• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 29
  • 11
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 255
  • 255
  • 116
  • 93
  • 84
  • 46
  • 36
  • 36
  • 35
  • 30
  • 28
  • 28
  • 24
  • 23
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Template-driven parasitic-aware optimization of analog/RF IC layouts /

Bhattacharya, Sambuddha. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 102-109).
92

Design and integration of a single-chip low-power single-conversion CMOS cable TV tuner /

Wang, Dan. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 186-195). Also available in electronic version.
93

KLU--a high performance sparse linear solver for circuit simulation problems

Natarajan, Ekanathan Palamadai. January 2005 (has links)
Thesis (M.S.)--University of Florida, 2005. / Title from title page of source document. Document formatted into pages; contains 79 pages. Includes vita. Includes bibliographical references.
94

Automação do fluxo de projeto de circuitos integrados atraves do desenvolvimento de uma interface grafica parametrica implementada em TCL/TK / Integrated circuit design flow automation using a parametric graphical interface implemented using TCL/TK packages

Tozetto, Eduardo Henrique 31 July 2007 (has links)
Orientador: Jose Antonio Siqueira Dias / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T20:31:51Z (GMT). No. of bitstreams: 1 Tozetto_EduardoHenrique_M.pdf: 2634313 bytes, checksum: 16d70c7f88dab18e657af6ec34a2defb (MD5) Previous issue date: 2007 / Resumo: O contexto econômico competitivo em que as empresas que desenvolvem ferramentas para projeto de CIs estão inseridas dificulta o estabelecimento de padrões e plataformas de desenvolvimento comuns. Em geral, a necessidade de inúmeras ferramentas resulta em um ambiente de projeto fragmentado. Este trabalho apresenta uma ferramenta desenvolvida através da implementação de interfaces gráficas paramétricas em TCL/TK, que integra funções gerais, permitindo a rápida codificação de procedimentos e seu acesso através de elementos gráficos. A ferramenta desenvolvida serve para facilitar e otimizar as tarefas envolvidas no aprimoramento das técnicas de projeto de Circuitos ntegrados através da elaboração de métodos e scripts visando à automação de etapas do fluxo de projeto / Abstract: The competitive environment in which the companies who develop software tools for the design of integrated circuits creates many barriers to the establishment of standards and common platforms. Usually the need for several software tools leads to a design environment which is fragmented and difficult to manage. This work presents the development of software tool, based on graphical parametric user interfaces in TCL/TK, which integrates many general functions and allows for a quick codification of procedures and its access through the graphics elements. The developed tool optimizes and facilitates the tasks employed in the improvement of the techniques used in integrated circuits design through the elaboration of methods and scripts dedicated to the automation of the design flow steps / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
95

Reliable high-throughput FPGA interconnect using source-synchronous surfing and wave pipelining

Teehan, Paul Leonard 05 1900 (has links)
FPGA clock frequencies are slow enough that only a fraction of the interconnect’s bandwidth is used. By exploiting this bandwidth, the transfer of large amounts of data can be greatly accelerated. Alternatively, it may also be possible to save area on fixed-bandwidth links by using on-chip serial signaling. For datapath-intensive designs which operate on words instead of bits, this can reduce wiring congestion as well. This thesis proposes relatively simple circuit-level modifications to FPGA interconnect to enable high-bandwidth communication. High-level area estimates indicate a potential interconnect area savings of 10 to 60% when serial links are used. Two interconnect pipelining techniques, wave pipelining and surfing, are adapted to FPGAs and compared against each other and against regular FPGA interconnect in terms of throughput, reliability, area, power, and latency. Source-synchronous signaling is used to achieve high data rates with simple receiver design. Statistical models for high-frequency power supply noise are developed and used to estimate the probability of error of wave pipelined and surfing links as a function of link length and operating speed. Surfing is generally found to be more reliable and less sensitive to noise than wave pipelining. Simulation results in a 65nm process demonstrate a throughput of 3Gbps per wire across a 50-stage, 25mm link. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
96

