consistent with one polymerase being engaged on an allele at any time, and with a major checkpoint that regulates polymerase escape from the first few thousand nucleotides into the long gene.
|
475 |
The effect on chromosomal stability of some dietary constituentsDurling, Louise. January 1900 (has links)
Thesis (Ph.D.)--Uppsala Universitet, 2008. / This website links to the complete document in PDF format. Title from title screen (viewed on November 22, 2009). Includes bibliographical references.
|
476 |
Structure-Function Relationships of Saccharomyces Cerevisiae Meiosis Specific Hop 1 Protein : Implications for Chromosome Condensation, Pairing and Spore FormationKhan, Krishnendu January 2012 (has links) (PDF)
Meiosis is a specialized type of cell division essential for the production of four normal haploid gametes. In early prophase I of meiosis, the intimate synapsis between homologous chromosomes, and the formation of chiasmata, is facilitated by a proteinaceous structure known as the synaptonemal complex (SC). Ultrastructural analysis of germ cells of a number of organisms has disclosed that SC is a specialized tripartite structure composed of two lateral elements, one on each homolog, and a central element, which, in turn, are linked by transverse elements. Genetic studies have revealed that defects in meiotic chromosome alignment and/or segregation result in aneuploidy, which is the leading cause of spontaneous miscarriages in humans, hereditary birth defects such as Down syndrome, and are also, associated with the development and progression of certain forms of cancer. The mechanism(s) underlying the alignment/pairing of chromosomes at meiosis I differ among organisms. These can be divided into at least two broad pathways: one is independent of DNA double-strand breaks (DSB) and other is mediated by DSBs. In the DSB-dependent pathway, SC plays crucial roles in promoting homolog pairing and disjunction. On the other hand, the DSB-independent pathway involves the participation of telomeres, centromeres and non-coding RNAs in the pre-synaptic alignment, pre-meiotic pairing as well as pairing of homologous chromosomes. Although a large body of literature highlights the central role of SC in meiotic recombination, the possible role of SC components in homolog recognition and alignment is poorly understood.
Genetic screens for Saccharomyces cerevisiae mutants defective in meiosis and sporulation lead to the isolation of genes required for interhomolog recombination, including those that encode SC components. In S. cerevisiae, ten meiosis-specific proteins viz., Hop1, Red1, Mek1, Hop2, Pch2, Zip1, Zip2, Zip3, Zip4 and Rec8 have been recognized as bona fide constituents of SC or associated with SC function. Mutations in any of these genes result in defective SC formation, thus leading to reduction in the rate of recombination. HOP1 (Homolog Pairing) encodes a ̴ 70 kDa structural protein, which localizes to the lateral elements of SC. It was found to be essential for the progression of meiotic recombination. In hop1Δ mutants, meiosis specific DSBs are reduced to 10% of that of wild type level and it fails to produce viable spores. It also displays relatively high frequency of inter-sister recombination over inter-homolog recombination. Bioinformatics analysis suggests that Hop1 comprises of an N-terminal HORMA domain (Hop1, Rev7 and Mad2), which is conserved among Hop1 homologs from diverse organisms. This domain is also known to be present in proteins involved in processes like chromosome synapsis, repair and sex chromosome inactivation. Additionally, Hop1 harbors a 36-amino acid long zinc finger
348374
motif (CX2CX19CX2C) which is critical for DNA binding and meiotic progression, and a putative nuclear localization signal corresponding to amino acid residues from 588-594. Previous studies suggested that purified Hop1 protein exists in multiple oligomeric states in solution and displays structure specific DNA binding activity. Importantly, Hop1 exhibited higher binding affinity for the Holliday junction (HJ), over other early recombination intermediates. Binding of Hop1 to the HJ at the core resulted in branch migration of the junction, albeit weakly. Intriguingly, Hop1 showed a high binding affinity for G4 DNA, a non-B DNA structure, implicated in homolog synapsis and promotes robust synapsis between double-stranded DNA molecules.
