Spelling suggestions: "subject:"coenzyme."" "subject:"isoenzymes.""
121 |
Characterization of the Nef-TCR Zeta Interaction and Its Role in Modulation of Src Family Kinase Activity: A DissertationKim, Walter Minsub 07 August 2009 (has links)
One of the hallmarks of an infection with pathogenic HIV-1 is the elevated level of immune activation that leads to rapid progression to AIDS. Surprisingly, nonhuman primates naturally infected with SIV do not exhibit an augmented activation phenotype nor severe immunodeficiency. One of the viral components implicated in determining the state of immune activation is the accessory protein Nef which has been demonstrated to affect T cell signaling pathways from within the intracellular compartment and for Nef from SIV, to downregulate TCR surface expression. Recently, Nef from HIV-1 and SIV have been demonstrated to bind the ζ chain of the TCR which functions as the primary signaling subunit of the receptor. However, the molecular details of the Nef-TCRζ interaction as well as the role of complex formation in modulation of immune activation remain largely unknown.
This thesis describes work directed at elucidating the biochemical and structural features of the Nef-TCRζ interaction and the functional consequences of complex formation relevant to T cell activation. Chapter I provides a brief introduction on HIV/SIV classification and pathogenesis with an emphasis on Nef and its pleiotropic function in T cells.
Chapter II describes the biochemical characterization of the interaction of the conserved core domain of Nef proteins from HIV-1, HIV-2 and SIV with the cytoplasmic domain of TCRζ. The core domains of HIV-2 ST and SIVmac239 are demonstrated to bind the cytoplasmic domain of TCRζ at two distinct regions and with different affinities. In contrast, the core domain of HIV-1 isolate ELI Nef only binds to one region and with the weakest calculated affinity among the HIV-1, HIV-2 and SIV Nef proteins studied. In addition, both the N-terminal domain and the strong TCRζ-binding core domain of SIVmac239 Nef each are demonstrated to be necessary but not sufficient for downregulation of TCR surface expression.
Chapter III describes the crystallization and structure determination methods used to solve the crystal structures of the core domain of SIVmac239 Nef in complex with two overlapping TCRζ polypeptides. Crystals of Nef in complex with the longer TCRζDP1 (L51-D93) polypeptide grew in a tetragonal space group but only diffracted to low resolution. In contrast, crystals of the Nefcore-TCRζA63-R80 complex grew in an orthorhombic space group and diffracted to high resolution but were nearly perfectly pseudo-merohedrally twinned thus complicating structure determination. Following identification of the twin law relating the twin domains, the structure of the Nefcore-TCRζA63-R80 complex was determined using refinement procedures that accounted for crystal twinning to 2.05 Å. The structure of the Nefcore-TCRζDP1 complex was solved to 3.7 Å from a single non-twinned crystal. The altered crystal packing induced by the shorter TCRζA63-R80polypeptide is postulated to have led to a reduction in crystal symmetry and increase in proneness to crystal twinning.
Chapter IV provides a detailed analysis of the structure of the Nefcore-TCRζA63-R80 complex and demonstrates its effect on modulation of Src family kinase activity. The TCRζ polypeptide adopts an alpha helical conformation and occupies a hydrophobic crevice on Nef not shared by any of Nef’s reported interaction partners. The interaction of Nefcore with TCRζ is mediated primarily by the burial of hydrophobic residues on TCRζ (L75, L77) in a hydrophobic pocket on Nef and a salt bridge between a glutamic acid (E74) on TCRζ and a basic patch on Nef consisting of two conserved arginines (R105, R106). The TCRζ polypeptide additionally orders the N-terminus of Nefcore into a polyproline type II helix that has been described to bind the SH3 domain of Src family kinases. We demonstrate that in vitro phosphorylation of TCRζcyt by Fyn and Src is specifically augmented by HIV-1 and SIV Nefcoreand suggest that Nef-TCRζ complex formation cooperatively enhances kinase activity.
