• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análisis y Optimización de Circuitos Autónomos Mediante Técnicas Temporales Discretas

Palà Schönwälder, Pere 12 July 1994 (has links)
En esta tesis, las ecuaciones de equilibrio de circuitos no lineales autónomos se plantean discretizando el circuito mediante transformaciones de plano S a plano Z.Tras imponer la periodicidad de las variables resulta una formulación matricial no lineal, planteada íntegramente en el dominio temporal. Se descubre la relación de las ecuaciones así planteadas con las que resultan aplicando el método de balance armónico. Asimismo, se desarrollan expresiones analíticas para el cálculo de las derivadas parciales de las ecuaciones respecto a las muestras de las variables, respecto al periodo de oscilación y respecto a los elementos de circuito, mediante las cuales se construye en método eficaz para el análisis y la optimización de circuitos no lineales autónomos. Por otro lado, para la resolución del sistema de ecuaciones no lineales resultante con independencia de la estimación inicial, se implementan distintos métodos globalmente convergentes, entre los que figura un algoritmo basado en la difusión simulada.
2

Análisis del régimen permanente y la estabilidad de circuitos no lineales con parámetros distribuidos mediante técnicas de tiempo discreto

Bonet Dalmau, Jordi 05 July 1999 (has links)
En esta tesis se ha abordado el problema de la determinación directa del régimen permanente de circuitos no lineales autónomos con parámetros distribuidos en el dominio temporal. Con la obtención de las ecuaciones de equilibrio en el dominio transformado de Laplace, es posible escribir directamente el sistema de ecuaciones discretizado en el dominio temporal, donde las incógnitas son el periodo de oscilación y las muestras de las variables de control. Así, toda variable genérica V(s) es transformada en un vector de muestras equiespaciadas de v(t), y cada uno de los operadores, derivada y retardo, en una matriz circulante. La formulación obtenida es tal que posibilita el posterior desarrollo analítico de la sensibilidad del sistema de ecuaciones discretizado respecto al periodo de oscilación y las muestras de las variables de control, permitiendo una eficaz resolución del sistema de ecuaciones utilizando métodos globalmente convergentes basados en modificaciones del método de Newton. Además, con el método de análisis propuesto, es posible reconvertir un problema de optimización en un problema de análisis y, en consecuencia, de menor complejidad. La utilización de los aproximantes de Padé multipunto, para aproximar una línea de transmisión RLCG con elementos de parámetros concentrados y una línea de transmisión ideal, permite extender el método propuesto a los circuitos que incorporan líneas RLCG.Una vez determinadas las soluciones en régimen permanente, el siguiente problema a abordar es el estudio de la estabilidad de estas soluciones, utilizándose los resultados de este estudio para detectar bifurcaciones de Hopf, de desdoblamiento de órbitas y puntos límite. En esta tesis se describe una técnica que permite seguir a) la rama que continua tras la aparición de un punto límite y b) la rama de periodo doble existente en una bifurcación de desdoblamiento de órbitas, como se comprueba sobre el circuito de Chua retardado (TDCC),Otra aportación de esta tesis, desarrollada íntegramente en el plano teórico, ha consistido en estrechar los lazos existentes entre el estudio de la estabilidad en el dominio temporal y el dominio frecuencial. El punto de partida se encuentra en la obtención de una transformación que permite trasladar cualquier formulación de análisis del dominio frecuencial al temporal y viceversa. La extensión de estos vínculos al estudio de la estabilidad deriva en la obtención de importantes resultados. Destaca, entre éstos, la obtención de la formulación de estabilidad utilizada por el método de balance armónico (HB), partiendo de un estudio de la estabilidad realizado en el dominio temporal. Estos resultados se complementan con los obtenidos por otros autores que, partiendo de una formulación en el dominio temporal con variables de estado, obtienen una formulación en el dominio frecuencial. Con la finalidad de no avanzar en el vacío, las ideas que aparecen en esta tesis han sido siempre contrastadas, en algunos casos por más de una vía. Así, el circuito de Van der Pol se analiza con el método de HB y con el método propuesto utilizando tres formulaciones distintas. El estudio de la estabilidad de los puntos de equilibrio del TDCC se contrasta con resultados analíticos. La determinación de las regiones de funcionamiento del circuito de Van der Pol excitado y la construcción de su curva solución se comparan con los resultados obtenidos usando HB. Los resultados de análisis del TDCC con línea RLCG son contrastados con los resultados obtenidos utilizando métodos de integración. Finalmente, se realiza una validación experimental del oscilador con línea de transmisión, sobre el cual se resuelve un problema de análisis y otro de optimización. / This thesis has tackled the problem of the direct determination of the steady state analysis of autonomous circuits with transmission lines and generic nonlinear elements. With the equilibrium equations obtained in the Laplace transformed domain, it is possible to directly write the discretized system of equations in the temporal domain where the unknowns to determine are the samples of the control variables, directly in the steady state, along with the oscillation period. Thus, every generic variable V(s) is converted into a vector of equally spaced samples of v(t) and each one of the operators, derivative and delay, into a circulant matrix. The formulation obtained is such that makes it possible the subsequent analytic development of the sensibility of the system of equations discretized with respect to the oscillation period and the samples of the control variables, allowing to solve the system of equations effectively using globally convergent techniques based on modifications of the Newton method. Moreover, with the analysis method suggested here, it is possible to turn a problem of optimization into a problem of analysis and, subsequently, of a lesser complexity. Besides, the use of the multipoint Padé approximants, to approximate an RLCG transmission line with lumped elements and an ideal transmission line, makes it possible to extend the suggested method to the circuits that include RLCG transmission lines.Once the steady state solutions have been determined, the next problem to deal with is the study of the stability of these solutions. The results of this study are used to detect Hopf bifurcations, period-doubling bifurcations and limit points. In this thesis a technique is described which allows us to follow a) the branch that follows after the appearance of a limit point and b) the branch of double period that exists in a period-doubling bifurcation point, as it can be proved in the time delayed Chua's circuit (TDCC).Another contribution of this thesis, totally developed at a theoretical level, has consisted in strengthening the existing bonds between the study of the stability both in the temporal and in the frequency domain. The starting point is a transformation that makes it possible to transfer any analysis formulation from the frequency domain to the temporal one and vice versa. The extension of these links to the study of the stability leads to important results. It stands out, among them, the obtained formulation of stability used by the harmonic balance (HB) method, starting from a stability study made in the temporal domain. These results complement each other with those obtained by other authors who, starting from a formulation in the temporal domain with state variables, obtain a formulation in the frequency domain. With the purpose of validating the ideas that appear in this thesis, these have always been contrasted, in some cases in more than one way. Thus, the Van der Pol oscillator is analyzed with the HB method and with the method suggested here using three different formulations. The study of the stability of the equilibrium points of the TDCC is contrasted with analytic results. The determination of the working regions of the excited Van der Pol oscillator and the construction of its solution curve is compared with the results obtained using HB. The results of the analysis of the TDCC with RLCG line are contrasted with those obtained using integration techniques. Finally, an experimental validation of an oscillator with transmission line is made, in which a problem of analysis and another one of optimization are solved.

Page generated in 0.0493 seconds