Hop1 protein used in the foregoing biochemical studies was purified from mitotically dividing S. cerevisiae cells containing the recombinant plasmid over-expressing the protein where the yields were often found to be in the low-microgram quantities. Therefore, one of the major limitations to the application of high resolution biophysical techniques, such as X-crystallography and spectroscopic analyses for structure-function studies of S. cerevisiae Hop1 has been the non-availability of sufficient quantities of functionally active pure protein. In this study, we have performed expression screening in Escherichia coli host strains, capable of high level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed +2 for expression and purification of S. cerevisiae Hop1 protein, using Ni-NTA and double-stranded DNA-cellulose chromatography. Recombinant S. cerevisiae Hop1 protein thus obtained was >98% pure and exhibited DNA binding activity with high-affinity for Holliday junction. The availability of the bacterial HOP1 expression vector and functionally active Hop1 protein has enabled us to glean and understand several vital biological insights into the structure-function relationships of Hop1 as well as the generation of appropriate truncated mutant proteins.
Mutational analyses in S. cerevisiae has shown that sister chromatid cohesion is required for proper chromosome condensation, including the formation of axial elements, SC assembly and recombination. Consistent with these findings, homolog alignment is impaired in red1hop1 strains and associations between homologs are less stable. red1 mutants fail to make any discernible axial elements or SC structures but exhibit normal chromosome condensation, while hop1 mutants form long fragments of axial elements but without any SCs, are defective in chromosome condensation, and produce in-viable spores. Using single molecule and ensemble assays, we found that S. cerevisiae Hop1 organizes DNA into at least four major distinct DNA conformations:
(i) a rigid protein filament along DNA that blocks access to nucleases; (ii) bridging of non-contiguous segments of DNA to form stem-loop structures; (iii) intra-and intermolecular long range synapsis between double-stranded DNA molecules; and (iv) folding of DNA into higher order nucleoprotein structures. Consistent with B. McClintock’s proposal that “there is a tendency for chromosomes to associate 2-by-2 in the prophase of meiosis involving long distance recognition of homologs”, these results to our knowledge provide the first evidence that Hop1 mediates the formation of tight DNA-protein-DNA nucleofilaments independent of homology which might help in the synapsis of homologous chromosomes during meiosis.
Although the DNA binding properties of Hop1 are relatively well established, comparable knowledge about the protein is lacking. The purification of Hop1 from E. coli, which was functionally indistinguishable from the protein obtained from mitotically dividing S. cerevisiae cells has enabled us to investigate the structure-function relationships of Hop1, which has provided important insights into its role in meiotic recombination. We present several lines of evidence suggesting that Hop1 is a modular protein, consisting of an intrinsically unstructured N-terminal domain and a core C-terminal domain (Hop1CTD), the latter being functionally equivalent to the full-length Hop1 in terms of its in vitro activities. Importantly, however, Hop1CTD was unable to rescue the meiotic recombination defects of hop1null strain, indicating that synergy between the N-terminal and C-terminal domains of Hop1 protein is essential for meiosis and spore formation. Taken together, our findings provide novel insights into the molecular functions of Hop1, which has profound implications for the assembly of mature SC, homolog synapsis and recombination.
