• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 34
  • 18
  • 18
  • 10
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 318
  • 318
  • 43
  • 33
  • 28
  • 25
  • 23
  • 22
  • 21
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Biological Rhythms, Sleep and Cognition in Mood Disorders

Allega, Olivia January 2016 (has links)
This thesis presents research investigating the relationship between, and methods of, measuring circadian rhythms in mood disorders in a population of currently depressed and euthymic individuals with both depression and bipolar disorder. This was first assessed by comparing group differences in subjective sleep and circadian measures with objective sleep and circadian measures. The objective circadian measures involved actigraphy and melatonin profiling. This analysis showed group differences in subjective sleep and circadian parameters compared to controls, however no robust differences between mood groups. Objective melatonin profiling showed a mild agreement with subjective circadian parameters. Next, we studied the external validity of a subjective rating scale measuring biological rhythm disturbance, the Biological Rhythms Interview for Assessment in Neuropsychiatry (BRIAN), against objective measures of sleep and circadian activity rhythmicity. The BRIAN demonstrated some promising external validity, namely correlations with wake after sleep onset (WASO) and sleep efficiency, as well as melatonin levels in each group. These studies provide evidence of the extent to which a self-report may help in assessing parameters of sleep and circadian rhythms in the clinical setting. In doing so, it is expected that the use of subjective ratings will provide insight into the impact of biological rhythms disturbances and mood disorders. Lastly, we conducted an overview of the preclinical and clinical literature investigating the impact of circadian disturbance on cognitive performance. The results from this literature review yielded patterns of rhythmicity in specific parameters in each of the attention, memory, and executive function domains in humans, whereas attention and memory are more of a primary focus in animal studies. However, we also found that there are significant gaps in the understanding of how disturbances in circadian rhythms may influence cognitive function. This review also highlights the importance of cross-species translational validity from a methodological perspective, in order to generate positive clinical results beginning at the preclinical stage in neuropsychiatric disorders. / Thesis / Master of Science (MSc)
222

MIDDLA makerspacedynamics in lighting

Becker, Jonas Johannes January 2019 (has links)
This thesis report deals with the meaning of dynamics in lighting in context of the current state oflighting technology and how certain aspects of those can be applied to a specific space.Former studies discovered that biophilic aspects in design can create great benefits for the usersof a space. Natural elements is what we humans most affiliate to. Based on those findings I implementedaspects of dynamics in lighting into my design proposal assuming to be able to give theusers of the MIDDLA space benefit by recreating some degree of ‘virtual biophilia’.MIDDLA is the laboratory of the Media Technology and Interaction Design department of KTH.Characteristics of these facilities are unique as it is located in the attic floor of the oldest buildingon campus which is rather restricted in terms of daylighting and room clearance. Focus is put onthe corridor to evolve into an extension of the laboratory itself as a study area.Future post-occupancy research could be worthwhile of being conducted in combination with furtherdevelopment of the lighting design.
223

