501 |
Obrazová analýza mitotických chromosomů / Digital image analysis of mitotic chromosomesJaroš, Luboš January 2017 (has links)
The development in modern medicine has allowed to study human genome and detect predispositions to several diseases. One of very promising techniques is the analysis of human karyotype, i.e., the number and appearance of chromosomes in the cell nucleus. The most important step in the karyotype analysis is the chromosome detection and categorization. In this work, a new algorithm for detection of chromosomes from an image of microscopic DNA sample and their categorization into seven groups was developed. The algorithm was implemented in Matlab. The accuracy of segmentation and classification was tested on a set of images from two databases with 117 and 38 images, respectively. The sensitivity of the developed segmentation reached 88% while the value of positive predictivity of segmentation reached 92%. The success rate of chromosome pairing achieves 77%.
|
502 |
Chromosom Y v hybridní zóně myší / Y chromosome in the mouse hybrid zoneRubík, Pavel January 2011 (has links)
The contact zone between subspecies of house mouse Mus musculus musculus and Mus musculus domesticus is one of the most intensively studied hybrid zones. It is also due to extensive introgression of the Y chromosome of M. m. musculus subspecies to the genetic background of M. m. domesticus. One theory of the origin of the introgression explains it by intragenomic conflict between the sexes. With a set of variable microsatellite markers on the Y chromosome, I have examined the validity of this theory by simple approaches revealing the history of the introgression area. It turned out that overly big variability of our markers makes the revelation of this theory impossible. Our markers have been found suitable for use in the analysis of population structure of house mouse. Thanks to them, we can identify migrants between localities and estimate the level of closeness of the population structure in relation to migrants from the neighborhood. Populations in our analysis proved to be relatively closed and resistant to the influx of migrants. Despite the conclusions of previous research where the dispersion of males ran up to one kilometer, I have discovered a relatively large number of migrations to a distance of thirty kilometers. Keywords Mus musculus musculus, Mus musculus domesticus, Y chromosome,...
|
503 |
Karyotypová evoluce u vybraných čeledí entelegynních pavouků / Karyotype evolution of selected families of entelegyne spidersKotz, Matěj January 2020 (has links)
The Araneoidea superfamily is a diverse clade of spiders with a great species diversity. The whole superfamily displays considerable conservativeness of observed karyotypes. Most likely ancestral karyotype in males is 24 acrocentric chromosomes with X1X2 sex determination system. The goal of this study is to explore the karyotype diversity of two araneoid families - Araneidae and Mimetidae. The majority of studied species exhibit the ancestral karyotype. In some species of the aformentioned families was observed sudden increase in chromosome numbers, up to 2n♂ = 52 in Araneidae and up to 2n♂ = 57 in Mimetidae. The latter number is the highest chromosome count observed in Entelegynae so far. Increase in 2n goes hand in hand with increase in sex chromosome numbers, leading up to X1X2X3X40 system in Araneidae and up to X1X2X3X4X5X6X70 in Mimetidae. I suggest polyploidy as a possible mechanism of the increase. To test this hypothesis, I measured the size of the genome using flow cytometry and used fluorescence in situ hybridization for the detection of 18S rRNA and 5S rRNA genes. For one species, probe for U2 snRNA gene was also optimized as part of this thesis. In many species studied, these techniques were used for the first time ever. In the case of the family Mimetidae, the largest genomes in...
|
504 |
Séquençage des génomes nucléaires d’eucaryotes unicellulaires ‘primitifs’ : les jakobidesPrince, Samuel 11 1900 (has links)
Les eucaryotes sont des organismes chimériques issus de l’endosymbiose entre une archéobactérie et une α-protéobactérie. Au cours de ce processus, ces organismes ont évolué de sorte à obtenir un grand nombre de caractéristiques observées chez les eucaryotes modernes, notamment une mitochondrie, un noyau, un système endomembranaire, un système d’épissage ou encore des chromosomes linéaires terminés par un télomère. Bien que les caractéristiques du dernier ancêtre commun des eucaryotes aient majoritairement été identifié, la suite des évènements évolutifs ayant mené à l’apparition de cet organisme demeure peu compris. Afin de mieux reconstruire cette suite d’évènements, l’analyse des génomes d’organismes basals aux eucaryotes sera nécessaire pour identifier des traces de cette évolution. Ainsi, nous proposons que l’analyse d’une collection de génomes d’eucaryotes « primitifs », les jakobides et malawimonades, des eucaryotes unicellulaires flagellés se nourrissant de bactéries, pourrait permettre une meilleure compréhension de ce processus. De plus, il a été supposé que le génome d’un de ces organismes, Andalucia godoyi, pourrait posséder des chromosomes circulaires, une caractéristique atypique chez les eucaryotes, une caractéristique qui pourra être confirmée par la production d’assemblage génomique de haute contigüité.
