• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 1
  • 1
  • Tagged with
  • 184
  • 157
  • 111
  • 109
  • 109
  • 107
  • 60
  • 55
  • 51
  • 49
  • 48
  • 36
  • 34
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Mechanistic Analysis of Chromatin Remodeling Enzymes: a Dissertation

Jaskelioff, Mariela 29 May 2003 (has links)
The inherently repressive nature of chromatin presents a sizeable barrier for all nuclear processes in which access to DNA is required. Therefore, eukaryotic organisms ranging from yeast to humans rely on a battery of enzymes that disrupt the chromatin structure as a means of regulating DNA transactions. These enzymes can be divided into two broad classes: those that covalently modify histone proteins, and those that actively disrupt nucleosomal structure using the free energy derived from ATP hydrolysis. The latter group, huge, multisubunit ATP-dependent chromatin remodeling factors, are emerging as a common theme in all nuclear processes in which access to DNA is essential. Although transcription is the process for which a requirement for chromatin remodeling is best documented, it is now becoming clear that other processes like replication, recombination and DNA repair rely on it as well. A growing number of ATP-dependent remodeling machines has been uncovered in the last 10 years. Although they differ in their subunit composition, organism or tissue restriction, substrate specificity, and regulating/recruiting partners, it has become increasingly evident that all ATP-dependent chromatin remodeling factors share a similar underlying mechanism. This mechanism is the subject of the studies presented in this thesis. Chromatin-remodeling factors seem to bind both the histone and DNA components of nucleosomes. From a fixed position on nucleosomes, the remodeling factors appear to translocate on the DNA, generating torsional stress on the double helix. This activity has several consequences, including the distortion of the DNA structure on the surface of the histone octamer, the disruption of histone-DNA interactions, and the mobilization of the nucleosome core with respect to the DNA. The work presented in this thesis, along with data reported by other groups, supports the hypothesis that yeast SWI/SNF chromatin remodeling complex and the recombinational repair factor, Rad54p, both employ similar mechanisms to regulate gene transcription, and facilitate homologous DNA pairing and recombination, respectively.
102

DISCOVERING A NOVEL ANTIFUNGAL TARGET IN DOWNSTREAM STEROL BIOSYNTHESIS USING A SQUALENE SYNTHASE FUNCTIONAL MOTIF

Linscott, Kristin Brooke 01 January 2017 (has links)
The sterol biosynthetic pathway is essential for growth of all eukaryotic cells and the main target of antifungal agents. The emergence of resistance to these antifungals in an already ill patient population indicates a need to develop drugs that have a broad spectrum of activity among pathogenic fungi and have minimal patient toxicity. Squalene synthase is the first committed step in the sterol pathway and has been studied intensively for development of antifungal agents. While the overall architecture of this enzyme is identical throughout eukaryotes, it was shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implies that there is a component of the fungal carboxy-terminal domain that is responsible for the complementation phenotype and that is unique to the fungal kingdom of life. To determine the role of the carboxy-terminal domain of squalene synthase in the sterol pathway, we used the yeast Saccharomyces cerevisiae with a squalene synthase knockout mutation and expressed squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. When induced, non-fungal squalene synthases could not complement the knockout mutation and instead led to the accumulation of carboxysterol intermediates, suggesting an interaction between squalene synthase and the downstream sterol C4-decarboxylase. Overexpression of a sterol C4-decarboxylase from any kingdom of life both decreased the accumulation of carboxysterol intermediates and allowed non-fungal squalene synthases to complement the squalene synthase knockout mutation. Using chimeric squalene synthases from each kingdom of life, the motif in the C-terminal domain responsible for preventing this toxicity was mapped to a kingdom-specific 26-amino acid hinge motif adjacent to the catalytic domain. Furthermore, over-expression of the carboxy-terminal domain alone containing a hinge motif from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Since this hinge region is unique to and highly conserved within each kingdom of life, this data provides evidence for the development of an antifungal therapeutic as well as for tools to develop an understanding of triterpene catalytic activity and identify similar motifs in other biosynthetic pathways.
103

