• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 3
  • 1
  • Tagged with
  • 22
  • 12
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dissipation at the Earth's Quasi-Parallel Bow Shock

Behlke, Rico January 2005 (has links)
The Earth's bow shock is a boundary where the solar wind becomes decelerated from supersonic to subsonic speed before being deflected around the Earth. This thesis presents measurements by the Cluster spacecraft upstream and at the Earth's quasi-parallel bow shock where the angle between the upstream magnetic field and the bow shock normal is less than 45 degrees. An intrinsic feature of quasi-parallel shocks is the ability of ions, that are reflected off the shock in a specular manner, to propagate far upstream and to interact with the incident solar wind. This leads to the generation of a variety of plasma waves, e.g., Ultra-Low Frequency (ULF) waves, which in their turn interact with the different ion populations. Some of the ULF waves are thought to steepen into so-called Short Large-Amplitude Magnetic Structures (SLAMS). This thesis studies the impact of SLAMS on the incident solar wind. SLAMS are thought to play an important role in terms of 1) returning shock-reflected ions back to the shock where they can eventually contribute to downstream thermalisation and 2) local pre-dissipation of the solar wind. The first electric field measurements of SLAMS showed a strong electric field rotation over SLAMS in association with the rotation of the magnetic field. This often leads to a local change from quasi-parallel to quasi-perpendicular conditions. In addition, short-scale electric field features were observed, e.g., spiky electric field structures associated with the leading edge of SLAMS and solitary electric field structures on Debye length scales, which are suggested to represent ion phase space holes. Using the abilitiy of the four Cluster satellites to obtain propagation vectors of SLAMS and the high-resolution electric field measurements, the electric potential over SLAMS was studied. These structures are associated with a significant potential on the order of a few hundred to thousand Volt. Comparing these findings with data from the ion spectrometer, it was found that the bulk flow is locally significantly decelerated and moderately deflected and heated. In addition, SLAMS reflect incident ions on both the leading and trailing edge. The flux of so-called gyrating ions show a clear maximum in association with SLAMS. This indicates that SLAMS indeed play an important role for pre-dissipation of the solar wind upstream of the shock.
12

Kinetic instabilities in plasmas : from electromagnetic fluctuations to collisionless shocks / Instabilités cinétiques dans les plasmas : des fluctuations électromagnétiques aux chocs non-collisionnels

