• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Musical cognition in children with autism

Heaton, Pamela Florence January 1999 (has links)
No description available.
2

An Examination of Cognitive and Behavioral Characteristics of Kainaiwa Children Diagnosed with Fetal Alcohol Syndrome

Pace, Deborah Faith 01 May 1997 (has links)
The present study examined the scores of 450 Kainaiwa children from Kindergarten to grade 3 on social, behavioral, cognitive and cultural measures. The subjects consisted of children in three different classification groups: Fetal Alcohol Syndrome (FAS), Special Education, and Regular Education. The purpose of the study was to examine group membership to determine whether or not children who were diagnosed as FAS presented unique intellectual, behavioral, social and cultural characteristics from those of their regular and special education peers. These results support the conclusion of previous research that FAS children differ significantly from their special and regular education peers. No statistically significant differences were found on cultural measures. This study provides useful information for future diagnosis and psychoeducational assessment for FAS children in early childhood.
3

Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge Base

Gängler, Thomas 22 September 2011 (has links) (PDF)
Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, • a new vocabulary for describing the play back domain, • another one for representing information service categorisations and quality ratings, and • one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.
4

Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge Base

Gängler, Thomas 20 May 2011 (has links)
Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, • a new vocabulary for describing the play back domain, • another one for representing information service categorisations and quality ratings, and • one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.:1 Introduction and Background 11 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Personal Music Collection Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Music Information Management 17 2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.1 Knowledge Representation Models . . . . . . . . . . . . . . . . . 18 2.1.1.2 Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Knowledge Management Systems . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.1 Information Services . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.2 Ontology-based Distributed Knowledge Management Systems . . 20 2.1.2.3 Knowledge Management System Design Guideline . . . . . . . . 21 2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 The Evolution of the World Wide Web . . . . . . . . . . . . . . . . . . . . . 22 Personal Music Knowledge Base Contents 2.2.1.1 The Hypertext Web . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.2 The Normative Principles of Web Architecture . . . . . . . . . . . 23 2.2.1.3 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Common Semantic Web Knowledge Representation Languages . . . . . . 25 2.2.3 Resource Description Levels and their Relations . . . . . . . . . . . . . . . 26 2.2.4 Semantic Web Knowledge Representation Models . . . . . . . . . . . . . . 29 2.2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.3 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4.4 Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4.5 Providing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4.6 Consuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Music Content and Context Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Categories of Musical Characteristics . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Music Metadata Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Music Metadata Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.3.1 Audio Signal Carrier Indexing Services . . . . . . . . . . . . . . . . 41 2.3.3.2 Music Recommendation and Discovery Services . . . . . . . . . . 42 2.3.3.3 Music Content and Context Analysis Services . . . . . . . . . . . 43 2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Personalisation and Environmental Context . . . . . . . . . . . . . . . . . . . . . . 44 2.4.1 User Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.3 Stereotype Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 The Personal Music Knowledge Base 48 3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 User Account Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Individual Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Information Service Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Proactive Update Notification . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.5 Information Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.6 Personal Associations and Context . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 A Personal Music Knowledge Base 57 4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 The Info Service Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 The Play Back Ontology and related Ontologies . . . . . . . . . . . . . . . . 61 4.1.2.1 The Ordered List Ontology . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2.2 The Counter Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2.3 The Association Ontology . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2.4 The Play Back Ontology . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 The Recommendation Ontology . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.4 The Cognitive Characteristics Ontology and related Vocabularies . . . . . . 72 4.1.4.1 The Weighting Ontology . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.4.2 The Cognitive Characteristics Ontology . . . . . . . . . . . . . . . 73 4.1.4.3 The Property Reification Vocabulary . . . . . . . . . . . . . . . . . 78 4.1.5 The Media Types Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Knowledge Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Personal Music Knowledge Base in Practice 87 5.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.1 AudioScrobbler RDF Service . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.2 PMKB ID3 Tag Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Reutilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.3 Reviews and Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusion and Future Work 93 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Page generated in 0.0934 seconds