Afin d’obtenir des assemblages génomiques de haute qualité, les jakobides A. godoyi, Jakoba bahamiensis, Seculamonas ecuadoriensis, Stygiella incarcerata et le malawimonades Malawimonas californiana ont été séquencés par nanopore. Le séquençage nanopore a présenté des résultats mitigés et les organismes J. bahamiensis et M. californiana ont présentés un faible rendement de séquençage, possiblement dû à la contamination par des polysaccharides. Pour les autres organismes, nous avons développé un pipeline d’assemblage utilisant les assembleurs Flye et Shasta qui nous a permis de produire des assemblages génomiques. L’analyse du génome de A. godoyi a permis d’identifier la présence de quatre chromosomes circulaires, possiblement localisés dans le noyau, contenant plusieurs gènes liés au métabolisme, au transport et à la signalisation et qui constituent possiblement un type de chromosome circulaire différent de ceux observés précédemment chez les eucaryotes. Dans l’ensemble, ces travaux ont permis la mise en place d’une collection de génome d’eucaryotes « primitifs » qui pourront être utilisés pour des analyse de génomique comparative afin de mieux comprendre l’évolution des eucaryotes. / Eucaryotes are chimeric organisms that are the product of an endosymbiotic event between an archaebacteria and an α-proteobacteria. During the eukaryogenesis, these organisms have gained many characteristics that defines modern eucaryotes such as a mitochondrion, a nucleus, an endomembrane system, the splicing machinery, and linear chromosome with telomeres. While most characteristics of the last common eukaryote ancestor have mostly been identified, most of the evolutionary process that led to this organism is still unknown. To reconstruct this string of event, we must analyse the genome of “primitive” basal eukaryotes with a slow evolutionary rate and a lifestyle like that of the last common eukaryotes ancestor, and thus are most likely to contain remains of ancestral mechanisms that have been lost in most known eukaryotes. We propose that this analysis of the genome of the jakobids and malawimonads, two groups are free-living flagellate that feeds on bacteria, could provide such clues on the evolution of eukaryotes. Using nanopore sequencing, a collection of high-quality genomes has been built to help in this analysis. Furthermore, it has been supposed that the genome of the jakobid Andalucia godoyi could be composed to both linear and circular chromosomes, a genomic structure that have not been identified in other eukaryotes, which was investigated using the high quality nanopore assembly.
To generate a collection of high-quality genome assemblies, we have sequenced the genomes of the jakobids A. godoyi, Jakoba bahamiensis, Seculamonas ecuadoriensis and Stygiella incarcerata as well as the malawimonad Malawimonas californiana by nanopore. While the yields were too low for J. bahamiensis and M. californiana, probably due to a contamination by polysaccharides, we were able to assemble chromosome level genome for A. godoyi and S. incarcerata and high-quality draft genome for S. ecuadoriensis et R. americana. Using this assembly, we were able to identify four circular chromosomes in the genome of A. godoyi. The circular chromosomes are likely to be located in the nucleus and encodes genes with functions related to the metabolism, ions and macromolecules transport as well as signaling. Furthermore, these molecules differ from known circular chromosome in eukaryotes as they are unlikely to be selfish DNA elements, such as known eucaryotes plasmids, or circular by-product of replication identified in other eukaryotes. Overall, this work sets the bases for larger scale comparative genomics of the jakobids and malawimonads, by generating a small collection of genomes that will be used in future studies to better understand the origin of the eukaryotes.