Ruyer, Charles 11 December 2014 (has links)
Les chocs non-collisionnels jouent un rôle majeur dans de nombreux événements astrophysiques à haute densité d'énergie (sursauts gamma, restes de supernovæ, vents de pulsar...), et seraient responsables de la génération de particules supra-thermiques et de radiations. Les simulations ont démontré qu'en l’absence de champs magnétiques externes, des instabilités électromagnétiques peuvent prendre place lors de la collision de plasmas à haute vitesse. Les instabilités du type Weibel sont en effet capables de faire croître, dans ces milieux, une turbulence électromagnétique potentiellement en mesure de défléchir et d'accélérer des particules par des processus du type Fermi. En plus d'une compréhension théorique toujours croissante, la génération expérimentale de tels chocs est maintenant étudiée à l'aide de lasers de puissance. Les fluctuations thermiques électromagnétiques constituent les germes des instabilités se développant dans un plasma. Nous nous sommes attelés à leur description dans le cas d’un plasma relativiste régi par une fonction de distribution de type Maxwell-Jüttner. Des formules exactes de la densité spectrale ont pu être obtenues pour différentes orientations du vecteur propre. Ces résultats ont pu être confrontés aux prédictions d’un code de simulation particle-in-cell (PIC). Un très bon accord a été démontré.Ces résultats ont été exploités lors d'une collaboration internationale dont le but était d'estimer le temps de saturation de l'instabilité cinétique de Weibel, générant des fluctuations magnétiques. Les estimations obtenues ont pu être validées par des simulations PIC sur trois ordres de grandeur d'énergie de dérive.Nous avons ensuite mené une étude théorique et numérique des collisions de plasma d'électrons-ions en régime non-collisionnel ayant lieu lors d'événements astrophysiques tels que les restes de supernovæ. Par-delà un intérêt académique pour la compréhension des processus de transfert/transport d’énergie au sein des plasmas, la récente génération de tels plasmas en laboratoire ouvre des perspectives inédites en astrophysique des hautes énergies. La zone de recouvrement de ces faisceaux de particules est sujette à des instabilités cinétiques du type Weibel, générant des champs magnétiques intenses.Nous avons modélisé l'évolution non-linéaire d'un système soumis à l'instabilité de Weibel, et obtenu des formules analytiques de l'évolution des paramètres plasmas (températures et vitesse de dérive) et des champs magnétiques. Le modèle prédit ainsi l’évolution du système jusqu’à un stade proche de l’isotropisation complète des populations de particules et donc jusqu'à la formation d’un choc non-collisionnel. Ce modèle, en accord avec des simulations du type « particle-in-cell », pu aussi être comparé à des résultats expérimentaux récents. L'étude de la propagation des chocs non-collisionnels, m'a permis de généraliser le précédent modèle au cas de la turbulence magnétique ayant lieu en amont du front de choc.Nous nous sommes consacrés enfin aux chocs non-collisionnels créés dans un plasma dense (opaque) irradié par un laser intense. L’interaction laser-plasma qui en résulte donne lieu à un important courant d'électrons relativistes qui sont à l’origine d’instabilités cinétiques (de filamentation notamment) susceptibles d'évoluer en choc non-collisionnel. Une observation originale, contrastant avec les premières publications sur le sujet est que pour les paramètres considérés (un laser d’éclairement ~1021 Wcm-2, interagissant avec une cible solide), le choc résulte de la turbulence magnétique produite par l’instabilité électronique, plutôt que par l’instabilité ionique (dont la croissance est plus tardive). En d’autres termes, compte tenu de l’énergie très élevée des électrons accélérés par le laser, la turbulence qu'ils génèrent s’avère assez forte pour rapidement défléchir les ions. / Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between subluminal and supraluminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the subluminal regime along with some discrepancy in the supraluminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energyWe then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle-in-cell (PIC) simulations of the ion Weibel instability in uniform geometries, as well as shock-relevant non-uniform configurations. Moreover, they are found in correct agreement with a recent laser-driven plasma collision experiment. Along with this comparison, we pinpoint the important role of electron screening on the ion-Weibel dynamics, which may affect the results of simulations with artificially high electron mass. We subsequently address the shock propagation resulting from the magnetic Weibel turbulence generated in the upstream region. Generalizing the previous symmetric-beam model to the upstream region of the shock, the role of the magnetic turbulence in the shock-front has been analytically and self-consistently characterized. Comparison with simulations validates the model. The interaction of high-energy, ultra-high intensity lasers with dense plasmas is known to produce copious amounts of suprathermal particles. Their acceleration and subsequent transport trigger a variety of Weibel-like electromagnetic instabilities, acting as additional sources of slowing down and scattering. Their understanding is important for the many applications based upon the energy deposition and/or field generation of laser-driven particles. We investigate the ability of relativistic-intensity laser pulses to induce Weibel instability-mediated shocks in overdense plasma targets, as first proposed by Fiuza in 2012. By means of both linear theory and 2D PIC simulations, we demonstrated that in contrast to the standard astrophysical scenario previously addressed, the early-time magnetic fluctuations (Weibel instability) generated by the suprathermal electrons (and not ions) are strong enough to isotropize the target ions and, therefore, induce a collisionless electromagnetic shock.
13

Dynamique d'un plasma non collisionnel interagissant avec une impulsion laser ultra-intense / Dynamics of a collisionless plasma interacting with an ultra-intense laser pulse