Social And Temporal Determinants Of Brain, Behavior And Immune Function

Weil, Zachary M. 16 September 2008 (has links)
No description available.
224

Biological rhythms in Aedes aegypti mosquitoes

Eilerts, Diane Francine 03 June 2021 (has links)
Aedes aegypti mosquitoes are found globally and also act as the primary vector of Zika, dengue, and Chikungunya viruses, for which there are limited treatment options and no vaccines available. The use of insecticides as the main control strategy against diseases transmitted by this mosquito, is increasingly challenged by emerging resistance. Thus, there is a dire need for the development of novel approaches informed by an improved understanding of mosquito biology, to control mosquito populations and, ultimately, disease transmission. Rhythmic biological processes in mosquitoes help optimize resource exploitation by coordinating behaviors and physiology with fluctuating environmental conditions. Such synchronization enables organisms to adjust their physiology, metabolism, and behavior to predictable external cycles. In mosquitoes, circadian rhythmicity has been demonstrated in their biting and oviposition behavior, as well as their locomotor activity. However, little is known regarding how responses to long-range host cues are modulated by the circadian system. Here we show that both antennal sensitivity and olfactory behavior are time-of-day and odor-specific in Ae. aegypti females. Global transcriptomic analysis in whole heads of Ae. aegypti females reveal chemosensory genes differentially expressed throughout the day, providing insight into the molecular mechanisms behind daily variations in olfactory sensitivity and behaviors. We additionally show an odor-induced activation of mosquito behavior. Mosquito locomotion and behavior are also mediated by physiological state, and activity decreases after blood-feeding. Since the central clock components have been shown in other organisms to be redox-sensitive, we explored the role that diet heme plays in mediating behavioral changes following blood ingestion using artificial blood diets. We found that the transcription of the timekeeping gene period is reduced in the head immediately after feeding on a meal containing hemoglobin, but peripheral period transcription is reduced throughout the course of digestion following ingestion of a protein meal independent of hemoglobin inclusion. Overall, our results show that Ae. aegypti behavioral rhythms mediated by rhythmic gene expression are plastic and susceptible to external host cues and host blood digestion. This work can be leveraged for future studies investigating mosquito host-seeking and blood digestion to identify novel targets for vector control. / Doctor of Philosophy / Female mosquitoes rely on blood-feeding in order to produce eggs, but can unfortunately act as vectors of disease if they transmit pathogens when biting. Insecticides are currently our strongest main tool for controlling mosquito disease vectors such as Aedes aegypti, the yellow fever mosquito. However, increasing cases of insecticide resistance present new challenges in vector control, and new strategies to prevent vector-borne disease are needed. The Ae. aegypti mosquito is found globally and transmits Zika, dengue, and Chikungunya viruses, for which there are limited treatment options and no vaccines available. Mosquitoes exhibit rhythms in their gene expression and behaviors such as biting and activity patterns, in order to optimize energy efficiency and coordinate their biology and behaviors with daily fluctuations in the environment. However, it is unknown how their responses to human host odor cues are modulated by their central timekeeping system in the brain. Mosquitoes primarily find a human host via their sense of smell, or olfaction. Odor molecules in the air, emitted by humans, can be detected by mosquitoes' antennae. Here we show that both antennal sensitivity and behavioral responses to odors are time of day and odor-specific in Ae. aegypti females. We quantified gene transcripts in whole heads of Ae. aegypti females as a measure of gene expression, which revealed that genes involved in odor detection are expressed differently throughout the day, providing insight into the molecular mechanisms behind behavioral observations. We also show that mosquito behavior can be activated by odor exposure, and that their behavioral patterns can be influenced for multiple days following exposure. Mosquito behavior is also influenced by blood-feeding, which reduces mosquito activity and flight. Time-keeping genes in the fly brain have been shown to be sensitive to oxidative stress. Blood contains the protein hemoglobin, which can lead to oxidative stress when digested. Using artificial blood diets that allowed us to include or exclude hemoglobin in the meal, we found that the transcription of the timekeeping gene period is reduced in the head immediately after feeding on a diet containing hemoglobin, but is reduced in the rest of the body throughout the course of digestion following ingestion of a protein meal, whether hemoglobin was included or not. This work can be leveraged for future studies investigating mosquitoes' rhythms in host-seeking and blood digestion to identify new effective targets for vector control.
225

The effects of aging on thyroxine and cortisol responses to low ambient temperatures and on circadian rhythm of cortisol in the dog

Palazzolo, Dominic L. January 1985 (has links)
Call number: LD2668 .T4 1985 P34 / Master of Science
226