The Degradation of Pharmaceutical Pollutants in Wastewater Catalyzed by Chloroperoxidase and the Construction of Chloroperoxidase H105R Mutant

He, Qinghao 30 June 2016 (has links)
Trace amounts of pharmaceuticals have been detected in water, from nanograms per liter to micrograms per liter, and have a negatively effect in the aquatic environment and an increased potential risk of drug poisoning for human and animals. In order to address the problem, drug degradation catalyzed by chloroperoxidase (CPO) has been investigated. CPO is a heme-containing glycoprotein secreted by the fungus, Caldariomyces fumago, it catalyzes two major types of oxidations, two one-electron oxidations as catalyzed by most peroxidases and two-electron oxidations which are rare for conventional peroxidases. Five common drugs from a variety of classes which were persistent in the environment have been studied. The metabolites of each drug were identified and the pathways of degradation were proposed. All of them were found to be 100% degradation efficiency in the CPO-H2O2-Cl- system which the catalyzation only required low concentration of CPO (normally nanomolar level) as well as relatively low concentration of H2O2 as cofactor. This degradation method is economic and highly efficient, the results of my experiment extensively support the hypothesis that CPO has a great potential in the environmental application. A new mutant of CPO has been constructed to investigate the role of histidine 105 in the active site of distal pocket. Histidine 105 was suggested to play an essential role in modulating the chlorination activity by forming hydrogen bond with glutamic acid 183, histidine has been replaced by arginine to generate CPO H105R mutant. The construction and transformation were a success but the protein was expressed as apoenzyme, suggesting the mutagenesis to a larger arginine residue at position105 disturbed the heme incorporation.
104

Aspects of the Innate Immune System in the Caribbean Octocoral Swiftia exserta

Menzel, Lorenzo P. 12 November 2013 (has links)
The immune systems of cnidaria are important to study for two reasons: to gain a better understanding of the evolution of immune responses, and to provide a basis to partially redress the precipitous world-wide die-offs of reef corals, some of which have been attributed to diseases and stress. Many immune responses share ancient evolutionary origins and are common across many taxa. Using Swiftia exserta, an azooxanthellate ahermatypic local octocoral, as a proxy model organism to study aspects of innate immunity in corals and cnidaria allows us to address both of the reasons listed above while not using endangered species. Utilizing a coral that does not contain symbiotic dinoflagellates (zooxanthellae) simplifies the system by restricting the source of proteins to a single genome. The lack of zooxanthellae in Swiftia exserta also allows the animal’s simple adaptation to lab settings. This study of the innate immune system of an octocoral demonstrates: 1) a novel understanding of the microanatomy of octocoral tissues; 2) that Swiftia exserta has at least two cell types that function as constitutive immunocytes; and 3) the presence of two potent antibacterial peptides, one with a mass between 4694 and 4696 Daltons. My report on the microanatomy of the coenenchyme, the tissue between polyps, advances the understanding of octocoral anatomy by systematically comparing histology sections with electron micrographs. Applying various techniques of enzyme histochemistry, coupled with cryo-preservation, to the coenenchyme I have identified at least two populations of constitutive immunocytes in Swiftia exserta. Two antibacterial proteins are identified by protein purification and antimicrobial testing techniques. The more active protein is partially characterized with modern hyphenated mass-spectrometry techniques, and can be the focus of future study.
105

Overcoming Toxicity from Transgene Overexpression Through Vector Design in AAV Gene Therapy for GM2 Gangliosidoses