Capdessus, Rémi 25 November 2013 (has links)
L'interaction d'un plasma avec une impulsion laser-intense suscite de plus en plus d'intérêt du fait des progrès en matière de technologie laser d'outils numériques. La réaction du rayonnement affecte la dynamique des électrons, celle du rayonnement synchrotron, ainsi que celle des ions via le champ de séparation de charge, pour des intensités laser supérieures à 10puissance22 W/CM2. les équations cinétiques régissant le transport de particules à ultra-haute intensité ont été obtenues. La réaction du rayonnement implique la contraction du volum de l'epace des phases des électrons A l'aide de simulations numériques nous avons démontré la forte rétro-action que les effets collectifs induisent sur le rayonnement synchrotron généré par les électons accélérés. L'importance des effets collectifs dépend fortement de la masse des ions et de l'épaisseur du plasma considéré. Ces effets pourraient être vérifiés expérimentalement avec des cibles cryogéniques d'hydrogène. / Résumé en anglais
14

Fully kinetic PiC simulations of current sheet instabilities for the Solar corona

Muñoz Sepúlveda, Patricio A. 25 June 2015 (has links)
No description available.
15

The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle

Lind, Crystal 27 August 2014 (has links)
The Vlasov-Poisson system is most commonly used to model the movement of charged particles in a plasma or of stars in a galaxy. It consists of a kinetic equation known as the Vlasov equation coupled with a force determined by the Poisson equation. The system in Euclidean space is well-known and has been extensively studied under various assumptions. In this paper, we derive the Vlasov-Poisson equations assuming the particles exist only on the 2-sphere, then take an in-depth look at particles which initially lie along a great circle of the sphere. We show that any great circle is an invariant set of the equations of motion and prove that the total energy, number of particles, and entropy of the system are conserved for circular initial distributions. / Graduate
16

Simulation numérique de la reconnexion magnétique : mécanismes cinétiques sous-jacents à la description fluide des ions / Numerical simulation of magnetic reconnection : kinetic mechanisms underlying the fluid description of the ions

Aunai, Nicolas 08 February 2011 (has links)
La capacité à libérer l’énergie stockée dans le champ magnétique et à briser le théorème du gel font de la reconnexion magnétique un des phénomènes les plus importants de la physique des plasmas. Lorsqu’elle se produit dans un environnement non-collisionel comme la magnétosphère terrestre, une modélisation cinétique est à priori nécessaire. Cependant la plupart de notre compréhension du phénomène se base sur un interprétation fluide, plus intuitive. Dans quelle mesure ces deux interprétations d’un même phénomène sont-elles reliées ? C’est la problématique à laquelle cette thèse s’intéresse, dans le cas de la reconnexion antiparallèle et pour la population ionique du plasma. La première partie de ce travail s’intéresse à l’accélération fluide et cinétique des protons au sein de la région de reconnexion. Il est montré comment le mouvement individuel des particules joue un rôle du point de vue fluide via la force de pression, jusqu’alors négligée dans les modèles. Ces résultats ont également mené dans une seconde partie à des prédictions et vérifications observationnelles basées sur les données des satellites Cluster. Dans un troisième temps, nous montrons le rôle important joué par le flux d’énergie thermique dans le transfert d’énergie au cours du processus de reconnexion, dans le cas symétrique et asymétrique. Enfin la dernière partie de ce manuscrit propose une solution au problème fondamental consistant décrire une couche de courant tangentielle asymétrique dans un état d’équilibre cinétique / Because of its ability to transfer the energy stored in magnetic field together with the breaking of the flux freezing constraint, magnetic reconnection is considered as one of the most important phenomena in plasma physics. When it happens in a collision less environment such as the terrestrial magnetosphere, it should a priori be modelled with in the framework of kinetic physics. The evidence of kinetic features has incidentally for a long time, been shown by researchers with the help of both numerical simulations and satellite observations. However, most of our understanding of the process comes from the more intuitive fluid interpretation with simple closure hypothesis which do not include kinetic effects. To what extent are these two separate descriptions of the same phenomenon related? What is the role of kinetic effects in the averaged/fluid dynamics of reconnection? This thesis addresses these questions for the proton population in the particular case of antiparallel merging with the help of 2D Hybrid simulations. We show that one can not assume, as is usually done, that the acceleration of the proton flow is only due to the La place force. Our results show, for symmetric and asymmetric connection, the importance of the pressure force, opposed to the electric one on the separatrices, in the decoupling region. In the symmetric case, we emphasize the kinetic origin of this force by analyzing the proton distribution functions and explain their structure by studying the underlying particle dynamics. Protons, as individual particles, are shown to bounce in the electric potential well created by the Hall effect. The spatial divergence of this well results in a mixing in phase space responsible for the observed structure of the pressure tensor. A detailed energy budget analysis confirms the role of the pressure force for the acceleration ; but, contrary to what is sometimes assumed, it also reveals that the major part of the incoming Poynting flux is transferred to the thermal energy flux rather than to the convective kinetic energy flux, although the latter is generally supposed dominant. In the symmetric case, we propose the pressure tensor to be an additional proxy of the ion decoupling region in satellite data and verify this suggestion by studying a reconnection event encountered by the Cluster spacecrafts. Finally, the last part of this thesis is devoted to the study of the kinetic structure of asymmetric tangential current sheets where connection can develop. This theoretical part consists in finding a steady state solution to the Vlasov-Maxwell system for the protons in such a configuration. We present the theory and its first confrontation to numerical tests.
17