Several lines of investigations suggest that HORMA domain containing proteins are involved in chromatin binding and, consequently, have been shown to play key roles in processes such as meiotic cell cycle checkpoint, DNA replication, double-strand break repair and chromosome synapsis. S. cerevisiae encodes three HORMA domain containing proteins: Hop1, Rev7 and Mad2 (HORMA) which interact with chromatin during diverse chromosomal processes. The data presented above suggest that Hop1 is a modular protein containing a distinct N-terminal and C-terminal (Hop1CTD) domains. The N-terminal domain of Hop1, which corresponds to the evolutionarily conserved HORMA domain, although, discovered first in Hop1, its precise biochemical functions remain unknown. In this section, we show that Hop1-HORMA domain expressed in and purified from E. coli exhibits preferential binding to the HJ and G4 DNA, over other early recombination intermediates. Detailed functional analyses of Hop1-HORMA domain, using mobility shift assays, DNase I footprinting and FRET, have revealed that HORMA binds at the core of Holliday junction and induces marked changes in its global conformation. Further experimental evidence also suggested that it causes DNA stiffening and condensation. However, like Hop1CTD, HORMA domain alone failed to rescue the meiotic recombination defects of hop1 null strain, indicating that synergy between the N-and C-terminal domains of Hop1 is essential for meiosis as well as for the formation of haploid gametes. Moreover, these results strongly implicate that Hop1 protein harbours a second DNA binding motif, which resides in the HORMA domain at its N-terminal region. To our knowledge, these findings also provide the first insights into the biochemical mechanism underlying HORMA domain activity. In summary, it appears that the C-terminal (CTD) and N-terminal (HORMA) domains of Hop1 may perform biochemical functions similar (albeit less efficiently) to that of the full-length Hop1. However, further research is required to uncover the functional differences between these domains, their respective interacting partners and modulation of the activity of these domains.
|
477 |
Chromosomal aberrations in the Xhosa schizophrenia populationKoen, Liezl 12 1900 (has links)
Thesis (PhD (Psychiatry))--Stellenbosch University, 2008. / BACKGROUND: Schizophrenia is a heterogeneous illness resulting from complex gene-environment interplay. The majority of molecular genetic work done has involved Caucasian populations, with studies in these and Asian populations showing 2-32% of sufferers to have chromosomal aberrations. So far the discovery of a specific susceptibility mechanism or gene still eludes us, but the use of endophenotypes is advocated as a useful tool in this search. No cytogenetic studies of this nature have been reported in any African schizophrenia population.
AIM: The aim of the study was to combine genotypic and phenotypic data, collected in a homogenous population in a structured manner, with the hope of characterising an endophenotype that could be used for more accurate identification of individuals with possible chromosomal abnormalities.
METHODOLOGY: A structured clinical interview was conducted on 112 Xhosa schizophrenia patients. (Diagnostic Interview for Genetic Studies, including Schedules for the Assessment of Negative and Positive Symptoms.) Blood samples (karyotyping and/or FISH analysis) as well as urine samples (drug screening) were obtained and nine head and facial measurements were performed. Descriptive statistics were compiled with reference to demographic, clinical and morphological variables. Comparisons between mean differences for these variables were made.
|
478 |
The development of a novel and efficient HAC vector delivery system to human cellsSimpson, Kirsty Mairi January 2008 (has links)
Human Artificial Chromosomes (HACs) have been confirmed as viable gene expression vectors and a potential tool for gene therapy. However, standard lipid-based delivery methods pose a developmental barrier. The work presented in this thesis includes the development of a novel and efficient HAC vector system for gene delivery into human cells using Herpes Simplex Virus-1 (HSV-1) amplicon technology. The development of HSV-1 amplicons for HAC delivery is a major step forward in the HAC field. In this study, utilising the technology allowed the generation of HACs at a high efficiency in a range of human cell types, which is a significant step in the development for HAC gene expression systems. Further work also showed a significant difference in HAC stability between cell lines. Real-time PCR analysis determined that Aurora B was over expressed in cell lines in which the HACs were unstable. This correlated with high levels of chromosomal instability and was confirmed by western blot analysis. Since Aurora B is a kinase involved in at least two cell cycle checkpoints, cellular phosphorylation levels were perturbed to mimic that observed in the unstable cells, using okadaic acid, which is both a protein phosphatase inhibitor and activates Aurora B. Treatment of cells showed an increase in both HAC and overall chromosomal instability and an increase in histone H3 Serine 10 and Serine 28 phosphorylation. The project also focussed on the development of a gene expression system using HSV-1 amplicons. Two different strategies were explored. Firstly, one approach involved engineering the HPRT genomic locus into an HSV-HAC vector, by Red mediated recombination for complementing the HPRT deficiency in HPRT- HT1080 cells. As an alternative approach, co-infection of two different HSV-1 HAC amplicons for generating a single HAC gene vector was investigated. Initial experiments utilising the latter approach were the most successful and show promise for generating HAC containing genes via this strategy.
