• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Abflußentwicklung in Teileinzugsgebieten des Rheins : Simulationen für den Ist-Zustand und für Klimaszenarien / Development of runoff in subcatchments of the River Rhine : simulations of the current state and for climate change scenarios

Schwandt, Daniel January 2003 (has links)
Die vorliegende Arbeit 'Abflu&szlig;entwicklung in Teileinzugsgebieten des Rheins - Simulationen f&uuml;r den Ist-Zustand und f&uuml;r Klimaszenarien' untersucht Auswirkungen m&ouml;glicher zuk&uuml;nftiger Klima&auml;nderungen auf das Abflu&szlig;geschehen in ausgew&auml;hlten, durch Mittelgebirge gepr&auml;gten Teileinzugsgebieten des Rheins: Mosel (bis Pegel Cochem); Sieg (bis Pegel Menden 1) und Main (bis Pegel Kemmern).<br><br>In einem ersten Schritt werden unter Verwendung des hydrologischen Modells HBV-D wichtige Modellprozesse entsprechend der Einzugsgebietscharakteristik parametrisiert und ein Abbild der Gebietshydrologie erzeugt, das mit Zeitreihen gemessener Tageswerte (Temperatur, Niederschlag) eine Zeitreihe der Pegeldurchfl&uuml;sse simulieren kann. Die G&uuml;te der Simulation des Ist-Zustandes (Standard-Me&szlig;zeitraum 1.1.1961-31.12.1999) ist f&uuml;r die Kalibrierungs- und Validierungszeitr&auml;ume in allen Untersuchungsgebieten gut bis sehr gut.<br>Zur Erleichterung der umfangreichen, zeitaufwendigen einzugsgebietsbezogenen Datenaufbereitung f&uuml;r das hydrologische Modell HBV-D wurde eine Arbeitsumgebung auf Basis von Programmerweiterungen des Geoinformationssystems ArcView und zus&auml;tzlichen Hilfsprogrammen entwickelt. Die Arbeitsumgebung HBV-Params enth&auml;lt eine graphische Benutzeroberfl&auml;che und r&auml;umt sowohl erfahrenen Hydrologen als auch hydrologisch geschulten Anwendern, z.B. Studenten der Vertiefungsrichtung Hydrologie, Flexibilit&auml;t und vollst&auml;ndige Kontrolle bei der Ableitung von Parameterwerten und der Editierung von Parameter- und Steuerdateien ein. Somit ist HBV-D im Gegensatz zu Vorl&auml;uferversionen mit rudiment&auml;ren Arbeitsumgebungen auch au&szlig;erhalb der Forschung f&uuml;r Lehr- und &Uuml;bungszwecke einsetzbar.<br><br>In einem zweiten Schritt werden Gebietsniederschlagssummen, Gebietstemperaturen und simulierte Mittelwerte des Durchflusses (MQ) des Ist-Zustandes mit den Zust&auml;nden zweier Klimaszenarien f&uuml;r den Szenarienzeitraum 100 Jahre sp&auml;ter (2061-2099) verglichen. Die Klimaszenarien beruhen auf simulierten Zirkulationsmustern je eines Modellaufes zweier Globaler Zirkulationsmodelle (GCM), die mit einem statistischen Regionalisierungsverfahren in Tageswertszenarien (Temperatur, Niederschlag) an Me&szlig;stationen in den Untersuchungsgebieten &uuml;berf&uuml;hrt wurden und als Eingangsdaten des hydrologischen Modells verwendet werden.<br>F&uuml;r die zweite H&auml;lfte des 21. Jahrhunderts weisen beide regionalisierten Klimaszenarien eine Zunahme der Jahresmittel der Gebietstemperatur sowie eine Zunahme der Jahressummen der Gebietsniederschl&auml;ge auf, die mit einer hohen Variabilit&auml;t einhergeht. Eine Betrachtung der saisonalen (monatlichen) &Auml;nderungsbetr&auml;ge von Temperatur, Niederschlag und mittlerem Durchflu&szlig; zwischen Szenarienzeitraum (2061-2099) und Ist-Zustand ergibt in allen Untersuchungsgebieten eine Temperaturzunahme (h&ouml;her im Sommer als im Winter) und eine generelle Zunahme der Niederschlagssummen (mit starken Schwankungen zwischen den Einzelmonaten), die bei der hydrologischen Simulation zu deutlich h&ouml;heren mittleren Durchfl&uuml;ssen von November bis M&auml;rz und leicht erh&ouml;hten mittleren Durchfl&uuml;ssen in den restlichen Monaten f&uuml;hren. Die St&auml;rke der Durchflu&szlig;erh&ouml;hung ist nach den individuellen Klimaszenarien unterschiedlich und im Sommer- bzw. Winterhalbjahr gegenl&auml;ufig ausgepr&auml;gt. Hauptursache f&uuml;r die simulierte starke Zunahme der mittleren Durchfl&uuml;sse im Winterhalbjahr ist die trotz Temperaturerh&ouml;hung der Klimaszenarien winterlich niedrige Evapotranspiration, so da&szlig; erh&ouml;hte Niederschl&auml;ge direkt in erh&ouml;hten Durchflu&szlig; transformiert werden k&ouml;nnen.<br>Der Vergleich der Untersuchungsgebiete zeigt in Einzelmonaten von West nach Ost abnehmende &Auml;nderungsbetr&auml;ge der Niederschlagssummen, die als Hinweis auf die Bedeutung der Kontinentalit&auml;tseinfl&uuml;sse auch unter ge&auml;nderten klimatischen Bedingungen in S&uuml;dwestdeutschland aufgefa&szlig;t werden k&ouml;nnten.<br>Aus den regionalisierten Klimaszenarien werden &Auml;nderungsbetr&auml;ge f&uuml;r die Modulation gemessener Zeitreihen mittels synthetischer Szenarien abgeleitet, die mit einem geringen Rechenaufwand in hydrologische Modellantworten &uuml;berf&uuml;hrt werden k&ouml;nnen. Die direkte Ableitung synthetischer Szenarien aus GCM-Ergebniswerten (bodennahe Temperatur und Gesamtniederschlag) an einzelnen GCM-Gitterpunkten erbrachte unbefriedigende Ergebnisse.<br>Ob, in welcher H&ouml;he und zeitlichen Verteilung die in den (synthetischen) Szenarien verwendeten Niederschlags- und Temperatur&auml;nderungen eintreten werden, kann nur die Zukunft zeigen. Eine Absch&auml;tzung, wie sich die Abflu&szlig;verh&auml;ltnisse und insbesondere die mittleren Durchfl&uuml;sse der Untersuchungsgebiete bei m&ouml;glichen &Auml;nderungen entwickeln w&uuml;rden, kann jedoch heute schon vorgenommen werden. <br><br>Simulationen auf Szenariogrundlagen sind ein Weg, unbekannte zuk&uuml;nftige Randbedingungen sowie regionale Auswirkungen m&ouml;glicher &Auml;nderungen des Klimasystems ausschnittsweise abzusch&auml;tzen und entsprechende Risikominderungsstrategien zu entwickeln. Jegliche Modellierung und Simulation nat&uuml;rlicher Systeme ist jedoch mit betr&auml;chtlichen Unsicherheiten verkn&uuml;pft. Vergleichsweise gro&szlig;e Unsicherheiten sind mit der zuk&uuml;nftigen Entwicklung des sozio&ouml;konomischen Systems und der Komplexit&auml;t des Klimasystems verbunden. Weiterhin haben Unsicherheiten der einzelnen Modellbausteine der Modellkette Emissionsszenarien/Gaszyklusmodelle - Globale Zirkulationsmodelle/Regionalisierung - hydrologisches Modell, die eine Kaskade der Unsicherheiten ergeben, neben Datenunsicherheiten bei der Erfassung hydrometeorologischer Me&szlig;gr&ouml;&szlig;en einen erheblichen Einflu&szlig; auf die Vertrauensw&uuml;rdigkeit der Simulationsergebnisse, die als ein dargestellter Wert eines Ergebnisbandes zu interpretieren sind.