1 |
Atmospheric Response to Orbital Forcing and 20th Century Sea Surface TemperaturesMantsis, Damianos F 24 June 2011 (has links)
This study investigates modes of atmospheric variability in response to changes in Earth's orbit and changes in 20th century sea surface temperatures (SST). The orbital forcing is manifested by a change in obliquity and precession, and changes the distribution of the top-of-atmosphere insolation. A smaller obliquity reduces the the annual insolation that the poles receive and increases the annual insolation in the tropics. As the meridional insolation gradient increases, the zonal mean atmospheric-ocean circulation increases. The resulting climate also has a reduced global mean temperature due to the effect of climate feedbacks. This cooling can be attributed to a reduced lapse rate, increased cloud fraction. reduced water vapor in the atmosphere, and an increase in the surface albedo. A change in the precession, as the perihelion shifts from the winter to the summer solstice, causes a strengthening as well as an expansion of the N. Pacific summer subtropical anticyclone. This anticyclonic anomaly can be attributed to the weakening of the baroclinic activity, but also represents the circulation response to remote and local diabatic heating. The remote diabatic heating is associated with monsoonal activity in the SE Asia and North Africa. Regarding the 20th century SST forcing, it is represented by a multidecadal variability in the inter-hemispheric SST difference. This change in the SST causes a latitudinal shift in the ascending branch of the Hadley cell and precipitation in the tropics, as well as an increase in the atmospheric meridional heat transport from the warmer to the colder hemisphere.
|
2 |
Investigating climate feedbacks across forcing magnitudes and time scales using the radiative kernel techniqueJonko, Alexandra 06 September 2012 (has links)
Radiative feedbacks associated with changes in water vapor, temperature, surface albedo and clouds remain a major source of uncertainty in our understanding of climate's response to anthropogenic forcing. In this dissertation climate model data is used to investigate variations in feedbacks that result from changing CO��� forcing and the time scales on which feedbacks operate, focusing on the applicability of one method in particular, the radiative kernel technique, to these problems. This computationally efficient technique uses a uniform, incremental change in feedback variables to infer top-of-atmosphere (TOA) radiative flux changes.
The first chapters explore the suitability of the linear radiative kernel technique for large forcing scenarios. We show that kernels based on the present-day climate misestimate TOA flux changes for large perturbations, translating into biased feedback estimates. We address this issue by calculating additional kernels based on a large forcing climate state with eight times present day CO��� concentrations. Differences between these and the present-day kernels result from added absorption of radiation by CO��� and water vapor, and increased longwave emission due to higher temperatures. Combining present-day and 8xCO��� kernels leads to significant improvement in the approximation of TOA flux changes and accuracy of feedback estimates. While climate sensitivity remains constant with increasing CO��� forcing when the inaccurate present-day kernels are used, sensitivity increases significantly when new kernels are used.
Comparison of feedbacks in climate models with observations is one way towards understanding the disagreement among models. However, climate change feedbacks operate on time scales that are too long to be evaluated from the observational record. Rather, short-term proxies for greenhouse-gas-driven warming are often used to compute feedbacks from observations. The third chapter of this dissertation examines links between the seasonal cycle and global warming using pattern correlations of spatial distribution of feedback variables and radiative flux changes. We find strong correlations between time scales for changes in surface temperature and climate variables, but not for TOA flux anomalies, reaffirming conclusions drawn in previous work. Finally, we investigate the fitness of the radiative kernel technique for evaluation of short-term feedbacks in a comparison with the more accurate, but more computationally expensive, partial radiative perturbations. / Graduation date: 2013
|
3 |
Satellite-based analysis of clouds and radiation properties of different vegetation types in the Brazilian Amazon regionSchneider, Nadine, Quaas, Johannes, Claussen, Martin, Reick, Christian 26 November 2015 (has links) (PDF)
Land-use changes impact the energy balance of the Earth system, and feedbacks in the Earth system can dampen or amplify this perturbation. We analyze here from satellite data the response of clouds and subsequently radiation to a change of land use for the example of deforestation in the Amazon Basin. In this region, the characteristics
of different cloud types over two vegetation types (forest and crop-/grasslands) were calculated for a time period of five
years by using satellite data from the instruments MODIS and CERES. The cloud types are defined according to height, optical thickness, and fraction of cloud cover. For calculating the radiative forcing caused by deforestation, the dependency of spatial and temporal averages for the reflected shortwave and outgoing longwave radiation of the top of
the atmosphere on vegetation types were determined as well. The results show distinct differences in cloud cover and radiative forcing over crop-/grasslands and forests for the two vegetation regimes, implying a potentially significant positive cloud feedback to deforestation.