Circadian rhythms as novel chemotherapeutic strategies for breast cancer

Mitchell, Megan Irvette 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Introduction: Mammalian circadian rhythms form an integral physiological system allowing for the synchronisation of all metabolic processes to daily light/dark cycles, thereby optimising their efficacy. Circadian disruptions have been implicated in the onset and progression of different types of cancers, including those arising in the breast. Several links between the circadian protein Per2 and DNA damage responses exist. Aberrant Per2 expression results in potent downstream effects to both cell cycle and apoptotic targets, suggestive of a tumour suppressive role for Per2. Due to the severe dose limiting side effects associated with current chemotherapeutic strategies, including the use of doxorubicin, a need for more effective adjuvant therapies to increase cancer cell susceptibility has arisen. We therefore hypothesize, that the manipulation of the circadian Per2 protein in conjunction with doxorubicin may provide a more effective chemotherapeutic strategy for the treatment of breast cancer. The aims of this project were thus to: (i) Characterize the role of Per2 in normal breast epithelial cells as well as in ER+ and ER- breast cancer cells; (ii) to determine the role of Per2 in doxorubicin-induced cell death, (iii) to determine the role of Per2 in autophagy and finally (iv) to assess whether the pharmacological inhibition of Per2 with metformin, can sensitize chemo-resistant MDA-MB-231 breast cancer cells to doxorubicin-induced cell death. Methods: An in vitro model of breast cancer was employed using the normal MCF-12A breast epithelial, estrogen receptor positive (ER+) MCF-7 and estrogen receptor negative (ER-) MDA-MB-231 breast adenocarcinoma cell lines. Circadian rhythmicity of Per2 protein expression was determined using western blotting, and Per2 cellular localization was assessed using fluorescent confocal microscopy. Per2 was then silenced by means of an endoribonuclease-prepared siRNA, and silencing efficiency was determined with the use of western blotting. The roles of Per2 in doxorubicin-induced cell death and autophagy were assessed by treating MDA-MB-231 breast cancer cells under the following conditions (1) Control, (2) 2.5 μM doxorubicin or 10 nM bafilomycin A1 (3) 30 nM esiPer2 and (4) 30 nM esiPer2 in combination with 2.5 μM doxorubicin or 10 nM bafilomycin A1. Following treatments cell viability was assessed using the MTT assay, western blotting for markers of apoptosis including p-MDM2 (Ser166), p-p53 (Ser15), cleaved caspase-3 and –PARP as well as markers of autophagy (AMPKα, mTOR and LC3). Furthermore, cell cycle analysis, G2/M transition and cell death (Hoechst 33342 and propidium iodide staining) were assessed by means of flow cytometry. The pharmacological inhibition of Per2 was achieved by treating MDA-MB-231 cells with 40 mM metformin as well as in combination with 2.5 μM doxorubicin. MTT cell viability assays, cell cycle analysis (flow cytometry) and western blotting for apoptosis (Per2, p-AMPKα (Thr172), p53, caspase-3 and PARP) were assessed. Results and discussion: A circadian pattern of Per2 protein expression was observed in the normal MCF-12A and MDA-MB-231 cancer cells with protein levels peaking at ±700% and ±500% of baseline was observed. However, no rhythmic expression was observed in the MCF-7 cancer cells. Immunostaining for Per2 showed localization OF Per2 in the cytoplasm as well as in the nucleus of both the MCF-12A and MDA-MB-231 cells. Concentration curves showed a significant reduction in cell viability following 2.5 μM doxorubicin treatment for 24 hours. Per2 protein expression was significantly reduced with both esiPer2 and metformin treatment. Silencing of Per2 in combination with doxorubicin treatment resulted in cell cycle arrest with a significant increase in apoptosis, indicating that Per2 silencing effectively sensitized the MDA-MB-231 cancer cells to the anti-carcinogenic properties of doxorubicin. Modulation of Per2 protein expression was effectively achieved with the use metformin although this decrease occurred independently of AMPKα phosphorylation. A significant increase in apoptosis was observed following treatment with metformin in combination with doxorubicin treatment. However, no changes in cell cycle regulation were observed. Per2 appears to be involved in the regulation of autophagy as a significant increase in autophagy flux was observed when Per2 was silenced. Additionally, this increase in autophagic flux resulted in a significant increase in MDA-MB-231 cancer cell death which was enhanced further when autophagy was inhibited with bafilomycin A1 subsequent to Per2 silencing. Conclusions: Per2 protein expression was shown to display a 24 hour circadian rhythm in the MCF-12A cells, and to a lesser extent in the MDA-MB-231 cells. However, the MCF-7 cells failed to show rhythmic changes in Per2 protein expression. Per2 was shown to be located predominantly in the cytoplasm, with nuclear localization observed when cytoplasmic fluorescent intensity was lower. Per2 silencing effectively sensitized the chemo-resistant MDA-MB-231 breast cancer cells to both doxorubicin-induced cell death and autophagic inhibition. / AFRIKKANSE OPSOMMING: Inleiding: Sirkadiese ritmes vorm ‘n integrale