<br><br>Der Einsatz <br>(1) robuster hydrologischer Modelle, die insbesondere temperaturbeeinflu&szlig;te Prozesse ad&auml;quat beschreiben,<br>(2) die Verwendung langer Zeitreihen (wenigsten 30 Jahre) von Me&szlig;werten und<br>(3) die gleichzeitige vergleichende Betrachtung von Klimaszenarien, die auf unterschiedlichen GCMs beruhen (und wenn m&ouml;glich, verschiedene Emissionsszenarien ber&uuml;cksichtigen),<br>sollte aus Gr&uuml;nden der wissenschaftlichen Sorgfalt, aber auch der besseren Vergleichbarkeit der Ergebnisse von Regionalstudien im noch jungen Forschungsfeld der Klimafolgenforschung beachtet werden. / This thesis 'Development of runoff in subcatchments of the River Rhine - simulations of the current state and for climate change scenarios' investigates the impacts of possible future climate changes on runoff and runoff regime in selected subcatchments of the River Rhine. The regional climate in the selected subcatchments Mosel (up to gauge Cochem), Sieg (gauge Menden 1) and Main (gauge Kemmern) is affected by the middle mountain ranges.<br><br>In a first step, important model processes are parameterized according to catchment characteristics. A representation of the regional hydrology is then produced by using the hydrological model HBV-D. Based on time series of daily measurements (temperature, precipitation) at stations within the catchment, this representation can be used to realistically simulate time series of runoff and discharge. <br>In all examined areas, the quality of simulations of the calibration and validation periods for the current state (standard period of measurements 01/01/1961-12/31/1999) can be regarded as good to excellent. <br>To aid the catchment-specific, extensive and time-consuming data processing, a working environment for the hydrological model HBV-D has been developed. It is based on program extensions of the geographical information system ArcView and further programs. The working environment HBV-Params contains a graphical interface that gives both experienced hydrologists and students full control and enables them to flexibly derive parameter values and edit parameter and control files. In contrast to previous versions with only rudimentary working environments, HBV-D can therefore be utilized for research as well as for educational purposes. <br><br>In a second step, the current states of areal precipitation, areal temperature and simulated mean discharge (MQ) are compared to the corresponding states for two scenarios of future climate changes (100 years later, 2061-2099). These scenarios are based on simulated global circulations of one model run for each of two global circulation models (GCM). These global circulations are regionalized (downscaled) using a statistical approach into scenario time series of daily values (temperature, precipitation - input for the hydrological model) at control stations within the individual catchments. <br>For the second half of the 21st century, both regionalized climate change scenarios indicate increases in the mean annual areal temperature and mean annual sum of precipitation, along with a high variability of the latter. The seasonal (monthly) changes in temperature, precipitation and mean discharge between scenario state (2061-2099) and current state indicate increases in temperature (higher in summer than in winter) as well as a general increase in precipitation sums (strong fluctuations between individual months). In the hydrological simulations for all investigated catchments, this results in considerably higher mean discharges from November to March and small increases in mean discharge for the other months. The magnitude of the increases in discharge depends on the individual climate change scenario, one showing higher increases than the other during the summer half-year and vice versa for the winter half-year. The main reason for the simulated strong increase in mean discharge during winter half-year is, in spite of higher temperatures, the still relatively low evapotranspiration which allows higher precipitation to be directly transformed into higher discharges. <br>The comparison of the investigated catchments shows decreasing amounts of changes in the sum of precipitation from West to East in individual months. This indicates the importance of continentality under changed climatic conditions in Southwest Germany. <br>For the modification of measured time series (temperature, precipitation), which can be easily converted as synthetic scenarios into simulated hydrological results, amounts of change are derived from regionalized (downscaled) climate change scenarios. The derivation of synthetic scenarios directly from GCM output at individual GCM gridpoints yielded unsatisfactory results. <br>Only the future itself can show whether the timing and amount of changes in temperature and precipitation used in (synthetic) climate change scenarios come close to reality. An assessment of possible developments in runoff regime and specifically mean discharge under possible changed climatic conditions in the investigated catchments is already feasible today. <br><br>Simulations based on scenarios are one way to establish unknown future boundary conditions for the estimation of regional impacts of possible changes of the climate system. Nevertheless, all types of modeling and simulation of natural systems are linked with