|
505 |
An integrative bioinformatics approach for analyses of multi-level transcriptional regulation and three-dimensional organization in the epidermis and skin appendages. Exploring genomic transcriptional profiles of the distinct stages of hair follicle and sweat gland development and analyses of mechanism integrating the transcriptional regulation, linear and high-order genome organization within epidermal differentiation complex in keratinocytes.Poterlowicz, Krzysztof January 2013 (has links)
The transcription in the eukaryotic cells involves epigenetic regulatory
mechanisms that control local and higher-order chromatin remodelling. In the
skin, keratinocyte-specific genes are organized into distinct loci including
Epidermal Differentiation Complex (EDC) and Keratin type I/II loci. This thesis
introduces bioinformatics approaches to analyze multi-level regulatory
mechanisms that control skin development and keratinocyte-specific
differentiation.
Firstly, integration of gene expression data with analyses of linear genome
organization showed dramatic downregulation of the genes that comprise
large genomic domains in the sweat glands including EDC locus, compared to
ii
hair follicles, suggesting substantial differences in global genome rearrangement
during development of these two distinct skin appendages.
Secondly, comparative analysis of the genetic programmes regulated in
keratinocytes by Lhx2 transcription factor and chromatin remodeler Satb1
revealed that significant number of their target genes is clustered in the
genome. Furthermore, it was shown in this study that Satb1 target genes are
lineage-specific.
Thirdly, analysis of the topological interactomes of Loricrin and Keratin 5 in
hair follicle steam cells revealed presence of the cis- and trans-interactions
and lineage specific genes (Wnt, TGF-beta/activin, Notch, etc.). Expression
levels of the genes that comprise interactomes show correlation with their
histone modification status.
This study demonstrates the crucial role for integration of transcription factormediated
and epigenetic regulatory mechanisms in establishing a proper
balance of gene expression in keratinocytes during development and
differentiation into distinct cell lineages and provides an integrated
bioinformatics platform for further analyses of the changes in global
organization of keratinocyte-specific genomic loci in normal and diseased
skin.
|
506 |
Mating behaviour in Drosophila melanogaster and its implication to genetic variationÅslund, Sven-Eric January 1978 (has links)
Not much is known about the mechanisms affecting the genetic composition of populations of different species. To investigate one of these potential mechanisms, mating behaviour, the fruit fly Drosophila melanogaster, was chosen as an experimental animal. To quantify mating behaviour in easily measurable parameters, it was subdivided into several distinct components; mating activity, mating time, mating competition ability and male mating capacity. As behavioural components to a great extent are influenced by environmental conditions all experiments were performed under controlled temperature and humidity. All components of mating behaviour were estimated by introducing females and males into mating chambers. Mating behaviour seems to be one of the major factors affecting the genetic composition of Drosophila melanogaster populations. The experiments performed showed that differences in mating properties led to a substantial sexual selection among the genotypes. This selection was of a stabilizing type with regard to characters associated to bristle number and Y chromosomal chromatin. This selection situation seems to warrant the retention of intermediate phenotypes in a population and will therefore contribute to the genetic variation present. Differences in mating properties were also shown to be able to maintain a balanced polymorphism for allozyme variants in populations. This maintenance was obtained through different forms of balancing selection as heterozygous superiority in sexual activity and balancing selection between female and male genotypes. Heterozygous superiority or overdominance in fitness always leads to balanced polymorphism through segregation of individuals with lowered fitness. The balancing selection between the female and male genotypes is best looked upon as a form of marginal overdominance, conferring the averaged highest fitness to the heterozygous genotype, thereby maintaining the polymorphism of the population. / <p>Härtill 5 uppsatser</p> / digitalisering@umu
|
507 |
Towards understanding the mechanism of cohesin loadingDixon, Sarah E. January 2013 (has links)