fisiologiese sisteem wat die sinkronisasie van alle metaboliese prosesse asook lig/donker siklusse se effektiwiteit optimaliseer. Onderbreking van hierdie sirkadiese ritmes word geïmpliseer in die ontstaan en bevordering van verskillende kankertipes, insluitend borskanker. Verskeie raakpunte bestaan tussen die sirkadiese proteïen, Per2, en die DNA skade-respons. Abnormale Per2 uitdrukking veroorsaak afstroom effekte op beide die selsiklus en apoptotiese teikens wat moontlik aanduidend van ‘n tumor-onderdrukkende rol vir Per2 kan wees. Daar bestaan ‘n groot nood vir meer effektiewe adjuvante terapieë om kankersel vatbaarheid vir chemoterapie te verhoog as gevolg van dosis-beperkende newe-effekte wat geassosieer word met huidige chemoterapeutiese strategieë, insluitende dié van doxorubicin. Ons hipotese is dus dat die manipulering van die sirkadiese Per2 proteïen tesame met doxorubicin ‘n meer effektiewe chemoterapeutiese strategie vir die behandeling van borskanker sal wees. Die doelwitte van hierdie projek was dus om: (i) Die rol van Per2 in normale borsepiteelselle sowel as in ER+ en ER- borsepiteel kankerselle te karakteriseer; (ii) die rol van Per2 in doxorubicin-geïnduseerde seldood te bepaal; (iii) te bepaal of Per2 ‘n rol in autofagie speel en laastens (iv) te bepaal of die farmakologiese inhibisie van Per2 met metformin chemo-weerstandbiedende MDA-MB-231 kankerselle kan sensitiseer vir doxorubicin-geïnduseerde seldood. Metodes: ‘n In vitro model vir borskanker is gebruik wat normale MCF-12A borsepiteelselle, estrogeen reseptor positiewe (ER+) MCF-7 en estrogeen reseptor negatiewe (ER-) MDA-MB-231 bors adenokarsenoomselle insluit. Sirkadiese ritmisiteit van Per2 proteïen uitdrukking is deur middel van die westelike kladtegniek bepaal en die sellulêre ligging van Per2 deur middel van fluoresensie mikroskopie. siPer2 is voorberei deur middel van endoribonuklease-siRNA en die effektiwiteit daarvan is deur middel van westelike kladtegniek getoon. Die rol van Per2 in doxorubicin-geinduseerde seldood en autofagie is bepaal deur MDA-MB-231 borskankerselle onder die volgende omstandighede te toets: (1) Kontrole, (2) 2.5 μM doxorubicin of 10 nM bafilomycin A1 (3) 30 nM esiPer2 en (4) 30 nM esiPer2 in kombinasie met 2.5 μM doxorubicin of 10 nM bafilomycin A1. Na die behandeling, is sellewensvatbaarheid bepaal deur gebruik te maak van ‘n MTT toets; westelike kladtegniek is gebruik om vir merkers van apoptose soos p-MDM2 (Ser166), p-p53 (Ser15), gekliefde caspase-3 en -PARP asook vir merkers van autofagie (AMPKα, mTOR en LC3) te toets. Die selsiklus, G2/M oorgang en seldood (Hoechst 33342 en propidium iodide kleuring) is deur middel van vloeisitometrie bepaal. Per2 is ook farmakologies geïnhibeer deur MDA-MB-231 selle met 40 mM metformin asook in kombinasie met 2.5 μM doxorubicin te behandel. Daarna is sellewensvatbaarheid (MTT) sowel as die selsiklus (vloeisitometrie) en apoptose (westelike kladtegniek vir Per2, p-AMPKα (Thr172), p53, caspase-3 and PARP) gemeet. Resultate en bespreking: ‘n Sirkadiese patroon vir Per2 proteïen uitdrukking is in die normale MCF-12A selle asook in die MDA-MB-231 kankerselle waargeneem met proteïenvlakke wat hul piek by ±700% and ±500% onderskeidelik in vergelyking met basislyn bereik het. Geen ritmiese patroon van Per2 proteïen uitdrukking is egter in die MCF-7 kankerselle waargeneem nie. Immunokleuring om Per2 ligging te bepaal het getoon dat Per2 in the sitoplasma sowel as in die nukleus in beide MCF-12A en MDA-MB-231 selle voorgekom het. Konsentrasie kurwes het aangetoon dat daar ‘n insiggewende vermindering in sellewensvatbaarheid voorgekom het na die behandeling van die selle met 2.5 μM doxorubicin vir 24 uur. Per2 proteïen uitdrukking is insiggewend verlaag met beide esiPer2 en metformin behandeling van die selle. esiPer2 aleen of in kombinasie met doxorubicin behandeling het selsiklus staking tot gevolg gehad asook ‘n beduidende toename in apoptose veroorsaak wat dus aangedui het dat esiPer2 effektief was om MDA-MB-231 kankerselle te sensitiseer vir die anti-karsinogeniese doxorubicin behandeling. Modulering van Per2 proteïen uitdrukking was effektief met metformin behandeling, alhoewel die afname onafhanklik van AMPKα fosforilasie plaasgevind het. ‘n Insiggewende toename in apoptose is waargeneem na metformin behandeling in kombinasie met doxorubicin. Geen veranderinge in die selsiklus is egter onder hierdie omstandighede waargeneem nie. Per2 blyk betrokke te wees in die regulering van autofagie aangesien ‘n insiggewende verhoging in autofagie omsetting waargeneem is na esiPer2 behandeling. Die toename in autofagie omsetting is geassosieer met ‘n insiggewende toename in seldood in MDA-MB-231 kankerselle wat verder verhoog is wanneer autofagie met bafilomycin A1 (autofagie inhibitor) in kombinasie met esiPer2 behandel is. Gevolgtrekkings: Per2 proteïen uitdrukking het ‘n 24 uur sirkadiese ritme in die MCF-12A normale selle, en tot ‘n mindere mate in die MDA-MB-231 selle getoon. Die MCF-7 selle het egter geen ritmiese patroon van Per2 proteïen uitdrukking getoon nie. Per2 kom hoofsaaklik in die sitoplasma voor en het slegs in die nukleus voorgekom wanneer die sitoplasmiese fluoresensie intensiteit laer was. esiPer2 was dus effektief om die chemo-weerstandbiedende MDA-MB-231 borskankerselle te sensitiseer vir doxorubicin-geïnduseerde seldood. / National Research Foundation
227