Voltage and Time-Domain Analog Circuit Techniques for Scaled CMOS Technologies

Kalani, Sarthak January 2020 (has links)
CMOS technology scaling has resulted in reduced supply voltage and intrinsic voltage gain of the transistor. This presents challenges to the analog circuit designers due to lower signal swing and achievable signal to noise ratio (SNR), leading to increased power consumption. At the same time, device speed has increased in lower design nodes, which has not been directly beneficial for analog circuit design. This thesis presents voltage-domain and time-domain circuit scaling friendly circuit architectures that minimize the power consumption and benefit from the increasing transistor speeds. In the voltage-domain, an on-the-fly gain selection block is demonstrated as an alternative to the traditional MDAC architecture to enhance the input dynamic range of a medium-resolution medium-speed analog-to-digital converter (ADC) at reduced supply voltages. The proposed design also eliminates the need for a reference buffer, thus providing power savings. The measured prototype enhances the input dynamic range of a 12bit, 40MSPS ADC to 80.6dB at 1.2V supply voltage. In the time-domain, a generic circuit design approach is presented, followed by an in-depth analysis of Voltage-Controlled-Oscillator based Operational Transconductance Amplifiers (VCO-OTAs). A discrete-time-domain small-signal model based on the zero crossings of the internal VCOs is developed to predict the stability, the step response, and the frequency response of the circuit when placed in feedback. The model accurately predicts the circuit behavior for an arbitrary input frequency, even as the VCO free-running frequency approaches the unity-gain bandwidth of the closed-loop system, where other intuitive small-signal models available in the literature fail. Next, we present an application of VCO-OTA in designing a baseband trans-impedance amplifier (TIA) for current-mode receivers as a scaling-friendly and power-efficient alternative to the inverter-based OTA. We illustrate a design methodology for the choice of the VCO-OTA parameters in the context of a receiver design with an example of a 20MHz RF-channel-bandwidth receiver operating at 2GHz. Receiver simulation results demonstrate an improvement of up to 12dB in blocker 1dB compression point (B1dB) for slightly higher power consumption or up to 2.6x power reduction of the TIA resulting in up to 2x power reduction of the receiver for similar B1dB performance. Next, we present some examples of VCO-OTAs. We first illustrate the benefit of a VCO-OTA in a low-dropout-voltage regulator to achieve a dropout voltage of only100mV and operating down to 0.8V input supply, compared to the prototype based on traditional OTA with a minimum dropout voltage of 150mV, operating at a minimum of 1.2V supply. Both the capacitor-less prototypes can drive up to 1nF load capacitor and provide a current of 60mA. The next prototype showcases a method to reduce the power consumption of a VCO-OTA and spurs at the VCO frequency, with an application in the design of a fourth-order Butterworth filter at 4MHz. The thesis concludes with a design example of 0.2V VCO-OTA.
97

Design Techniques of Highly Integrated Hybrid-Switched-Capacitor-Resonant Power Converters for LED Lighting Applications

Le, Chengrui January 2020 (has links)
The Light-emitting diodes (LEDs) are rapidly emerging as the dominant light source given their high luminous efficacy, long lift span, and thanks to the newly enacted efficiency standards in favor of the more environmentally-friendly LED technology. The LED lighting market is expected to reach USD 105.66 billion by 2025. As such, the lighting industry requires LED drivers, which essentially are power converters, with high efficiency, wide input/output range, low cost, small form factor, and great performance in power factor, and luminance flicker. These requirements raise new challenges beyond the traditional power converter topologies. On the other hand, the development and improvement of new device technologies such as printed thin-film capacitors and integrated high voltage/power devices opens up many new opportunities for mitigating such challenges using innovative circuit design techniques and solutions. Almost all electric products needs certain power delivery, regulation or conversion circuits to meet the optimized operation conditions. Designing a high performance power converter is a real challenge given the market’s increasing requirements on energy efficiency, size, cost, form factor, EMI performance, human health impact, and so on. The design of a LED driver system covers from high voltage AC/DC and DC/DC power converters, to high frequency low voltage digital controllers, to power factor correction (PFC) and EMI filtering techniques, and to safety solutions such as galvanic isolation. In this thesis, we study design challenges and present corresponding solutions to realize highly integrated and high performance LED drivers combining switched-capacitor and resonant converters, applying re-configurable multi-level circuit topology, utilizing sigma delta modulation, and exploring capacitive galvanic isolation. A hybrid switched-capacitor-resonant (HSCR) LED driver based on a stackable switched-capacitor (SC) converter IC rated for 15 to 20 W applications. Bulky transformers have been replaced with a SC ladder to perform high-efficiency voltage step-down conversion; an L-C resonant output network provides almost lossless current regulation and demonstrates the potential of capacitive galvanic isolation. The integrated SC modules can be stacked in the voltage domain to handle a large range of input voltage ranges that largely exceed the voltage limitation of the medium-voltage-rated 120 V silicon technology. The LED driver demonstrates > 91% efficiency over a rectified input DC voltage range from 160 VDC to 180 VDC with two stacked ICs; using a stack of four ICs > 89.6% efficiency is demonstrated over an input range from 320 VDC to 360 VDC . The LED driver can dim its output power to around 10% of the rated power while maintaining >70% efficiency with a PWM controlled clock gating circuit. Next, the design of AC main rectifier and inverter front end with sigma delta modulation is described. The proposed circuits features a pair of sigma delta controlled multilevel converters. The first is a multilevel rectifier responsible for PFC and dimming. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. Its functional performance indicates that integrated multilevel converters are a viable topology for lighting and other similar applications.
98