Collisionless shocks in the context of Laboratory Astrophysics / Chocs non-collisionnels dans le cadre de l'astrophysique de laboratoire

Grassi, Anna 26 October 2017 (has links)
Cette thèse s'inscrit dans le cadre de l'astrophysique de laboratoire. Nous abordons divers aspects de la physique des chocs non-collisionels en présence de flots de plasma relativistes dans des configurations d'intérêt pour les communautés astrophysique et de l’interaction laser-plasma (ILP). Notre approche repose sur la modélisation analytique et la simulation cinétique haute-performance, outil central pour décrire les processus d'ILP et la physique non linéaire à l'origine des chocs étudiés. Le code Particle-in-Cell SMILEI a été largement utilisé et développé au cours ce travail. Trois configurations physiques sont étudiées. L’instabilité Weibel en présence de faisceaux d'électrons contre-propagatifs alignés avec un champ magnétique externe est décrite. Les phases linéaires et non linéaires sont expliquées à l’aide de modèles théoriques confirmés par des simulations. La génération de chocs non-collisionels lors de l’interaction de deux plasmas relativistes de paires est étudiée en présence d’un champ magnétique perpendiculaire. L’accent est mis sur la comparaison des prédictions théoriques sur les grandeurs macroscopiques avec les simulations, ainsi que sur la définition du temps de formation du choc, l’ensemble de ces grandeurs étant d’une grande importance pour de futures expériences. Enfin, nous proposons un schéma permettant de recréer, en laboratoire, l’instabilité Weibel ionique par l'utilisation d'un laser intense. Les flots de plasmas produits ici sont plus rapides et denses que dans les expériences actuelles, conduisant à un taux de croissance et des champs magnétiques plus élevés. Ces résultats sont également important pour l’ILP à très haute intensité. / The work presented in this thesis belongs to the general framework of Laboratory Astrophysics. We address various aspects of the physics of collisionless shocks developing in the presence of relativistic plasma flows, in configurations of interest for the astrophysical and the laser-plasma interaction (LPI) communities. The approach used throughout this thesis relied on both analytical modeling and high-performance kinetic simulations, a central tool to describe LPI processes as well as the non-linear physics behind shock formation. The PIC code SMILEI has been widely used and developed during this work. Three physical configurations are studied. First we consider the Weibel instability driven by two counter-streaming electron beams aligned with an external magnetic field. The linear and non-linear phases are explained using theoretical models confirmed by simulations.Then the generation of non-collisional shocks during the interaction of two relativistic plasma pairs is studied in the presence of a perpendicular magnetic field. We focus on the comparison of theoretical predictions for macroscopic variables with the simulation results, as well as on the definition and measurement of the shock formation time, all of which are of great importance for future experiments.Finally, we proposed a scheme to produce, in the laboratory, the ion-Weibel-instability with the use of an ultra-high-intensity laser. The produced flows are faster and denser than in current experiments, leading to a larger growth rate and stronger magnetic fields. These results are important for the LPI at very high intensity.
18