Golebiowski, Diane L. 01 September 2016 (has links)
GM2 gangliosidoses are a family of lysosomal storage disorders that include both Tay-Sachs and Sandhoff diseases. These disorders result from deficiencies in the lysosomal enzyme β-N-acetylhexosaminidase (HexA). Impairment of HexA leads to accumulation of its substrate, GM2 ganglioside, in cells resulting in cellular dysfunction and death. There is currently no treatment for GM2 gangliosidoses. Patients primarily present with neurological dysfunction and degeneration. Here we developed a central nervous system gene therapy through direct injection that leads to long-term survival in the Sandhoff disease mouse model. We deliver an equal mixture of AAVrh8 vectors that encode for the two subunits (α and β) of HexA into the thalami and lateral ventricle. This strategy has also been shown to be safe and effective in treating the cat model of Sandhoff disease. We tested the feasibility and safety of this therapy in non-human primates, which unexpectedly lead to neurotoxicity in the thalami. We hypothesized that toxicity was due to high overexpression of HexA, which dose reduction of vector could not compensate for. In order to maintain AAV dose, and therefore widespread HexA distribution in the brain, six new vector designs were screened for toxicity in nude mice. The top three vectors that showed reduction of HexA expression with low toxicity were chosen and tested for safety in non-human primates. A final formulation was chosen from the primate screen that showed overexpression of HexA with minimal to no toxicity. Therapeutic efficacy studies were performed in Sandhoff disease mice to define the minimum effective dose.
106

Investigating the Structural Basis for Human Disease: APOBEC3A and Profilin

Silvas, Tania V. 31 January 2018 (has links)
Analyzing protein tertiary structure is an effective method to understanding protein function. In my thesis study, I aimed to understand how surface features of protein can affect the stability and specificity of enzymes. I focus on 2 proteins that are involved in human disease, Profilin (PFN1) and APOBEC3A (A3A). When these proteins are functioning correctly, PFN1 modulates actin dynamics and A3A inhibits retroviral replication. However, mutations in PFN1 are associated with amyotrophic lateral sclerosis (ALS) while the over expression of A3A are associated with the development of cancer. Currently, the pathological mechanism of PFN1 in this fatal disease is unknown and although it is known that the sequence context for mutating DNA vary among A3s, the mechanism for substrate sequence specificity is not well understood. To understand how the mutations in Profilin could lead to ALS, I solved the structure of WT and 2 ALS-related mutants of PFN1. Our collaborators demonstrated that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization was illuminated by my X-ray crystal structures of several PFN1 proteins. I found an expanded cavity near the protein core of the destabilized M114T variant. In contrast, the E117G mutation only modestly perturbs the structure and stability of PFN1, an observation that reconciles the occurrence of this mutation in the control population. These findings suggest that a destabilized form of PFN1 underlies PFN1-mediated ALS pathogenesis. To characterize A3A’s substrate specificity, we solved the structure of apo and bound A3A. I then used a systematic approach to quantify affinity for substrate as a function of sequence context, pH and substrate secondary structure. I found that A3A preferred ssDNA binding motif is T/CTCA/G, and that A3A can bind RNA in a sequence specific manner. The affinity for substrate increased with a decrease in pH. Furthermore, A3A binds tighter to its substrate binding motif when in the loop region of folded nucleic acid compared to a linear sequence. This result suggests that the structure of DNA, and not just its chemical identity, modulates A3 affinity and specificity for substrate.
107

The Function of the Tyrosine Kinase, Itk, in CD4+ T Cell Differentiation and Death: a Dissertation