Functional Organization of Central and Peripheral Circadian Oscillators

Ko, Caroline Hee-Jeung 24 September 2009 (has links)
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus has long been considered a master circadian pacemaker that drives rhythms in physiology and behavior in mammals. The recent discovery of self-sustained and cell-autonomous circadian oscillators in peripheral tissues has challenged this position. This dissertation tested the general hypothesis that the SCN has properties that distinguish it from other oscillators, thereby positioning it atop a circadian hierarchy. The general approach was to compare the consequences of altering the molecular circadian clock on tissue-autonomous rhythmicity in mice. In the first experiments, the role of the SCN as a master clock was tested by manipulating the expression of a circadian gene in the brain. Specifically, the expression of the short period tau mutation of casein kinase-1-epsilon (CK1ε) was controlled in an anatomically- and a temporally-specific manner via a tetracycline transactivator regulatory system. This inducible expression of CK1εtau affected the period of activity rhythms when expressed in the SCN, but did not affect the tissue-autonomous rhythmic properties in the peripheral tissues. Second, real-time bioluminescence imaging of tissues from PER2::LUCIFERASE mice revealed that period and phase of different circadian oscillators were tissue specific. Various circadian gene mutations (Cry1-/-, Cry2-/-, Cry1-/-;Cry2-/-, Clock∆19/∆19) produced little difference in rhythmic properties between the SCN and peripheral oscillators, although Cry1-/- SCN had more robust and persistent rhythms compared with the periphery. Third, the loss of Bmal1, which produces behavioral arrhythmicity, eliminated rhythms in the peripheral tissues, but not in the SCN. Bmal1-/- SCN rhythms were highly variable in period and amplitude, fitting a stochastic, but not a deterministic model of rhythm generation. Unlike mutations in other circadian genes, rhythmicity was completely abolished in single SCN neurons in Bmal1-/- mice, indicating that rhythms in Bmal1-/- SCN tissue are a property of the tissue organization rather than an averaging of single-cell autonomous rhythms. The SCN, therefore, has a unique anatomical organization that contributes to long-term stability and temporal organization of the circadian hierarchy.
228