|
479 |
A role for topoisomerase II alpha in chromosome damage in human cell linesTerry, Samantha Y. A. January 2010 (has links)
Human response to ionising radiation (IR) shows a wide variation. This is most clearly seen in the radiation-response of cells as measured by frequencies of chromosomal aberrations. Different frequencies of IR-induced aberrations can be conveniently observed in phytohaemagglutin-stimulated peripheral blood T-lymphocytes from both normal individuals and sporadic cancer cases, in either metaphase chromosomes or as micronuclei in the following cell cycle. Metaphase cells show frequent chromatid breaks, defined as chromatid discontinuities or terminal deletions, if irradiated in the G 2 -phase of the cell cycle. It has been shown that the frequency of chromatid breaks in cells from approximately 40% of sporadic breast cancer patients, are significantly higher than in groups of normal individuals. This suggests that elevated radiation-induced chromatid break frequency may be linked with susceptibility to breast cancer. It is known that chromatid breaks are initiated by a double strand break (DSB), but it appears that the two are linked only indirectly as repair kinetics for DSBs and chromatid breaks do not match. Therefore, the underlying causes of the wide variation in frequencies of chromatid breaks in irradiated T-lymphocytes from different normal individuals and from sporadic breast cancer cases are still unclear but it is unlikely to be linked directly to DSB rejoining. My research has focused on the mechanism through which chromatid breaks are formed from initial DSBs. The lack of a direct association suggested that a signalling process might be involved, connecting the initial DSB and resulting chromatid break. The signal model, suggested that the initial DSB is located within a chromatin loop that leads to an intra- or interchromatid rearrangement resulting in incomplete mis-joining of chromatin ends during the decatenation of chromatids during G 2 . It was therefore proposed that topoisomerase II alpha (topo IIα) might be involved, mainly because of its ability to incise DNA and its role in sister chromatid decatenation. During my PhD research I have used a strategy of altering topo II activity or expression and studying whether this alters IR-induced chromatid break frequency. The first approach involved cell lines that varied in topo IIα expression. The frequency of IR-induced chromatid breaks was found to correlate positively with topo IIα expression level, as measured in three different cell lines by immunoblotting, i.e. two cell lines with lower topo IIα expression exhibited lower chromatid break frequency. Topo II activity in these three cell lines was also estimated indirectly by the ability of a topo IIα poison to activate the G 2 /M checkpoint, and this related well with topo IIα expression. A second approach involved ‘knocking down’ topo IIα protein expression by silencing RNA (siRNA). Lowered topo IIα expression was confirmed by immunoblotting and polymerase chain reaction. SiRNA-lowered topo IIα expression correlated with a decreased IR-induced chromatid break frequency. In a third series of experiments cells were treated with ICRF-193, a topo IIα catalytic inhibitor. It was shown that inhibition of topo IIα also significantly reduced IR-induced chromatid breaks. I also showed that lowered chromatid break frequency was not due to cells with high chromatid break frequencies being blocked in G 2 as the mitotic index was not altered significantly in cells with lowered topo IIα expression or activity. These experiments show that topo IIα is involved in IR-induced chromatid break formation. The final experiments reported here attempted to show how topo II might be recruited in the process of forming IR-induced chromatid breaks. Hydrogen peroxide was used as a source of reactive oxygen species (reported to poison topo IIα) and it was shown that topo IIα under these conditions is involved in the entanglement of metaphase chromosomes and formation of chromatin ‘dots’ as well as chromatid breaks. Experiments using atomic force microscopy attempted to confirm these dots as excised chromatin loops. The possible role of topo IIα in both radiation- and hydrogen peroxide-induced primary DNA damage was also tested. It was shown that topo IIα does not affect radiation-induced DSBs, even though it does affect chromatid break frequency. Also, topo IIα does not affect hydrogen peroxide-induced DNA damage at low doses. The results support the idea that topo IIα is involved in the conversion of DSBs to chromatid breaks after both irradiation and treatment with hydrogen peroxide at a low concentrations. I have demonstrated that topo IIα is involved in forming IR-induced chromatid breaks, most likely by converting the initial DSBs into chromosomal aberrations as suggested by the signal model.