Miller, Andrew Todd 31 July 2003 (has links)
The Tec family tyrosine kinase, Itk, plays an important role in signal transduction following T cell receptor engagement. Several prior studies have established the importance of Itk in immune system processes, such as T cell development and T cell activation. Additional biochemical studies have found that Itk specifically functions within a multi-molecular signalosome complex, which ultimately functions to provide a platform by which Itk can phosphorylate and activate PLC-γ1, a crucial step in T cell activation. To further study how Itk regulates distinct immune outcomes via T cell effector processes within the peripheral immune system, and to further understand how Itk functions in T cells in response to a physiological ligand-receptor interaction, I crossed Itk-deficient mice to mice transgenic for a TCR specific for a moth cytochrome C peptide. My studies have established a unique role for Itk in several important aspects of T cell function. Following T cell activation, I identified an imperative role for Itk in activation-induced cell death via FasL, a mechanism of immune homeostasis. Furthermore, I found Itk plays a unique role in the process of T cell differentiation, where Itk positively regulates the induction of cytokine genes, such as IL-4, while negatively regulating the induction of T-bet, a transcription factor important for Th1 differentiation. Lastly, following T cell differentiation, I found that Itk mRNA and protein are up-regulated during Th2 differentiation, while Rlk, a related Tec kinase, disappears rapidly from Th2 cells, indicating a critical role for Itk in Th2 cell function. Collectively, my thesis work has more clearly defined an important function for Itk not only in TCR signaling, but also in immune processes such as T cell differentiation and activation-induced cell death that are required for proper immune function.
108

The Role of ITK and RLK in CD8+ T Cell Development and Function: a Dissertation

Atherly, Luana O 26 July 2004 (has links)
Itk and Rlk are members of the Tec kinase family of non-receptor protein tyrosine kinases that are preferentially expressed in T cells. Numerous previous studies have demonstrated that these proteins play an important a role in the regulation of signalling processes downstream of TCR activation in CD4+ T cells, particularly in the phosphorylation of PLCγl. In addition, Itk and Rlk have both been shown to be important for CD4+ T cell development, differentiation, function and homeostasis following TCR activation. In the absence of Itk and Rlk, CD8+ SP thymocytes and T cells develop a memory/previously activated phenotypic profile, however, very little is known about the influence of Itk and Rlk on CD8+ T cell development and function. This study illustrates a previously unappreciated role for Itk and Rlk in the regulation of cytokine signals during CD8+ SP thymocyte maturation, and in the development of the memory CD44hi profile of Itk -/- and Itk -/- Rlk -/- CD8+ SP thymocytes and CD8+ T cells. This study also provides the first detailed study of the role of loss of Itk and particularly both Itk and Rlk in CD8+ signalling and function and shows that these Tec kinase family members play an important role in the maintenance of CD8+ T cell fitness and function, particularly in the ability of CD8+ T cells to accumulate in response to infection. Collectively, my studies demonstrate a critical role for Itk and Rlk in the generation of optimal CD8+ T cell responses. They also raise the novel observation that these proteins may be involved on the regulation of cytokine signals in T cells.
109

Regulation of IgA Class Switch Recombination in the I.29μ B Cell Lymphoma by Cytokines and Inhibitors of Poly(ADP-ribose) Polymerase: A Thesis