The effects of repeated bouts of prolonged cycling and carbohydrate supplementation on immunoendocrine responses in man

Li, Tzai-Li January 2004 (has links)
Prolonged strenuous exercise affects the circulating numbers and functions of immune cells. These effects are thought to be largely mediated by the actions of elevated circulating stress hormones and alterations in regulatory cytokines. Although the effects of a single acute bout of exercise on immune system function are quite well established, it is still not clear how time of day and repeated bouts of prolonged exercise on the same day influence immune function. It is of particular interest to understand the effects of nutritional supplementation on immunoendocrine responses. Therefore, the aims of the studies described in this thesis were to determine the effects of two bouts of prolonged cycling and carbohydrate supplementation on immunoendocrine responses. The saliva collection study showed that the use of a swab for collecting saliva is not an ideal method because it affects the results of saliva composition (Chapter 4). The comparison of the effects of exercise at different times of day on immunoendocrine responses showed that a single bout of prolonged exercise performed in the afternoon induces a larger perturbation in the redistribution of leukocytes into the circulation than an identical bout of morning exercise, which maybe due to higher hypothalamic-pituitaryadrenal (HP A) activation and. circadian rhythms. However, in terms of oral mucosal immunity, performing prolonged cycling at different times of day does not differently affect the salivary responses. The second compared with the first of two bouts of prolonged exercise on the same day induces a greater HP A activation, a larger leukocyte trafficking into the circulation, a decreased neutrophil degranulation response to lipopolysaccharide (LPS) on per cell basis and a lower saliva flow rate, but does not increase plasma interleukin-6 (IL-6), or change saliva immunoglobulin A (slgA) secretion rate (Chapter 5). Furthermore, carbohydrate (CHO) ingestion during any period of two bouts of prolonged exercise shows limited beneficial effect in blunting these higher responses in the second exercise bout compared with the first identical exercise bout on the same day (Chapter 6, 7 and 8). The determination of the effects of CHO ingestion on exercise-induced immunoendocrine responses showed that when two bouts of exercise are performed on the same day, the greater benefit in terms of circulating immunoendocrine responses is obtained by feeding CHO at the earliest opportunity (Chapter 6, 7 and 8). A 3-h interval is insufficient for recovery of leukocyte mobilisation and neutrophil function from the impact of previous exercise whether subjects consumed placebo or CHO during exercise or recovery (Chapter 5, 6, 7 and 8). However, an 18-h interval is sufficient for full recovery of all immunoendocrine variables that were measured in this thesis from the impact of two bouts of prolonged exercise (Chapter 8).
229

Effets de l'agomélatine et de la mélatonine sur les oscillations de l'horloge circadienne : études physiologiques et moléculaires / Effects of agomelatine and melatonin on the oscillations of the circadian clock : physiological and molecular studies

Castanho, Amelie 05 September 2013 (has links)
La mélatonine est connue pour agir directement sur l’horloge circadienne. L’agomélatine est un antidépresseur présentant des propriétés agonistes MT1/MT2 et antagonistes 5-HT2C. Tout d’abord, nous avons évalué les effets de l’agomélatine, de la mélatonine et d’un antagoniste 5-HT2C sur deux sorties de l’horloge (rythme de la mélatonine endogène et de la température corporelle). Les résultats obtenus suggèrent une action centrale de l’agomélatine et de la mélatonine, directement sur l’horloge via les récepteurs MT1/MT2, en induisant une augmentation de l’amplitude et une avance de phase du rythme de mélatonine. Pour la température corporelle, l’ensemble des drogues augmente l’amplitude du rythme, suggérant une action des propriétés agonistes MT1/MT2 et/ou antagonistes 5-HT2C de l’agomélatine. Puis, l’étude sur l’expression du gène horloge Per1, a révélé un effet supérieur de l’agomélatine par rapport à la mélatonine, mais seulement le jour du traitement. L’agomélatine pourrait agir sur la machinerie moléculaire de l’horloge, ce qui reste à exploiter davantage. Ces nouvelles données contribuent à une meilleure compréhension des mécanismes d’action de l’agomélatine. / Melatonin is known to act directly on the circadian clock. Agomelatine is an antidepressant with MT1/MT2 agonist and antagonist 5-HT2C properties. First, we evaluated the effects of agomelatine, melatonin and 5-HT2C antagonist on two clock outputs (rhythm of endogenous melatonin and body temperature). The results suggest a central action of agomelatine and melatonin, directly on the circadian clock via MT1/MT2 receptors, inducing an increase on the amplitude and a phase advance of the rhythm of melatonin. For body temperature, all drugs increased the amplitude of the rhythm, this suggest an action of MT1/MT2 agonist and antagonist 5-HT2C properties of agomelatine. Secondly, the study on the expression of clock gene Per1 revealed a greater effect of agomelatine compared to melatonin, but only on the day of treatment. Agomelatine could act on the molecular machinery of the clock, but requires further investigations. These new data allow a better understand of the mechanisms action of agomelatine.
230