uncertainties. Rather large uncertainties persist regarding the future development of the socio-economic system and the complexity of the climate system and earth system. Furthermore, besides data uncertainties associated with the measurement of hydro-meteorological values, uncertainties associated with individual components of the model chain emission scenarios/gas cycle model - GCM/regionalization - hydrological model, which form a cascade of uncertainty, have a great influence on the trustworthiness of the simulation results (which are understood as one shown value within a range of results). <br><br>In the young field of climate impact research the use of <br>(1) robust hydrological models that adequately describe temperature-dependent processes,<br>(2) long time series (at least 30 years long) of measurements, <br>(3) concurrent comparisons of climate change scenarios, based on different GCMs (and, if possible, different emission scenarios)<br>should be considered for reasons of scientific thoroughness and to improve comparability of regional impact studies.
22

Integrated modelling of Global Change impacts in the German Elbe River Basin

Hattermann, Fred Fokko January 2005 (has links)
The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality. <br><br> The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled. <br><br> The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model. <br><br> The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 %, but with high uncertainty (covering the range from -15.3 % to +14.8 %), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 %. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest. <br><br> The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones. <br><br> The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor. / Ziel der vorliegenden Arbeit ist die Untersuchung der Auswirkungen des Globalen Wandels auf den Wasserkreislauf im deutschen Teil des Elbeeinzugsgebietes. Der Fokus liegt dabei auf Wassermengen- und Wasserqualitätsproblemen. <br><br> Die Elbe liegt im Zentrum Europas im Übergangsbereich zwischen ozeanischen und kontinentalen Klimaten, wo die Wasserverfügbarkeit in den Sommermonaten den limitierenden Faktor für das Pflanzenwachstum und die landwirtschaftlichen Erträge bildet. Dies gilt insbesondere für die Lössgebiete im Lee des Harzes, wo die jährlichen Niederschläge unter 500 mm liegen. Es ist sehr wahrscheinlich, dass sich die Wassermengenprobleme in Zukunft noch verstärken werden, denn sowohl das beobachtete als auch das für die Zukunft projizierte Klima in der Region zeigen höhere Temperaturen und fallende Niederschläge, besonders im Sommer. Ein weiteres Problem ist die hohe Nährstoffbelastung der Flüsse und Seen im Elbeeinzugsgebiet. Anfang der neunziger Jahre war die Elbe eine der am stärksten belasteten Flüsse in Europa. Obwohl die Einträge besonders aus Punktquellen durch den Rückgang der Industrie und den Bau von neuen Kläranlagen seitdem gefallen sind, gelangen trotzdem noch große Nährstoffmengen aus diffusen Quellen in die Gewässer. <br><br> Die Untersuchungen wurden unter Anwendung des ökohydrologischen Modells SWIM (Soil and Water Integrated Model) durchgeführt, welches über Schnittstellen mit Klimamodellen und agroökonomischen Modellen verbunden wurde. Ein globales Szenario des Klimawandels und des landwirtschaftlichen Wandels wurde regionalisiert, um so die geänderten Randbedingungen für den Szenarienzeitraum zu erhalten. Simulationen mit SWIM dienten dann dazu, die geänderten Randbedingungen in Änderungen im Wasserhaushalt und in den landwirtschaftlichen Erträgen zu transformieren. Außerdem wurde das Langzeitverhalten von Nährstoffen im Untersuchungsgebiet modelliert. Besonderer Wert wurde dabei darauf gelegt, die Unsicherheit der Szenarienergebnisse zu quantifizieren. <br><br> Der mittlere Szenarientrend zeigt eine Reduzierung der mittleren jährlichen Niederschläge bis zum Jahre 2055 um ungefähr 1.5 %, wobei die Ergebnisse mit einer großen Unsicherheit behaftet sind: die Spannweite der Niederschläge in den Szenarienrealisationen liegt zwischen -15.3 % und +14.8 %. Die Erwärmung unter Szenarienbedingungen mit ungefähr 1.4 K ist weniger unsicher. Diese relativ geringen Änderungen habe starke Auswirkungen auf den Wasserhaushalt im Elbegebiet: durch die steigenden Temperaturen wird die Vegetationszeit verlängert, und die Niedrigabflussperiode im Sommer wird sich in den Herbst ausdehnen. Insgesamt wird unter dem mittleren Szenarientrend die Wasserverfügbarkeit um ca. 15 % abnehmen. Außerdem werden sich durch die steigenden Temperaturen die Anbaubedingungen für wärmeliebende Ackerfrüchte in der Landwirtschaft verbessern. Die Unsicherheit des Klimatrends ist dort am größten, wo auch die lokalen Änderungen am größten sind. <br><br> Die Simulationsergebnisse für das Nuthe-Teileinzugsgebiet der Elbe zeigen, das Retentionsprozesse im Untergrund und in den Feucht- und Auengebieten einen starken Einfluss auf die Wasserqualität und die Nitratkonzentration der Oberflächengewässer haben, da sie durch ihre Lage im Einzugsgebiet eine Schnittstelle zwischen dem umliegenden Einzugsgebiet und den Flüssen und Seen bilden. Die relativ hohe Umsetzung von Nitrat im Einzugsgebiet der Nuthe kann dadurch erklärt werden, dass Nitrat eine relativ lange Aufenthaltszeit im Grundwasser (im Mittel 40 Jahre) mit einer hohen Nitratumsetzungsrate hat, und durch die guten Denitrifizierungsbedingungen in den Feucht- und Auengebieten. Dazu kommt noch, dass große Nitratmengen durch die Pflanzen in den Feuchtgebieten aus dem Grundwasser aufgenommen werden. <br><br> Zusammenfassend kann man sagen, das sich die Ökosysteme und die Gesellschaft im Elbeeinzugsgebiet unter Szenarienbedingungen auf niedrigere Wasserverfügbarkeit einstellen müssen. Die Wasserqualität wird sich grundsätzlich zwar weiter verbessern, aber aufgrund der langen Verweilzeit der Nährstoffe im Grundwasser wird dies insbesondere in den Teileinzugsgebieten, in denen die geochemischen Bedingungen für einen hohen Nährstoffumsatz nicht gegeben sind, noch relativ lange dauern.