|
4 |
Satellite-based analysis of clouds and radiation properties of different vegetation types in the Brazilian Amazon regionSchneider, Nadine, Quaas, Johannes, Claussen, Martin, Reick, Christian January 2013 (has links)
Land-use changes impact the energy balance of the Earth system, and feedbacks in the Earth system can dampen or amplify this perturbation. We analyze here from satellite data the response of clouds and subsequently radiation to a change of land use for the example of deforestation in the Amazon Basin. In this region, the characteristics
of different cloud types over two vegetation types (forest and crop-/grasslands) were calculated for a time period of five
years by using satellite data from the instruments MODIS and CERES. The cloud types are defined according to height, optical thickness, and fraction of cloud cover. For calculating the radiative forcing caused by deforestation, the dependency of spatial and temporal averages for the reflected shortwave and outgoing longwave radiation of the top of
the atmosphere on vegetation types were determined as well. The results show distinct differences in cloud cover and radiative forcing over crop-/grasslands and forests for the two vegetation regimes, implying a potentially significant positive cloud feedback to deforestation.
|
5 |
Effect of experimental warming and assembly history on wood decompositionHagos, Saba January 2020 (has links)
Sammanfattning: Wood decay fungi are the main decomposer of lignocellulose material stored in wood. Thus, all factors that affect them could affect their ecological function. This in return, may affect ecosystem functioning in terms of altered carbon emissions from dead wood. Increased temperature is one of the main factors influencing fungal decay. The aim of the current study is to explore the effects of temperature and assembly history (order of species arrival), two important regulators of fungal communities, on wood decomposition. I conducted a microcosm experiment with two temperature treatments and eight assembly histories where each species was allowed to colonize the wood two weeks ahead of the rest of the species. The temperature treatments were set to mimic the effect of climate induced warming. Therefore, I had one treatment with relatively high temperature, representing the expected temperatures year 2100 given the current emission trends of the northern inland of Sweden, and another treatment representing the current normal temperature (1961-1990). The temperature treatments had an average difference of 5°C. In order to see how climate induced warming and fungal assembly history influenced decomposition, I measured and analyzed initial fungal growth, fungal respiration and wood weight loss. Both temperature and assembly history had a significant influence on fungal growth, fungal respiration and wood decomposition. There was also strong interaction between the two factors. The average increase in mass loss under elevated temperature was 19% compared to 14% under normal temperature. The highest mass loss (25%) was when Phlebia centrifuga was the initial species under elevated temperature and the lowest (12%) was when Climacocystis borealis was initial species under normal temperature. All assembly histories had higher mass loss under elevated temperature, but the magnitude varied. For example, when C. borealis was the initial species, mass loss increased by 60% compared to only 7% when Antrodia sinuosa was the initial species. Six out of eight assembly histories had higher CO2 under elevated temperature, with the highest increase (88%) in P. centrifuga histories and the lowest (7%) in C. borealis histories. Even if the results need to be confirmed by field studies, my data illustrates that climate induced warming probably results in higher fungal respiration and deadwood decomposition and that the magnitude of this effect depends on fungal assembly history.
|
6 |
Constraining and predicting Arctic amplification and relevant climate feedbacksLinke, Olivia 21 May 2024 (has links)
The Arctic region shows a particularly high susceptibility to climate change, which historically manifests in an amplification of the near-surface warming in the Arctic relative to the global mean. This Arctic amplification (AA) has impacts on the climate system also beyond the northern polar regions, which highlights the importance to adequately represent it in numerical models. While state-of-the-art climate models widely agree on the presence of AA, they simulate a large spread in the magnitude of Arctic-amplified warming.
This thesis addresses the need to evaluate the performance of global climate models in projecting AA and its most important drivers. For the latter, the focus is on the three amplifying climate feedbacks (ACFs) that largely drive the meridional warming structure leading to AA. The ACFs include the sea-ice-albedo feedback (SIAF), the Planck feedback, and the lapse-rate feedback (LRF). These feedbacks arise from the relevant changes in Arctic sea ice, near-surface temperatures, and the deviation from the near-surface temperature change through the atmosphere, respectively.
In the thesis, two observational constraints are presented to narrow the range of climate models of the sixth Coupled Model Intercomparison Project (CMIP6) regarding their projection of AA and the ACFs in both past and future climate. While for the past, the models representation of near-surface processes can often be directly evaluated against observations, it is particularly the LRF that is difficult to constrain as it incorporates the entire atmospheric warming structure. As a consequence, the historical constraint focuses on the LRF, while the future constraint gives a prediction range for the evolution of AA and all three ACFs through the 21st century.