Chapter V contains overall conclusions, future directions and a model illustrating the proposed role of the Nef-TCRζ interaction in immune activation modulation. The Appendices contain sequences of the proteins, gene constructs and primers used in this work.
|
122 |
Dissecting Signaling Pathways that Regulate Axonal Guidance Effects of Sonic Hedgehog: A DissertationGuo, Daorong 24 March 2011 (has links)
During development, axons respond to a variety of guidance cues in the environment to navigate to the proper targets. Sonic hedgehog (Shh), a classical morphogen, has been shown to function as a guidance factor that directly acts on the growth cones of various types of axons. We previously found that Shh affects retinal ganglion cell (RGC) axonal growth and navigation in a concentration-dependent manner. However, the signaling pathways that mediate such events are still unclear.
In this thesis, we show that high concentrations of Shh induce growth cone collapse and repulsive turning of the chick RGC through rapid increase of Ca2+ in the growth cone, and specific activation of PKCα and Rho signaling pathways. We further found that integrin linked kinase (ILK) acts as an immediate downstream effector of PKCα. PKCα directly phosphorylates ILK in vitro at two previously unidentified sites threonine-173 and -181. Inhibition of PKCα, Rho, and ILK by pharmacological inhibitors and/or dominant-negative approaches abolished the negative effects of high-concentration of Shh. We provide evidence that Rho likely functions downstream of PKC and suggest that PKC, Rho and ILK may cooperatively mediate the negative effects of high concentrations of Shh. Furthermore, retroviral expression of dominant-negative constructs of PKCα (DN-PKCα) and ILK-double mutants (ILK-DM) resulted in misguidance of RGC axons at the optic chiasm in vivo. These results demonstrate that new signaling pathways composed of PKCα, Rho, and ILK play an important role in Shh-induced axonal chemorepulsion.
In contrast, we show that attractive axonal turning in response to low concentrations of Shh is independent of PKCα, but requires the activity of cyclic nucleotides cAMP. Taken together, our results suggest that the opposing effects of Shh on axon guidance are mediated by different signaling pathways.
|
123 |
Recombinational Repair of a Chromosomal DNA Double Strand Break: A DissertationSinha, Manisha 16 March 2009 (has links)
Repairing a chromosomal DNA double strand break is essential for survival and maintenance of genomic integrity of a eukaryotic organism. The eukaryotic cell has therefore evolved intricate mechanisms to counteract all sorts of genomic insults in the context of chromatin structure. Modulating chromatin structure has been crucial and integral in regulating a number of conserved repair processes along with other fundamental genomic processes like replication and transcription.
The work in this dissertation has focused on understanding the role of chromatin remodeling enzymes in the repair of a chromosomal DNA double strand break by homologous recombination. This has been approached by recapitulating the biochemical formation of recombination intermediates on chromatin in vitro. In this study, we have demonstrated that the mere packaging of DNA into nucleosomal structure does not present a barrier for successful capture of homologous DNA sequences, a central step of the biochemical pathway of recombinational repair. It is only the assembly of heterochromatin-like more complex nucleo-protein structure that presents additional constraints to this key step. And, this additional constraint can be overcome by the activities of ATP-dependent chromatin remodeling enzymes. These findings have great implications for our perception of the mechanism of the recombinational repair process of a chromosomal DNA double strand break within the eukaryotic genome.