23

A hydrologic assessment of using low impact development to mitigate the impacts of climate change in Victoria, BC, Canada

Jensen, Christopher Allen 29 August 2012 (has links)
The purpose of this study is to determine if Low Impact Development (LID) can effectively mitigate flooding under projected climate scenarios. LID relies on runoff management measures that seek to control rainwater volume at the source by reducing imperviousness and retaining, infiltrating and reusing rainwater. An event-driven hydrologic/hydraulic model was developed to simulate how climate change, land use and LID scenarios may affect runoff response in the Bowker Creek watershed, a 10km2 urbanized catchment located in the area of greater Victoria, British Columbia, Canada. The first part of the study examined flood impacts for the 2050s (2040-2069) following the A2 emissions scenario. For the 24-hour, 25-year local design storm, results show that projected changes in rainfall intensity may increase flood extents by 21% to 50%. When combined with continued urbanization flood extents may increase by 50% to 72%. The second part of the study identified potential locations for three LID treatments (green roofs, rain gardens and top soil amendments) and simulated their effect on peak in-stream flow rates and flood volumes. Results indicate that full implementation of modeled LID treatments can alleviate the additional flooding that is associated with the median climate change projection for the 5-year, 10-year and 25-year rainfall events. For the projected 100-year event, the volume of overland flood flows is expected to increase by 1%. This compares favourably to the estimated 29% increase without LID. In term of individual performance, rain gardens had the greatest hydrologic effect during more frequent rainfall events; green roofs had minimal effect on runoff for all modelled events; and top soil amendments had the greatest effect during the heaviest rainfall events. The cumulative performance of LID practices depends on several variables including design specifications, level of implementation, location and site conditions. Antecedent soil moisture has a considerable influence on LID performance. The dynamic nature of soil moisture means that at times LID could meet the mitigation target and at other times it may only partially satisfy it. Future research should run continuous simulations using an appropriately long rainfall record to establish the probabilities of meeting performance requirements. In general, simulations suggest that if future heavy rainfall events follow the median climate change projection, then LID can be used to maintain or reduce flood hazard for rainfall events up to the 25-year return period. This study demonstrates that in a smaller urban watershed, LID can play an important role in reducing the flood impacts associated with climate change. / Graduate
24

Regional climate variability: concepts, changes, consequences

Hänsel, Stephanie 16 January 2024 (has links)
Europa erlebte in den letzten 20 Jahren einige sehr heiße und trockene Sommer mit regionalen Rekordwerten heißer Temperaturen oder geringer Niederschlagssummen. In anderen Jahren führten Starkregen zu Überflutungen unterschiedlichen räumlichen Ausmaßes. Da solche Extremereignisse mit vielfältigen negativen Auswirkungen auf die menschliche Gesellschaft, natürliche Ökosysteme und verschiedene Wirtschaftssektoren verbunden sind, ist die langzeitliche Veränderung in ihrem Auftreten im Rahmen der globalen Erwärmung von großer Bedeutung. Konzepte: Maßgeblich für die Qualität von Klimawandel(folgen)studien ist die Verfügbarkeit und Qualität von Daten. Daher werden Konzepte für die Sicherstellung einer zuverlässigen und vergleichbaren Datenbasis entwickelt. Für die Beschreibung der Eigenschaften eines bestimmten Ereignisses existiert eine Vielzahl an Definitionen und Indizes, was zu unterschiedlichen Ergebnissen von Studien führen kann, welche die zeitlichen Veränderungen der Charakteristik solcher Ereignisse analysieren. Die Integration einer Reihe von Indizes in einen aggregierten Index ermöglicht eine robustere Bewertung der Klimabedingungen und Trends. Die Vergleichbarkeit von Klimafolgenbewertungen verlangt zudem die Verwendung eines gemeinsamen Analyserahmens sowie abgestimmter Datensätze (Beobachtungsdaten, Klimaprojektionen) und Methoden (z.B. Untersuchungszeiträume, Ensemble-Ansatz, Qualitätsbewertung, Korrekturalgorithmen, Impactmodelle und -indizes, Elemente der Klimafolgen- oder Risikoanalyse). Trends: Sommerliche Trockenheit hat über weiten Teilen Europas – mit Ausnahme des Nordens – zugenommen. Besonders stark zugenommen haben die Dürrebedingungen im Sommerhalbjahr für Indizes, welche die Evapotranspiration einbinden. Der reine Fokus auf den Niederschlag zur Bewertung von Dürre in verschiedenen Speichern des Wasserkreislaufs ist unzureichend. Neben dieser beobachteten Zunahme in der Sommertrockenheit, ist auch für die Intensität von Starkniederschlagsereignissen und ihrem Anteil am Gesamtniederschlag ein Anstieg über Europa zu beobachten. Verschiedene Stationen in Mitteleuropa zeigen für das Sommerhalbjahr gleichzeitige Anstiege in den Dürrebedingungen und Starkniederschlägen, was die mit solchen Niederschlagsextremen verbundenen Folgen und Risiken erhöht. Folgen: Viele Sektoren sind durch die Folgen des Klimawandels und extreme Wettereignisse negativ betroffen, so auch das Verkehrssystem. Dessen Verfügbarkeit und Leistungsfähigkeit ist von hoher Bedeutung für die Gesellschaft (Mobilität) und Wirtschaft (Waren, Transportketten). Extreme Wettereignisse wie Hitzewellen, Überschwemmungen, Dürren, Stürme und Sturmfluten können Unfälle und Staus verursachen, die Infrastrukturen beschädigen und damit Transportketten unterbrechen sowie zu Verspätungen und Ausfällen führen. Die Verkehrsträger sind dabei in unterschiedlicher Weise und Intensität betroffen. Um die Klimawandelfolgen für das Bundesverkehrssystem zu bewerten und Anpassungsbedarfe zu priorisieren wurde ein methodischer Rahmen für die Durchführung von Klimawirkungsanalysen entwickelt. Ergänzt werden diese nationalen Analysen durch Klimafolgenstudien für die UNECE-Region (UNECE: Wirtschaftskommission für Europa der Vereinten Nationen). Zielgerichtete Klimadienstleistungen, welche die Bedarfe der Anwendenden integrieren, sind eine Grundvoraussetzung für die Entwicklung praktikabler Anpassungsoptionen.:Abstract 1 Zusammenfassung 2 1. Research topic and questions addressed 3 2. Outline and structure of this thesis 6 3. Concepts – How to evaluate changes in heat, drought and wetness? 