Termofilia e termogênese pós-prandiais em Bothrops moojeni (Serpentes:Viperidae) em cativeiro / Thermogenesis and post-prandial termophly in Bothrops moojeni (Serpentes: Viperidae) in captivity

Stuginski, Daniel Rodrigues 12 May 2009 (has links)
O estudo das temperaturas preferenciais e comportamento termofílico é essencial na compreensão da termobiologia das serpentes, todavia, a maioria dos trabalhos tem focado somente os animais diurnos e de clima temperado e pouco se sabe a respeito das serpentes noturnas tropicais e sub-tropicais. O presente estudo utilizou uma arena com gradiente térmico monitorada por vídeo para mensurar o intervalo térmico preferencial procurado durante os períodos de atividade e inatividade (Tset) e a resposta termofílica pós-prandial frente a diferentes quantidades de ingesta em 29 serpentes Bothrops moojeni . Os resultados obtidos mostraram que o intervalo térmico preferencial de B.moojeni diferiu conforme o fotoperíodo (20,93°C a 22,20°C durante o dia e 22,81°C a 24,42°C durante a noite) e foi similar a outros intervalos encontrados para outras serpentes crotalinae. Os dados mostraram que há uma correlação inversa entre intensidade da resposta termofílica pós-prandial e quantidade de alimento ingerido, uma vez que os animais alimentados com uma porção correspondente a 10% de seu peso corporal apresentaram maior resposta termofílica pós-prandial quando comparados àqueles que foram alimentados com porções maiores (20 e 40% do peso corporal). Esta diferença parece estar relacionada com a diminuição de mobilidade e a maior SDA (Specific Dynamic Action) nos animais que ingeriram a maior quantidade de alimento. As serpentes crotalinae são tidas como animais preponderantemente noturnos sendo que a maioria dos dados a respeito dessas atividades foram obtidos em pesquisas de campo. A detecção do período de atividade, assim como o conhecimento de como o estado nutricional influencia a taxa de trânsito, são extremamente importantes na compreensão da ecofisiologia destes animais. No estudo foram utilizadas 29 exemplares de Bothrops moojeni, monitoradas quanto ao horário e o tempo de deslocamento durante o jejum e nos 5 dias subseqüentes a alimentação. A alimentação das serpentes variou entre 10, 20 e 40% do peso da própria serpente. Os resultados confirmaram Bothrops moojeni como espécie essencialmente noturna, sendo que a atividade foi aumentada em mais de 45 vezes durante o período. O pico de atividade ocorreu entre as 19:00 e 20:00 horas, não havendo diferença estatística entre machos e fêmeas. Com relação à atividade pós-prandial foi notada diferença estatística nas taxas de deslocamento dos animais que comeram as maiores proporções (20-40%). Os resultados obtidos corroboram com os dados prévios obtidos em estudos de campo que pontuam Bothrops moojeni como um animal noturno e de baixo grau de mobilidade. A interação entre a quantidade de alimento ingerido pela serpente, o balanço energético e o grau de mobilidade dos animais é bastante complexa e discutível. As serpentes foram consideradas por muito tempo como incapazes de gerar calor através de seu metabolismo aeróbico, à exceção das pythons no choco. Entretanto, estudos recentes mostraram que algumas espécies são capazes de aumentar a temperatura corporal sem recorrer a fontes externas de calor ou contrações musculares. Esta termogênese ocorre devido aos enormes níveis metabólicos atingidos durante a digestão (Specific Dynamic Action - SDA). Em geral as serpentes têm um baixo custo energético de manutenção e a maioria das espécies é capaz de permanecer longo período em jejum e depois se alimentar de uma grande ingesta. A energia produzida durante a digestão destas grandes refeições pode gerar um significativo aumento na temperatura corpórea dos animais. O presente estudo investigou a termogênese pós-prandial em Bothrops moojeni, através de imagens térmicas tomadas em um ambiente termoestável a 30°C. As 12 serpentes foram divididas em 2 grupos e acompanhadas pelas 72 horas após ingerirem refeições equivalentes a 10-60 20% e 30-40% de seu próprio peso, respectivamente. Os resultados mostraram que a resposta termogênica pós-prandial levou a um aumento de 1,6°C da temperatura da pele das serpentes. O