The main results are highlighted in the view of the changing atmospheric energy budget (AEB) of the Arctic under anthropogenic climate forcing. The AEB provides a framework to address Arctic climate change at large scales, and further helps to decide on the relevant aspects that provide appropriate metrics for constraining both AA and the ACFs. In other words, the perspective of a changing Arctic AEB highlights important alterations of the energetics under climate change, that further link to changes in climate aspects that partly explain the inter-model spread in simulated AA and the ACFs.
The main results of the cumulative thesis are formulated on the basis of three published research papers, papers I, II, and III.
Paper I addresses the Arctic AEB which is typically characterised by an equilibrium between net radiative cooling and advective heating, and mostly an absence of convection. This radiative-advective equilibrium (RAE) approximates well the energy budget and thermal structure of the Arctic atmosphere. The main outcome of paper I is that with continuous warming as simulated by CMIP6 models in an idealised setup, a deviation from the RAE increasingly develops, resulting from sea ice retreat and increased ocean-to-atmosphere heat fluxes. These changes are further concomitant with a depletion of the typical surface-based temperature inversion and a decrease in advective heating, which is byword for the convergence of atmospheric energy transport in the Arctic.
Since the RAE currently explains much of the basic thermal structure of the Arctic atmosphere, those changes have the potential to further mediate the LRF.
Paper II builds on paper I and evaluates the performance of climate models in representing the key aspects of the Arctic LRF in CMIP6 historical simulations that have the best estimates of the transient climate forcings during the observational period.
In particular it is found that CMIP6 models that realistically simulate both the lower thermal structure of the atmosphere and the poleward atmospheric energy transport are more trustworthy in informing about the LRF and how much it contributed to Arctic warming during the past few decades. The evaluation is based on observations of surface-based temperature inversions during the year-long Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, and atmospheric energy transport convergence computations from reanalyses.
Paper III expands the constraint approach of paper II and carries out an emergent constraint (EC) on future AA and the ACFs that further elaborates on the physical relationships between the constraining metrics and future climate projections. Previous work has highlighted that parts of the inter-model spread in simulated AA is explained through the spread in contemporaneous sea ice loss across climate models.
The thesis confirms this link by showing that CMIP6 models with a stronger climatological sea ice loss project a stronger AA in the future under the assumption of a high emission scenario.
By further linking the degree of future ice loss to the current-climate sea ice amount in CMIP6 models, paper III facilitates an EC on the future evolution of AA and the ACFs. In particular, models with a lower contemporary sea ice amount project a larger magnitude of AA by setting the stage for stronger climatological ice loss and near-surface warming, linking to the relevant ACFs.
From the corresponding prediction it is evident that AA is expected to continue at a warming rate that is more than twice or three times larger than global-mean warming. Furthermore, the three ACFs continue to contribute to Arctic warming, with the SIAF leading the warming contribution response.
Lastly, the consideration of statistically strong and physically plausible relationships across climate models makes the EC a valuable technique to constrain climate model simulations in conjunction with observations.
This thesis highlights the potential of combining the advantages of both presented constraints: Using multiple process-relevant aspects instead of one singular metric (paper II), but considering the mechanistic couplings between these metrics and the climate projection of interest (paper III) will improve our model-evaluation techniques and further help guiding the design of future climate simulations.:Summary of the dissertation
List of papers
Author’s contribution
Supervision statement
1 Introduction
2 Research focus
3 The Arctic atmospheric energy budget
3.1 The atmospheric column model
3.2 The annual atmospheric energy budget
4 Arctic amplification and climate feedbacks
4.1 Amplifying climate feedbacks
4.2 A comment on process coupling
5 Methods and data
5.1 Energy budget equations
5.2 Quantifying Arctic amplification and climate feedbacks
5.3 Climate model data
5.3.1 CMIP6 idealised simulations
5.3.2 CMIP6 historical simulations
5.3.3 CMIP6 ssp585 simulations
5.4 Observational constraints
5.4.1 Constraint on historical Arctic lapse-rate feedback
5.4.2 Constraint on future Arctic amplification and relevant climate feedbacks
6 Results
6.1 Paper I - Deviations from the Arctic radiative-advective equilibrium under anthropogenic climate change
6.2 Paper II - Constraining the Arctic lapse-rate feedback during past decades by contemporary observations
6.3 Paper III - Constraining future Arctic amplification and the relevant climate feedbacks based on the recent sea ice climatology
7 Summary and outlook
References
Lists
Acknowledgements
Appendix A: Paper I
Appendix B: Paper II
Appendix C: Paper III
|
Page generated in 0.0529 seconds