11 3.1 How to define drought? 11 3.2 How to measure changes in (extreme) temperature and precipitation? 11 3.2.1 Applying established climate indices 11 3.2.2 Developing new indices to measure drought and wetness 12 3.2.3 Assessing extreme events and their impacts 14 3.3 How to ensure good quality climate data sets? 15 3.3.1 Separating climate variability from changes in non-climatic parameters 15 3.3.2 Regionalizing climate information 15 3.3.3 Adjusting biases in climate projections 16 3.4 How to ensure comparable results of climate impact assessments? 17 3.4.1 Agreeing on common assumptions and scenarios 17 3.4.2 Applying an ensemble analysis approach 17 3.4.3 Implementing a common analysis framework for impact assessment 18 4. Changes – Which variations are seen in the regional climate? 20 4.1 Variations and changes in the average climate – temperature and precipitation 20 4.1.1 Changes in wet and dry periods over Europe 20 4.1.2 Observed and projected temperature and precipitation trends over Germany 21 4.1.3 Observed climatic changes in North-eastern Brazil (NEB) 21 4.1.4 Observed precipitation variations in the Palestinian territories and surrounding areas 22 4.2 Extreme weather and climate events: spatio-temporal variations and trends 22 4.2.1 Increases in temperature extremes and heatwaves 22 4.2.2 Characteristics of and changes in heavy precipitation 23 4.2.3 Temporal variations in meteorological drought conditions 26 4.2.4 Drought and heavy precipitation 28 4.3 Characterising selected record hot and dry summers 30 4.3.1 The five record drought summers in Europe – 1947, 2018, 2003, 1921 and 1911 30 4.3.2 The summer of 2018 31 4.3.3 The summer of 2015 32 4.3.4 Recent hot and dry summers in Germany in comparison to climate projections 33 5. Consequences – Which climate impacts do we have to expect and how to adapt to them? The case of the transport system 35 5.1 Relevance of climate change considerations for the transport system 35 5.2 Networks supporting the development of climate resilient transport systems 35 5.2.1 BMDV Network of Experts on Climate Change Impacts and Adaptation 36 5.2.2 DAS core service “climate and water” 37 5.2.3 UNECE Group of Experts on Assessment of Climate Change Impacts and Adaptation for Inland Transport 38 5.3 Climate change impact analysis for the transportation sector 39 5.3.1 Methodology of the integrated climate impact assessment 39 5.3.2 Exemplary results of the exposure analysis 40 5.3.3 Integrated climate impact assessment 40 5.4 Stress testing the transport system 41 5.4.1 The stress test methodology 41 5.4.2 Exemplary results of the traffic simulations 41 5.5 Developing an adaptation framework and specific measures 42 5.5.1 Background and classification of adaptation measures 42 5.5.2 Information and consultation services 42 5.5.3 Reviewing and revising technical guidelines and standards 43 5.5.4 Structural adaptation measures 43 5.5.5 Adapting management practices of transportation infrastructure 43 5.5.6 Adapting the operative management of traffic flows 44 5.5.7 Survey results on suitable adaptation measures 44 6. Conclusions 45 6.1 Concepts 45 6.2 Changes 45 6.3 Consequences 46 7. References 48 / Over the last 20 years, some very hot and dry summers affected Europe, regionally resulting in record breaking high temperature or low precipitation values. In other years, torrential rains led to flood events at different spatial scales. Long-term changes of such extreme events within a warming world are of great relevance, as they are connected with manifold negative impacts on human society, natural ecosystems and diverse economic sectors. Concepts: The quality of climate change (impact) studies is often hampered by availability and quality of datasets. Thus, concepts for securing reliable and comparable data are developed and applied. For the description of the characteristics of a specific event a vast number of definitions and indices exists. Therefore, results on the temporal changes of event characteristics may differ between studies. By integrating a number of indices into an aggregated index, a more robust evaluation of the climate conditions and trends is facilitated. Furthermore, comparable climate impact assessments demand a common analysis framework with agreements on the data bases (observational data and climate projections) and methodologies (e.g., study periods, ensemble approach, quality assessment, correction algorithms, climate impact models and indices, elements considered in the impact or risk analysis). Changes: Summer drought conditions increased over most of Europe, except for some stations in northern Europe. Thereby, the observed increase in drought conditions during the warm part of the year is particularly pronounced for indices integrating evapotranspiration in their definition. Purely focussing on precipitation to evaluate drought conditions in the different water reservoirs does not suffice any longer. While observing increases in summer drought, the intensity of heavy precipitation events as well as their contribution to total