When a cell divides into two, it is imperative that each resultant daughter receives a full complement of chromosomes; DNA is ultimately responsible for all cellular processes. Cohesion between sister chromatids from the moment of their generation in S phase is central to ensuring the fidelity of chromosome segregation. Smc1 and Smc3 proteins interact with each other via their hinges and with a bridging kleisin subunit via their heads to form the cohesin ring. It is cohesin, through entrapment of sister chromatid within its ring, that confers sister chromatid cohesion. The process of cohesin’s loading onto DNA is poorly understood. While it is thought to depend on ATP hydrolysis, opening of the ring at one of its three interfaces, and the as yet undefined action of the kollerin complex, comprising Scc2 and Scc4 proteins, the sequence of events as they occur are yet to be defined. A recent screen for suppressors of a thermosensitive scc4 allele in budding yeast revealed a mutation within Smc1’s hinge that could bypass the kollerin subunit. Here, the Smc1 suppressor mutation is investigated. Through targeted mutagenesis, the Smc1D588Y mutant identified in the screen and two additional point mutants, Smc1D588F and Smc1D588W, are herein proven able to bypass Scc4 function completely. Thus we provide the strongest evidence to date to suggest that cohesin’s hinge is a critical factor in its loading. Biochemical evidence shows that isolated Smc1 hinge mutants are defective in their binding to Smc3 hinges. This, together with the genetic link made between the hinge and loading complex, suggests that hinge opening might be a requisite for loading. Through mutagenesis of Scc2 and Scc4 we show that the N-terminus of each protein is responsible for their dimerisation. Furthermore, the N- terminus of Scc2 confers no function other than in its binding to Scc4. Finally, we show that Scc4 is required for the enrichment of both Scc2 and cohesin at centromeres, but not at arm loci. Our results are therefore indicative of there being two different pathways of cohesin loading.
|
508 |
G₂ chromosomal radiosensitivity in childhood and adolescent cancer survivors and their offspringCurwen, Gillian B. January 2008 (has links)
It is increasingly recognised that individual risk of cancer may be related to genetically determined differences in the ability of cells to identify and repair DNA damage. Cell cycle based assays of chromosomal radiosensitivity provide the greatest power for discriminating differences in response to DNA damage and it has been suggested that individuals who are genetically susceptible to cancer show increased chromosomal radiosensitivity. The relationship between chromosomal radiosensitivity and early onset cancer was investigated in a population of Danish survivors of childhood and adolescent cancer and a control group comprising of their partners using the G₂ assay of chromosomal radiosensitivity. Heritability was also examined in the offspring. No significant differences in radiosensitivity profiles were found between partner controls and either the cancer survivors or offspring. However, when compared to the Westlakes Research Institute control population, significant differences were observed with the cancer survivors (P = 0.002) and offspring (P < 0.001), supporting an association of chromosomal radiosensitivity with cancer predisposition. Heritability studies suggested the majority of phenotypic variance of chromosomal radiosensitivity was attributable to a putative major gene locus with dominant effect. Since G2 chromosomal radiosensitivity indirectly measures the ability of cells to repair DNA damage induced by ionising radiation exposure, variants in DNA repair genes may explain inter-individual variation observed. Sixteen polymorphisms in nine genes from four DNA repair pathways were investigated. Genotype frequencies at the Asp148Glu polymorphism were associated with childhood cancer in survivors. Analysis of variance and FBAT analysis suggested significant associations at both the Thr241Met and Ser326Cys polymorphism sites with G₂ radiosensitivity, but neither remained significant after multiple-test adjustment. This study invites further exploration of the predictive capacity of G₂ chromosomal radiosensitivity in cancer predisposition. Clearly, further work is needed to correlate radiosensitivity with genetic polymorphisms, which may underlie cancer susceptibility and variation in radiosensitivity.
|
509 |
Significance of MAD2 in mitotic checkpoint control and cisplatin sensitivity of testicular germ cell tumour cellsFung, Ka-lai., 馮家禮. January 2007 (has links)
published_or_final_version / abstract / Anatomy / Doctoral / Doctor of Philosophy
|
510 |
Novel IGH translocations in gastric non-Hodgkin's B-cell lymphomaHu, Xiaotong., 胡曉彤. January 2007 (has links)
published_or_final_version / abstract / Pathology / Doctoral / Doctor of Philosophy
|
Page generated in 0.0403 seconds