|
124 |
The Role of ITK in the Development of Gamma Delta NKT Cells: A DissertationYin, Catherine C 08 August 2012 (has links)
The immune system is a complex network of interacting cells and tissues that is designed to protect the body from pathogens and other foreign substances. T cells are a major component of the immune system and consist of two distinct lineages distinguished by the expression of αβ or γδ T cell receptors (TCR). The Tec family kinase, Itk is an important mediator of signaling downstream of the TCR. Past studies on Itk has focused on how Itk regulates development, activation and differentiation of conventional αβ T cells and more recently how Itk regulates the development of innate-like αβ T cells. However, very little is known about the influence of Itk on γδ T cells. My studies show a previously unknown role for Itk in the development and function of γδ T cells. We report in the absence of Itk, γδ T cells were responsible for the spontaneously elevated levels of serum IgE and Itk-/- mice γδ T cells produced high levels of TH2 cytokines. Furthermore, there was an increase in γδ T cells specifically in the Vγ1.1+Vδ6.3+ (V6) subset that represents the dominant population of γδ NKT cells in Itk-/- mice. In addition, the V6 subset had increased expression of PLZF, a transcription factor normally required for αβ iNKT cell development. We further show that V6 cells develop and mature similar to αβ iNKT cells. Similar to defects previously seen in the terminal differentiation of Itk-/- αβ iNKT cell, V6 cells also had impaired maturation in the thymus in the absence of Itk. This data demonstrates a previously unknown role of Itk for the terminal maturation of V6 cells that has been shown to be the cell population that led to spontaneous dermatitis in mice. Given that drug companies have targeted Itk as a potential allergy drug due to Itk’s role in TH2 development and function, our data suggests that further studies on Itk are warranted.
|
125 |
Roles of Protein Arginine Methyltransferase 7 and Jumonji Domain-Containing Protein 6 in Adipocyte Differentiation: A DissertationHu, Yu-Jie 28 October 2015 (has links)
Regulation of gene expression comprises a wide range of mechanisms that control the abundance of gene products in response to environmental and developmental changes. These biological processes can be modulated by posttranslational modifications including arginine methylation. Among the enzymes that catalyze the methylation, protein arginine methyltransferase 7 (PRMT7) is known to modify histones to repress gene expression. Jumonji domain-containing protein 6 (JMJD6) is a putative arginine demethylase that potentially antagonize PRMT7. However, the biological significance of these enzymes is not well understood. This thesis summarizes the investigation of both PRMT7 and JMJD6 in cell culture models for adipocyte differentiation. The results suggest that PRMT7 is not required for the differentiation, whereas JMJD6 is necessary for the differentiation by promoting the expression of the lineage determining transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancerbinding proteins (C/EBPs). The underlying mechanisms by which JMJD6 regulate differentiation involve transcriptional and post-transcriptional control of gene expression. Unexpectedly, the adipogenic function of JMJD6 is independent of its enzymatic activity. Collectively, the present research reveals a novel role of JMJD6 in gene regulation during the differentiation of adipocytes.
|
126 |
Hepatitis C Virus Non-Structural Protein 3/4A: A Tale of Two Domains: A DissertationAydin, Cihan 31 August 2012 (has links)
Two decades after the discovery of the Hepatitis C Virus (HCV), Hepatitis C infection still persists to be a global health problem. With the recent approval of the first set of directly acting antivirals (DAAs), the rate of sustained viral response for HCV-infected patients increased significantly. However, a complete cure has not been found yet. Drug development efforts primarily target NS3/4A protease, bifunctional serine protease-RNA helicase of HCV. HCV NS3/4A is critical in viral function; protease domain processes the viral polyprotein and helicase domain aids replication of HCV genome by unwinding double stranded RNA transcripts produced by NS5B, RNA-dependent RNA polymerase of HCV. Protease and helicase domains can be isolated, expressed and purified separately while retaining function. Isolated domains of HCV NS3/4A have been extensively used in biochemical and biophysical studies for scientific and therapeutic purposes to evaluate functional capability and mechanism. However, these domains are highly interdependent and modulate the activities of each other bidirectionally. Interdomain dependence was demonstrated in comparative studies where activities of isolated domains versus the full length protein were evaluated. Nevertheless, specific factors affecting interdependence have not been thoroughly studied.