precipitation show a positive trend over Europe, too. Several stations in Central Europe show increasing drought conditions and increasing heavy precipitation events during the summer half year at the same time, which increases the risks connected with precipitation extremes. Consequences: Climate change impacts on the transport system are studied exemplarily for the many sectors that are affected negatively by the projected changes in climate and extreme weather events. The availability and performance of the transport system are of high importance for the society (mobility) and economy (goods, transport chains). Extreme weather events such as heatwaves, flooding, droughts, and storm surges might 1) cause accidents and congestion, 2) severely damage to infrastructures and disrupt transport chains, and 3) result in delays and cancellations. Different modes of transport are affected by climate change in different ways and with different intensity. A climate impact assessment framework was defined and tested for the German Federal transport system to support the prioritization of adaptation options. Climate change impact studies for the UNECE-region (United Nations Economic Commission for Europe) complement these Federal analyses. It is shown that tar-geted climate services that integrate user requirements are key in developing feasible adaptation options.:Abstract 1 Zusammenfassung 2 1. Research topic and questions addressed 3 2. Outline and structure of this thesis 6 3. Concepts – How to evaluate changes in heat, drought and wetness? 11 3.1 How to define drought? 11 3.2 How to measure changes in (extreme) temperature and precipitation? 11 3.2.1 Applying established climate indices 11 3.2.2 Developing new indices to measure drought and wetness 12 3.2.3 Assessing extreme events and their impacts 14 3.3 How to ensure good quality climate data sets? 15 3.3.1 Separating climate variability from changes in non-climatic parameters 15 3.3.2 Regionalizing climate information 15 3.3.3 Adjusting biases in climate projections 16 3.4 How to ensure comparable results of climate impact assessments? 17 3.4.1 Agreeing on common assumptions and scenarios 17 3.4.2 Applying an ensemble analysis approach 17 3.4.3 Implementing a common analysis framework for impact assessment 18 4. Changes – Which variations are seen in the regional climate? 20 4.1 Variations and changes in the average climate – temperature and precipitation 20 4.1.1 Changes in wet and dry periods over Europe 20 4.1.2 Observed and projected temperature and precipitation trends over Germany 21 4.1.3 Observed climatic changes in North-eastern Brazil (NEB) 21 4.1.4 Observed precipitation variations in the Palestinian territories and surrounding areas 22 4.2 Extreme weather and climate events: spatio-temporal variations and trends 22 4.2.1 Increases in temperature extremes and heatwaves 22 4.2.2 Characteristics of and changes in heavy precipitation 23 4.2.3 Temporal variations in meteorological drought conditions 26 4.2.4 Drought and heavy precipitation 28 4.3 Characterising selected record hot and dry summers 30 4.3.1 The five record drought summers in Europe – 1947, 2018, 2003, 1921 and 1911 30 4.3.2 The summer of 2018 31 4.3.3 The summer of 2015 32 4.3.4 Recent hot and dry summers in Germany in comparison to climate projections 33 5. Consequences – Which climate impacts do we have to expect and how to adapt to them? The case of the transport system 35 5.1 Relevance of climate change considerations for the transport system 35 5.2 Networks supporting the development of climate resilient transport systems 35 5.2.1 BMDV Network of Experts on Climate Change Impacts and Adaptation 36 5.2.2 DAS core service “climate and water” 37 5.2.3 UNECE Group of Experts on Assessment of Climate Change Impacts and Adaptation for Inland Transport 38 5.3 Climate change impact analysis for the transportation sector 39 5.3.1 Methodology of the integrated climate impact assessment 39 5.3.2 Exemplary results of the exposure analysis 40 5.3.3 Integrated climate impact assessment 40 5.4 Stress testing the transport system 41 5.4.1 The stress test methodology 41 5.4.2 Exemplary results of the traffic simulations 41 5.5 Developing an adaptation framework and specific measures 42 5.5.1 Background and classification of adaptation measures 42 5.5.2 Information and consultation services 42 5.5.3 Reviewing and revising technical guidelines and standards 43 5.5.4 Structural adaptation measures 43 5.5.5 Adapting management practices of transportation infrastructure 43 5.5.6 Adapting the operative management of traffic flows 44 5.5.7 Survey results on suitable adaptation measures 44 6. Conclusions 45 6.1 Concepts 45 6.2 Changes 45 6.3 Consequences 46 7. References 48
25

Molecular Characterization of Light-Absorbing Components in Atmospheric Organic Aerosol

Kyla Sue Anne Siemens (18364617) 17 April 2024 (has links)
<p dir="ltr">Atmospheric organic aerosols (OA) have diverse compositions and undergo complex reactions and transformations within the atmosphere, leading to profound impacts on air quality, climate, and atmospheric chemistry. In particular, these aerosols play an important role in Earth's effective radiative forcing (ERF) through interactions with solar radiation, absorbing and scattering sunlight and terrestrial radiation. These interactions result in a warming and cooling effect on the climate, respectively. This dissertation seeks to unravel the intricate molecular characteristics of atmospheric OA, focusing specifically on its light-absorbing components, known as ‘Brown Carbon’ (BrC), and aims to comprehend its dynamic interplay within the atmosphere. The research employs state-of-the-art multi-modal mass spectrometry techniques to investigate atmospheric OA derived from the combustion of fossil fuels and biomass burning. Through a combination of controlled laboratory experiments and real-world sample analyses, these works provide molecular-level insights crucial for source apportionment and predictive modeling of OA fate. Chapter 2 details the instrumentation and data analysis methods, laying a robust foundation for subsequent chapters.