Shockett, Penny E. 01 September 1993 (has links)
Heavy chain isotype switch recombination is preceded by the appearance of RNA initiating 5' of the specific switch region which will undergo recombination. In an effort to understand the potential function of germline transcripts in switch recombination and the degree to which the regulation of germline transcripts correlates with the regulation of switching, we studied this process in the murine B-lymphoma cell line I.29μ, which in the presence of bacterial lipopolysaccharide (LPS) switches primarily to IgA and less frequently to IgE. Levels of α-germline transcripts initiating upstream of α switch (Sα) sequences are elevated in clones of this line which switch well as compared to clones which switch less frequently. TGFβ1 has been shown to increase α-germline transcripts and switching to IgA expression in LPS-stimulated murine splenic B-cells. We now demonstrate in I.29μ cells that TGFβ also increases switching to IgA and increases the level of α-germline transcripts 5 to 9 fold. Nuclear run-on analysis shows that this increase is at the level of transcription. Thus, TGFβ appears to direct switching to IgA by inducing transcription from the unrearranged Sα- CαDNA segment. Germline α RNA is quite stable in I.29μ cells, having a half life of about 3 to 5 hours, and we find only slight stabilization in the presence of TGFβ. Levels of ε-germline transcripts are not increased by TGFβ . IL-4, which modestly increases switching to IgA in I.29μ cells, slightly increases trancription of α-germline RNA. However, we present evidence suggesting that endogenously produced IL-4 may also act at additional levels to increase switching to IgA. IFNγ, which reduces IgA expression in these cells, also reduces the level of α-germline transcripts. IFNγ also reduces the level of ε-germline transcripts induced by IL-4. Our results support the hypothesis that the regulation of transcription of particular switch sequences by cytokines in turn regulates the specificity of recombination. In studies aimed at identifying other signalling pathways that promote class switching, we discovered that inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) increase lipopolysaccharide (LPS)-induced switching to IgA in the B cell lymphoma I.29μ and to IgG1 in LPS + IL-4-treated splenic B cells. PARP, which binds to and is activated by DNA strand breaks, catalyzes the removal of ADP-ribose from NAD+ and poly(ADP-ribosylation) of chromatin-associated acceptor proteins. This enzyme is believed to function in cellular processes involving DNA strand breaks as well as in modulating chromatin structure. In I.29μ cells, PARP inhibitors increase IgA switching by day 2 and cause a 5-fold average increase in switching on day 3 as assayed by immunofluorescence microscopy. The PARP inhibitor, nicotinamide, also causes a reduced intensity of hybridization of Cμ and Cα specific probes to genomic DNA fragments containing the expressed VDJ-Cμ and the unrearranged Sα - Cα segments, respectively, indicating that PARP inhibition increases rearrangment of these fragments. Induction of switching by PARP inhibitors is not mimicked by treatment with cAMP analogs or reduced by inhibitors of protein kinase A (PKA). Induction of switching by PARP inhibitors does not appear to involve increased levels of transcription of the unrearranged Cα gene, although TGFβ is required for optimal induction by PARP inhibitors, consistent with a requirement for transcription of the unrearranged CH gene. PARP inhibitors do not overcome the requirement for endogenously produced IL-4.
110

The Role of γ<sub>с</sub> Cytokines in T Cell Development, T Cell Homeostasis and CD8+ T Cell Function: A Dissertation

Gozalo, Sara 24 May 2004 (has links)
T lymphocytes are essential components of the immune system and as such are continually regulated by a variety of factors. Every step of their development, survival and function is tightly monitored to ensure their ability to recognize most foreign agents and mount adaptive immune responses during pathogenic infections, while remaining tolerant to self-antigens. Among the many factors that participate in the regulation of T cell development and function are the cytokines. Cytokines that signal through the common gamma (γс) chain and the Janus kinase 3 (Jak3) include IL-2, -4, -7, -9, -15, and -21 and have been implicated in the regulation of every stage in the life of a T cell. Therefore, it is not surprising that mutations in the γс chain or Jak3 lead to a SCID condition in humans and mice. Specifically, Jak3-deficient mice are characterized by a reduction in thymic cellularity and dysregulated T cell homeostasis. They have an expansion of memory-like CD4+ mature T cells and an almost complete absence of mature CD8+ T cells. By investigating the TCR repertoire of CD4+ T cells in the thymus and spleen of Jak3-/- mice, I deduced that the CD4+ T cell activation and expansion is TCR-specific and takes place in the periphery of the mice. After crossing Jak3-deficient mice to Bcl-2 transgenic mice I showed that the developmental block observed in Jak3-/- mice could not be rescued by the anti-apoptotic factor, despite the fact that its expression did increase, slightly, the total numbers of developing thymocytes. The enforced expression of Bcl-2 was also not sufficient to revert the dysregulation of T cell homeostasis in Jak3-/- mice. Finally, in order to further understand the role played by γс cytokines during T cell function, I investigated the ability of mature Jak3-/- CD8+ T cells to become activated and differentiate into effector cells in response to a viral infection. My results indicate that CD8+ T cells are activated and proliferate in response to a viral infection, but their survival, as well as their ability to proliferate and differentiate into effector cells are greatly impaired, resulting in the inability of Jak3-deficient mice to mount a protective response.

Page generated in 0.0569 seconds