pico térmico ocorreu entre 33 e 36 horas após a alimentação em ambos os grupos e a duração da termogênese variou conforme o tamanho da ingesta. Os resultados mostraram uma alta correlação entre a termogênese pós-prandial e a SDA das serpentes. O aumento significativo da temperatura corporal e a sua manutenção por certo tempo sugerem que estes animais são capazes de manter altas taxas metabólica durante a digestão independente da temperatura do ambiente. / The study of the preferred temperatures and thermophilic behavior is essential to understand the snakes thermal biology. Although some studies have been reported, most of them are focused in temperate and diurnal species. Thus, little is known about the tropical and sub-tropical nocturnal species. In the present study , a video-monitored arena with a thermal gradient was used to investigate the preferred thermal range during activity and inactivity (Tset) and the post-prandial thermophilic response after different levels of food intake in 29 Brazilian lanceheads (Bothrops moojeni). The results showed that the preferred thermal range of B.moojeni changes depending on the photoperiod (20.93°C to 22.20°C in daytime and 22.81°C to 24.42°C in night time), being similar to other crotalinae snakes. Our data suggests that there is an inverse correlation between the post-prandial thermophilic response intensity and food intake, as animals fed with a portion corresponding to 10% of its bodyweight presented a higher thermophilic response in comparison to those who were fed with larger portions (20 and 40% of bodyweight). This difference may be related to the decreased mobility and increased SDA (Specific Dynamic Action) in animals that consumed the largest amount of food. Crotalinae are considered to be mainly nocturnal and most of the gathered data on these snakes came from field work. The knowledge of activity pattern and how nutritional status affect wandering rate are determinant to understand the ecophysiology of the snakes. In this study the daily activity pattern was followed in 29 subjects of the lancehead Bothrops moojeni in order to record displacement rate in fasting and feed snakes for five days after feeding meal of 10, 20 and 40% of their own body weight. The results show that B.moojeni is prevalently nocturnal, and activity increased 45 times at night, peaking between 19 to 20 h, in both males and females. Activity level changed significantly after feeding in snakes which ate a larger meal (20-40%). The results confirm previous field data for B.moojeni as a nocturnal species with low mobility. The complex interactions between the amount of food taken by the snake, energetic balance and mobility are discussed. Snakes were for long considered incapable to generate heat fueled by aerobic metabolism, except for brooding pythons. However, recent studies proved that some species are able to elevate their body temperature without muscle contraction or external heat source. Such thermogenic capacity is supported by high metabolic rate that follows digestion and assimilation of food (Specific Dynamic Action - SDA). Snakes have a low maintenance cost and most species can stand for long fasting time, particularly after ingesting a great meal. The energy produced during digestion of such meal can generate significant increase in body temperature. The present study investigated thermogenic response after feeding in the Brazilian lancehead, Bothrops moojeni, using thermal images taken in temperature controlled environment at 30°C. The 12 snakes were divided into two groups and followed for 72 hours after fed a meal representing 10-20% and 30-40% of their body weight, respectively. The results showed thermogenic digestive response with an increase up to 1.6 °C of skin temperature. Thermal heat production peak occurred between 33 to 36 hours after feeding in both groups, and the duration of thermogeny varied with the meal size. The result showed high correlation between thermogenic data and SDA in snakes. The significant increase of body temperature after feeding and its maintenance for extended time suggest a physiological advantage to keep high metabolic rate despite of environmental temperature.

Page generated in 0.0558 seconds