</p><p dir="ltr">Chapter 3 delves into the investigation of smoldering-phase biomass burning organic aerosols (BBOA) and introduces an innovative fractionation method for high-level molecular characterization, targeted to streamline source apportionment of BBOA. This chapter also presents an extensive assessment of particle-to-gas partitioning of BBOA, providing valuable information for modeling atmospheric lifetimes and fate. In Chapter 4, a comparative analysis of BBOA from wild and agricultural fires is conducted, employing advanced molecular characterization techniques. Chapter 5 showcases the synergistic use of multi-modal mass spectrometry techniques to probe the chemical evolution of individual BBOA components. Finally, Chapter 6 examines the molecular analysis of secondary OA (SOA) generated from the photooxidation of a fossil-fuel proxy.</p><p dir="ltr">The comprehensive molecular-level studies presented contribute essential insights for climate modeling, aiding in resolving uncertainties associated with OA's impact on global ERF. The research not only challenges existing analytical methods but also introduces novel approaches for obtaining relevant information about atmospheric OA components. Overall, this work advances our understanding of the intricate dynamics of atmospheric aerosols, facilitating more accurate climate predictions and addressing uncertainties surrounding their net radiative impact.</p>
26

Impacts of Climate Change on IDF Relationships for Design of Urban Stormwater Systems

Saha, Ujjwal January 2014 (has links) (PDF)
Increasing global mean temperature or global warming has the potential to affect the hydrologic cycle. In the 21st century, according to the UN Intergovernmental Panel on Climate Change (IPCC), alterations in the frequency and magnitude of high intensity rainfall events are very likely. Increasing trend of urbanization across the globe is also noticeable, simultaneously. These changes will have a great impact on water infrastructure as well as environment in urban areas. One of the impacts may be the increase in frequency and extent of flooding. India, in the recent years, has witnessed a number of urban floods that have resulted in huge economic losses, an instance being the flooding of Mumbai in July, 2005. To prevent catastrophic damages due to floods, it has become increasingly important to understand the likely changes in extreme rainfall in future, its effect on the urban drainage system, and the measures that can be taken to prevent or reduce the damage due to floods. Reliable estimation of future design rainfall intensity accounting for uncertainties due to climate change is an important research issue. In this context, rainfall intensity-duration-frequency (IDF) relationships are one of the most extensively used hydrologic tools in planning, design and operation of various drainage related infrastructures in urban areas. There is, thus, a need for a study that investigates the potential effects of climate change on IDF relationships. The main aim of the research reported in this thesis is to investigate the effect of climate change on Intensity-Duration-Frequency relationship in an urban area. The rainfall in Bangalore City is used as a case study to demonstrate the applications of the methodologies developed in the research Ahead of studying the future changes, it is essential to investigate the signature of changes in the observed hydrological and climatological data series. Initially, the yearly mean temperature records are studied to find out the signature of global warming. It is observed that the temperature of Bangalore City shows an evidence of warming trend at a statistical confidence level of 99.9 %, and that warming effect is visible in terms of increase of minimum temperature at a rate higher than that of maximum temperature. Interdependence studies between temperature and extreme rainfall reveal that up to a certain range, increase in temperature intensifies short term rainfall intensities at a rate more than the average rainfall. From these two findings, it is clear that short duration rainfall intensities may intensify in the future due to global warming and urban heat island effect. The possible urbanization signatures in the extreme rainfall in terms of intensification in the evening and weekends are also inferred, although inconclusively. The IDF relationships are developed with historical data and changes in the long term daily rainfall extreme characteristics are studied. Multidecedal oscillations in the daily rainfall extreme series are also examined. Further, non-parametric trend analyses of various indices of extreme rainfall are carried out to confirm that there is a trend of increase in extreme rainfall amount and frequency, and therefore it is essential to the study the effects of climate change on the IDF relationships of the Bangalore City. Estimation of future changes in rainfall at hydrological scale generally relies on simulations of future climate provided by Global Climate Models (GCMs). Due to spatial and temporal resolution mismatch, GCM results need to be downscaled to get the information at station scale and at time resolutions necessary in the context of urban flooding. The downscaling of extreme rainfall characteristics in an urban station scale pose the following challenges: (1) downscaling methodology should be efficient enough to simulate rainfall at the tail of rainfall distribution (e.g., annual maximum rainfall), (2) downscaling at hourly or up to a few minutes temporal resolution is required, and (3) various uncertainties such as GCM uncertainties, future scenario uncertainties and uncertainties due to