Chapter II investigates the domain-domain interface formed between protease and helicase domains as a determinant in interdependence. Molecular dynamics simulations performed on single chain NS3/4A constructs demonstrated the importance of interface in the coupled dynamics of the two domains. The role of the interface in interdomain communication was experimentally probed by disrupting the domain-domain interface through Ala-scanning mutations in selected residues in the interface with significant buried surface areas. These interface mutants were assayed for both helicase and protease related activities. Instead of downregulating the activities of either domain, interface mutants caused enhancement of protease and helicase activities. In addition, the interface had minimal effect in RNA unwinding activity of the helicase domain, the mere presence of the protease domain was the main protagonist in elevated RNA unwinding activity. In conclusion, I suspect that the interface formed between the domains is transient in nature and plays a regulatory role more than a functional role. In addition, I found results supporting the suggestion that an alternate domain-domain arrangement other than what is observed in crystal structures is the active, biologically relevant conformation for both the helicase and the protease.
Chapter III investigates structural features of HCV NS3/4A protease inhibitors in relation to effects on inhibitor potency, susceptibility to drug resistance and modulation of potency by the helicase domain. Nearly all NS3/4A protease inhibitors share common features, with major differences only in bulky P2 extension groups and macrocyclization statuses. Enzymatic inhibition profiles of different drugs were analyzed for wildtype isolated protease domain and single chain NS3/4A helicase-protease construct, their multi drug resistant variants, and additional helicase mutants. Inhibitor potency was mainly influenced by macrocyclization, where macrocyclic drugs were significantly more potent compared to acyclic variants. Potency loss with respect to resistance mutations primarily depended on the P2 extension, while macrocyclization had minimal effect except for P2-P4 macrocyclic compounds which were up to an order of magnitude more susceptible to mutations A156T and, in lesser extent, D168A. Modulation by helicase domain was also dependent on P2 extension, although opposite trends were observed for danoprevir analogs versus others. In conclusion, this study provides a basis for future inhibitor development in both avoiding drug resistance and exploitation of the helicase domain for additional efficacy.
In this thesis, I have provided evidence further supporting and revealing the details of domain-domain dependency in HCV NS3/4A. Lessons learned here will aid future research for dissecting the interdependency to gain a better understanding of HCV NS3/4A function, which can possibly be extended to all Flaviviridae NS3 protease-helicase complexes. In addition, interdomain dependence can be exploited in future drug development efforts to create better drugs that will pave the way to an effective cure.
|
127 |
The Role of Dynamic Cdk1 Phosphorylation in Chromosome Segregation in Schizosaccharomyces pombe: A DissertationChoi, Sung Hugh 15 February 2010 (has links)
The proper transmission of genetic materials into progeny cells is crucial for maintenance of genetic integrity in eukaryotes and fundamental for reproduction of organisms. To achieve this goal, chromosomes must be attached to microtubules emanating from opposite poles in a bi-oriented manner at metaphase, and then should be separated equally through proper spindle elongation in anaphase. Failure to do so leads to aneuploidy, which is often associated with cancer. Despite the presence of a safety device called the spindle assembly checkpoint (SAC) to monitor chromosome bi-orientation, mammalian cells frequently possess merotelic kinetochore orientation, in which a single kinetochore binds microtubules emanating from both poles. Merotelically attached kinetochores escape from the surveillance mechanism of the SAC and when cells proceed to anaphase cause lagging chromosomes, which are a leading cause of aneuploidy in mammalian tissue cultured cells. The fission yeast monopolin complex functions in prevention of mal-orientation of kinetochores including merotelic attachments during mitosis. Despite the known importance of Cdk1 activity during mitosis, it has been unclear how oscillations in Cdk1 activity drive the dramatic changes in chromosome behavior and spindle dynamics that occur at the metaphase/anaphase transition. In two separate studies, we show how dynamic Cdk1 phosphorylation regulates chromosome segregation. First, we demonstrate that sequential phosphorylation and dephosphorylation of monopolin by Cdk1 and Cdc14 phosphatase respectively helps ensure the orderly execution of two discrete steps in mitosis, namely sister kinetochore bi-orientation at metaphase and spindle elongation in anaphase. Second, we show that elevated Cdk1 activity is crucial for correction of merotelic kinetochores produced in monopolin and heterochromatin mutants.