|
480 |
Facteurs prédictifs de mutation germinale BRCA1 dans le cancer du sein héréditaire / Prediction of BRCA1 germline mutation status in patients with breast cancer using histoprognosis grade, MS110, Lys27H3, Vimentin and KI67Hassanein, Mohamed 16 December 2010 (has links)
En France, le cancer de sein héréditaire représente environ 2500 nouveaux cas par an, dont prés de la moitié est attribuée à la mutation du gène BRCA1.La recherche de la mutation par biologie moléculaire est un travail fastidieux, coûteux et long (8 mois d’attente environ actuellement).Pour trouver une solution à ce délai, nous avons étudié en immunohistochimie une série initiale de 21 anticorps répartis en 5 groupes : anticorps antiBrca1 du commerce, liés à la perte de l’inactivation de l’X, liés à la signature basale ou myoépithéliale, anticorps dits classiques du cancer de sein et finalement dérivés de signatures établies par cDNAarray.Nous avons utilisé la technique de’ tissue microarrays’ en utilisant de manière comparative une population de 27 cas de cancer de sein présentant une mutation germinale de BRCA1, et 81 cas témoins de cancer de sein sporadiques appariés à l’âge, ainsi qu’à des lignées cellulaires d’origine mammaires. Dans une deuxième série indépendante de validation nous avons appliqué les résultats obtenus de la première série sur 28 cas de cancer mammaire muté, et 28 cas du cancer mammaire sporadique dans les mêmes conditions initiales.Nos résultats montrent pour la première fois sur des tissus tumoraux une probabilité forte d’une association entre la mutation Brca1 et la perte de l’inactivation de l’X ; confirment la valeur de MS110 comme un bon anticorps prédictif d’une mutation de Brca1 ; apportent un argument pour une participation myoépithéliale dans l’oncogenèse de cancer mammaire Brca1 muté; appuient la relation entre ce dernier et les récepteurs RE,RP ainsi que P53 , Bcl2,Ki67 et valident en protéomique la valeur discriminant de CDC47 correspondant à un des gènes de la signature génomique.Après confirmation des mêmes résultats dans la série de validation, nous soutenons en analyses multivariés un modèle qui comprend seulement Grade 3, MS110, Lys27H3 négative, Vimentine et KI67 positive. Cette équation correspond à une sensibilité de 82% et spécificité de 81% et propose une approche rapide économique de pré- ciblage de la mutation Brca1 ; ce qui améliorait la prise en charge préventive, thérapeutique et globale des patients et leurs familles. / Family structure, lack of reliable information, cost and delay are usual concerns faced with when deciding to perform BRCA analyses. Testing the breast cancer tissues with four antibodies (MS110, lys27H3, Vimentin, KI67) in addition to grade evaluation enabled to rapidly select patients to carry out genetic testing identification. We constituted an initial breast cancer tissue micro-array, considered as a learning set comprising 27 BRCA1 and 81 sporadic tumours. A second independent validation set of 28 BRCA1 tumours was matched to 28 sporadic tumours using the same original conditions.We have investigated morphological parameters and 21 markers by immunohistochemistry.A logistic regression model was used to select the minimal number of markers providing the best model to predict BRCA1 status. The model was applied to the validation set to estimate specificity and sensibility.In the initial set, the univariate analysis identified 11 markers significantly associated with BRCA1 status. Then the best multivariate model comprised only Grade 3, MS110, Lys27H3, Vimentin and KI67. When applied to the validation set, BRCA1 tumours were correctly classified with a sensitivity of 83% and a specificity of 81%. The performance of this model was superior when compared to other profiles.This work offers a new rapid and economic method for the pre-screening of patients at high risk of being BRCA1mutation carriers, then to guide genetic testing, and finally to provide appropriate preventive measure, advices and treatments including targeted therapy to patients and their families.
|
Page generated in 0.0594 seconds