various statistical methodologies need to be addressed. For overcoming the first challenge, a stochastic rainfall generator is developed for spatial downscaling of GCM precipitation flux information to station scale to get the daily annual maximum rainfall series (AMRS). Although Regional Climate Models (RCMs) are meant to simulate precipitation at regional scales, they fail to simulate extreme events accurately. Transfer function based methods and weather typing techniques are also generally inefficient in simulating the extreme events. Due to its stochastic nature, rainfall generator is better suited for extreme event generation. An algorithm for stochastic simulation of rainfall, which simulates both the mean and extreme rainfall satisfactorily, is developed in the thesis and used for future projection of rainfall by perturbing the parameters of the rainfall generator for the future time periods. In this study, instead of using the customary two states (rain/dry) Markov chain, a three state hybrid Markov chain is developed. The three states used in the Markov chain are: dry day, moderate rain day and heavy rain day. The model first decides whether a day is dry or rainy, like the traditional weather generator (WGEN) using two transition probabilities, probabilities of a rain day following a dry day (P01), and a rain day following a rain day (P11). Then, the state of a rain day is further classified as a moderate rain day or a heavy rain day. For this purpose, rainfall above 90th percentile value of the non-zero precipitation distribution is termed as a heavy rain day. The state of a day is assigned based on transition probabilities (probabilities of a rain day following a dry day (P01), and a rain day following a rain day (P11)) and a uniform random number. The rainfall amount is generated by Monte Carlo method for the moderate and heavy rain days separately. Two different gamma distributions are fitted for the moderate and heavy rain days. Segregating the rain days into two different classes improves the process of generation of extreme rainfall. For overcoming the second challenge, i.e. requirement of temporal scales, the daily scale IDF ordinates are disaggregated into hourly and sub-hourly durations. Disaggregating continuous rainfall time series at sub-hourly scale requires continuous rainfall data at a fine scale (15 minute), which is not available for most of the Indian rain gauge stations. Hence, scale invariance properties of extreme rainfall time series over various rainfall durations are investigated through scaling behavior of the non-central moments (NCMs) of generalized extreme value (GEV) distribution. The scale invariance properties of extreme rainfall time series are then used to disaggregate the distributional properties of daily rainfall to hourly and sub-hourly scale. Assuming the scaling relationships as stationary, future sub-hourly and hourly IDF relationships are developed. Uncertainties associated with the climate change impacts arise due to existence of several GCMs developed by different institutes across the globe, climate simulations available for different representative concentration pathway (RCP) scenarios, and the diverse statistical techniques available for downscaling. Downscaled output from a single GCM with a single emission scenario represents only a single trajectory of all possible future climate realizations and cannot be representative of the full extent of climate change. Therefore, a comprehensive assessment of future projections should use the collective information from an ensemble of GCM simulations. In this study, 26 different GCMs and 4 RCP scenarios are taken into account to come up with a range of IDF curves at different future time periods. Reliability ensemble averaging (REA) method is used for obtaining weighted average from the ensemble of projections. Scenario uncertainty is not addressed in this study. Two different downscaling techniques (viz., delta change and stochastic rainfall generator) are used to assess the uncertainty due to downscaling techniques. From the results, it can be concluded that the delta change method under-estimated the extreme rainfall compared to the rainfall generator approach. This study also confirms that the delta change method is not suitable for impact studies related to changes in extreme events, similar to some earlier studies. Thus, mean IDF relationships for three different future extreme events, similar to some earlier studies. Thus, mean IDF relationships for three different future periods and four RCP scenarios are simulated using rainfall generator, scaling GEV method, and REA method. The results suggest that the shorter duration rainfall will invigorate more due to climate change. The change is likely to be in the range of 20% to 80%, in the rainfall intensities across all durations. Finally, future projected rainfall intensities are used to investigate the possible impact of climate change in the existing drainage system of the Challaghatta valley in the Bangalore City by running the Storm Water Management Model (SWMM) for historical period, and the best and the worst case scenario for three future time period of 2021–2050, 2051–2080 and 2071–2100. The results indicate that the existing drainage is inadequate for current condition as well as for future scenarios. The number of nodes flooded will increase as the time period increases, and a huge change in runoff volume is projected. The modifications of the drainage system are suggested by providing storage pond for storing the excess high speed runoff in order to restrict the width of the drain The main research contribution of this thesis thus comes from an analysis of trends of extreme rainfall in an urban area followed by projecting changes in the IDF relationships under climate change scenarios and quantifying uncertainties in the projections.

Page generated in 0.0923 seconds