|
128 |
Role of the cJun NH2-Terminal Kinase (JNK) in Cancer: A DissertationCellurale, Cristina Arrigo 13 July 2010 (has links)
cJun NH2-terminal kinase (JNK) is a member of the MAPK (mitogen- activated protein kinase) signaling family that responds to various extracellular stimuli, such as stress, growth factors, cytokines, or UV radiation. JNK activation can lead to cellular responses including gene expression, growth, survival, and apoptosis. JNK has been implicated in normal developmental processes, including tissue morphogenesis, as well as pathological processes, such as cellular transformation and cancer. JNK exists in three isoforms, and knockout mice have been generated for each isoform; the ubiquitously expressed Jnk1 and Jnk2 have been studied independently, however, the two isoforms are partially functionally redundant. Jnk1-/- Jnk2-/-mice are nonviable, therefore studies of compound JNK-deficiency have been limited to mouse embryonic fibroblasts (MEF). Understanding the role of JNK in epithelial cells is now possible with the creation of conditional JNK knockout animals.
I sought to elucidate the role of JNK in cellular transformation, cancer, and normal development. I employed both in vitro and in vivo approaches. First, I evaluated the role of JNK in cellular transformation using p53-/- Jnk1-/- Jnk2-/- MEF transduced with oncogenic Ras. To extend this study, I examined JNK-deficiency in a Kras-induced model of lung tumorigenesis. Second, I investigated JNK1- and JNK2-deficiency in a p53-mediated model of mammary tumorigenesis. Finally, I examined the role of JNK in mouse mammary gland development by establishing JNK-deficient primary mouse mammary epithelial cells and evaluating JNK-deficient mammary gland transplants. Taken together, this work provides evidence of context-dependent roles for JNK in both normal and pathological cell biology.
|
129 |
Dissecting Somatic Cell Reprogramming by MicroRNAs and Small Molecules: A DissertationLi, Zhonghan 12 March 2012 (has links)
Somatic cells could be reprogrammed into an ES-like state called induced pluripotent stem cells (iPSCs) by expression of four transcriptional factors: Oct4, Sox2, Klf4 and cMyc. iPSCs have full potentials to generate cells of all lineages and have become a valuable tool to understand human development and disease pathogenesis. However, reprogramming process suffers from extremely low efficiency and the molecular mechanism remains poorly understood.
This dissertation is focused on studying the role of small non-coding RNAs (microRNAs) and kinases during the reprogramming process in order to understand how it is regulated and why only a small percentage of cells could achieve fully reprogrammed state. We demonstrate that loss of microRNA biogenesis pathway abolished the potential of mouse embryonic fibroblasts (MEFs) to be reprogrammed and revealed that several clusters of mES-specific microRNAs were highly induced by four factors during early stage of reprogramming. Among them, miR-93 and 106b were further confirmed to enhance iPSC generation by promoting mesenchymal-to-epithelial transition (MET) and targeting key p53 and TGFβ pathway components: p21 and Tgfbr2, which are important barrier genes to the process.
To expand our view of microRNAs function during reprogramming, a systematic approach was used to analyze microRNA expression profile in iPSC-enriched early cell population. From a list of candiate microRNAs, miR-135b was found to be most highly induced and promoted reprogramming. Subsequent analysis revealed that it targeted an extracellular matrix network by directly modulating key regulator Wisp1. By regulating several downstream ECM genes including Tgfbi, Nov, Dkk2 and Igfbp5, Wisp1 coordinated IGF, TGFβ and Wnt signaling pathways, all of which were strongly involved in the reprogramming process. Therefore, we have identified a microRNA-regulated network that modulates somatic cell reprogramming, involving both intracellular and extracellular networks.