Conditional stuck-at fault model for PLA test generation

Cornelia, Olivian E. January 1987 (has links)
No description available.
99

Electrocardiograph (ECG) circuit design and software-based processing using LabVIEW

Abdul Jamil, M.M., Soon, C.F., Achilleos, A., Youseffi, Mansour, Javid, F. January 2017 (has links)
Yes / The efficiency and acquisition of a clean (diagnosable) ECG signal dependent upon the proper selection of electronic components and the techniques used for noise elimination. Given that the human body and the lead cables act as antennas, hence picking up noises from the surroundings, thus a major part in the design of an ECG device is to apply various techniques for noise reduction at the early stage of the transmission and processing of the signal. This paper, therefore, covers the design and development of a Single Chanel 3-Lead Electrocardiograph and a Software-based processing environment. Main design characteristics include reduction of common mode voltages, good protection for the patient, use of the ECG device for both monitoring and automatic extraction (measurements) of the ECG components by the software. The hardware consisted of a lead selection stage for the user to select the bipolar lead for recording, a pre-amplification stage for amplifying the differential potentials while rejecting common mode voltages, an electrical isolation stage from three filtering stages with different bandwidths for noise attenuation, a power line interference reduction stage and a final amplification stage. A program in LabVIEW was developed to further improve the quality of the ECG signal, extract all its features and automatically calculate the main ECG output waveforms. The program had two main sections: The filtering section for removing power line interference, wideband noises and baseline wandering, and the analysis section for automatically extracting and measuring all the features of the ECG in real time. A Front Panel Environment was, therefore, developed for the user interface. The present system produced ECG tracings without the influence of noise/artefacts and provided accurate detection and measurement of all the components of the ECG signal.
100

Gigahertz-Range Multiplier Architectures Using MOS Current Mode Logic (MCML)

Srinivasan, Venkataramanujam 18 December 2003 (has links)
The tremendous advancement in VLSI technologies in the past decade has fueled the need for intricate tradeoffs among speed, power dissipation and area. With gigahertz range microprocessors becoming commonplace, it is a typical design requirement to push the speed to its extreme while minimizing power dissipation and die area. Multipliers are critical components of many computational intensive circuits such as real time signal processing and arithmetic systems. The increasing demand in speed for floating-point co-processors, graphic processing units, CDMA systems and DSP chips has shaped the need for high-speed multipliers. The focus of our research for modern digital systems is two fold. The first one is to analyze a relatively unexplored logic style called MOS Current Mode Logic (MCML), which is a promising logic technique for the design of high performance arithmetic circuits with minimal power dissipation. The second one is to design high-speed arithmetic circuits, in particular, gigahertz-range multipliers that exploit the many attractive features of the MCML logic style. A small library of MCML gates that form the core components of the multiplier were designed and optimized for high-speed operation. The three 8-bit MCML multiplier architectures designed and simulated in TSMC 0.18 mm CMOS technology are: 3-2-tree architecture with ripple carry adder (Architecture I), 4-2-tree design with ripple carry adder (Architecture II) and 4-2-tree architecture with carry look-ahead adders (Architecture III). Architecture I operates with a maximum throughput of 4.76 GHz (4.76 Billion multiplications per second) and a latency of 3.78 ns. Architecture II has a maximum throughput of 3.3 GHz and a latency of 3 ns and Architecture III has a maximum throughput of 2 GHz and a latency of 3 ns. Architecture I achieves the highest throughput among the three multipliers, but it incurs the largest area and latency, in terms of clock cycle count as well as absolute delay. Although it is difficult to compare the speed of our multipliers with existing ones, due to the use of different technologies and different optimization goals, we believe our multipliers are among the fastest found in contemporary literature. / Master of Science

Page generated in 0.0626 seconds