In addition to microRNAs, in order to identify new regulators and signaling pathways of reprogramming, we utilized small molecule kinase inhibitors. A collection of 244 kinase inhibitors were screened for both enhancers and inhibitors of the process. We identified that inhibition of several novel kinases including p38, IP3K and Aurora kinase could significantly enhance iPSC generation, the effects of which were also confirmed by RNAi of specific target genes. Further characterization revealed that inhibition of Aurora A kinase enhanced phosphorylation and inactivation of GSK3β, a process mediated by Akt kinase. All together, in this dissertation, we have identified novel role of both small non-coding RNAs and kinases in regulating the reprogramming of MEFs to iPSCs.
|
130 |
Antagonistic Pleiotropy: The Role of Smurf2 in Cancer and Aging: A DissertationRamkumar, Charusheila 01 June 2012 (has links)
In response to telomere shortening, oxidative stress, DNA damage or aberrant activation of oncogenes, normal somatic cells exit the cell cycle and enter an irreversible growth arrest termed senescence. The limited proliferative capacity imposed by senescence on cells impedes the accumulation of mutations necessary for tumorigenesis and prevents proliferation of cells at risk of neoplastic transformation. Opposite to the tumor suppressor function, accumulation of senescent cells in adult organisms is thought to contribute to aging by depleting the renewal capacity of tissues and stem/progenitor cells, and by interfering with tissue homeostasis and functions. The Antagonistic Pleiotropy Theory of senescence proposes that senescence is beneficial early in life by acting as a tumor suppressor, but harmful late in life by contributing to aging. Recent studies have provided evidence strongly supporting the tumor suppressor function of senescence, however, direct evidence supporting the role of senescence in aging remains largely elusive.
In this thesis, I describe studies to test the Antagonistic Pleiotropy Theory of senescence in tumorigenesis and aging. The approach that I have taken is to alter the senescence response in vivo by changing the expression of a senescence regulator in mice. The consequence of altered senescence response on tumorigenesis and stem cell self-renewal was investigated. The senescence regulator I studied is Smurf2, which has been shown previously to activate senescence in culture. I hypothesized that the senescence response will be impaired by Smurf2 deficiency in vivo. Consequently, Smurf2-deficient mice will develop tumors at an increased frequency, but also gain enhanced self-renewal capacity of stem/progenitor cells with age.
I generated a Smurf2-deficient mouse model, and found that Smurf2 deficiency attenuated p16 expression and impaired the senescence response in primary cells and tissues. Smurf2-deficient mice exhibited an increased susceptibility to spontaneous tumorigenesis, indicating that Smurf2 is a tumor suppressor. At the premalignant stage of tumorigenesis, a defective senescence response was documented in the Smurf2-deficient mice, providing a mechanistic link between impaired senescence response and increased tumorigenesis. The majority of tumors developed in Smurf2-deficent mice were B-cell lymphomas with an origin in germinal centers of the spleen and a phenotype resembling human diffuse large B-cell lymphoma (DLBCL). I discovered that Smurf2 mediated ubiquitination of YY1, a master regulator of germinal centers. Stabilization of YY1 in the absence of Smurf2 was responsible for increased cell proliferation and drove lymphomagenesis in Smurf2-deficient mice. Consistently, a significant decrease of Smurf2 expression was observed in human primary DLBCL samples, and more importantly, a low level of Smurf2 expression in DLBCL correlated with poor survival prognosis. Moreover, I found that hematopoietic stem cells (HSCs) in Smurf2-deficient mice had enhanced function compared to wild-type controls. This enhanced stem cell function was associated with increased cell proliferation and decreased p16 expression, suggesting that defective senescence response in Smurf2-deficient mice leads to increased self-renewal capacity of HSCs. My study, for the first time, offers direct genetic evidence of an important tumor suppressor function for Smurf2 as well as its function in contributing to stem cell aging. Collectively, these findings provide strong evidence supporting the Antagonistic Pleiotropy Theory of senescence in tumorigenesis and aging.
|
Page generated in 0.0552 seconds