Using satellite data to calculate entropy of electrons at collisionless shocks

Berglund, Sofie, Wallner, Alice January 2022 (has links)
The solar wind is a supersonic flow of protons and electrons emitted in all directions from the sun. As the supersonic solar wind encounters Earth’s magnetic field, it creates the Earth’s bow shock, which increases the kinetic entropy of electrons passing through it. In this study, the aim is to analyze shock crossings of Earth’s bow shock in order to draw conclusions of which shock parameters that are important forkinetic entropy generation. Due to knowledge gained from an earlier study by M. Lindberg et al. [1], the shock crossings of interest in this study are quasi-perpendicular shocks with a low electron plasma beta. The data used is measured with the NASA MMS spacecraft and accessed through IRF Uppsala. As a result,a database with 13 shock crossings was created and the entropy change was related to, among other parameters, temperature and density change, shock angle, Alfv´en Mach number, ion ram pressure and upstream magnetic field. We found that a highAlfv´en Mach number related nearly proportionally to a large change in electron entropy for low electron plasma beta quasiperpendicularcollisionless shock crossing. / Solvinden består av protoner och elektroner som emitteras ut från solen i alla riktningar med enorma hastigheter. När dessa partiklar, med en hastighet som överstiger signalhastigheten, träffar Jordens magnetfält uppstår Jordens bågchock. Bågchocken ökar den kinetiska entropin hos elektroner som färdas genom den. För den här studien är målet att analysera chockkorsningar vid Jordens bågchock för att kunna dra slutsatser om vilka chockparametrar som är viktiga för generering av kinetisk entropi. Till följd av en tidigare studie av M. Lindberg et al. [1] är det endast kvasi-vinkelräta chockkorsningar med ett lågt plasma beta som denna studie avser. Den uppmätta datan erhålls från NASAs MMS satelliter och kan nås genom IRF Uppsala. Resultatet blev en databas med 13 chocker där entropiförändringen plottades mot bl. a. temperaturoch densitetsändring, chockvinkel, Alfve´n Machtal, jontrycket och magnetfältet uppströms. Det upptäcktes då att ett högt Alfve´n Mach-tal indikerade på en stor entropiökning hos kollisionslösa, kvasi-vinkelräta chockkorsningar med låga elektronplasmabeta. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
19

Sound propagation in dilute Bose gases

Ota, Miki 31 January 2020 (has links)
In this doctoral thesis, we theoretically investigate the propagation of sound waves in dilute Bose gases, in both the collisionless and hydrodynamic regimes. The study of sound wave is a topic of high relevance for the understanding of dynamical properties of any fluid, classical or quantum, and further provides insightful information about the equation of state of the system. In our work, we focus in particular on the two-dimensional (2D) Bose gas, in which the sound wave is predicted to give useful information about the nature of the superfluid phase transition. Recently, experimental measurement of sound wave in a uniform 2D Bose gas has become available, and we show that the measured data are quantitatively well explained by our collisionless theory. Finally, we study the mixtures of weakly interacting Bose gases, by developing a beyond mean-field theory, which includes the effects of thermal and quantum fluctuations in both the density and spin channels. Our new theory allows for the investigation of sound dynamics, as well as the fundamental problem of phase- separation.
20

Identifying Fundamental Characteristics of Shock Nonstationarity using MMS Measurements : Identifying and Distinguishing Non-stationary Behaviour Through the Magnetic Field Gradient in Quasi-perpendicular Shocks / Indentifiera fundamentala egenskaper av icke-stationärt beteende i chocker genom MMS mätningar : Använding av magnetfältsgradienten i kvasi-vinkelräta chockar för att identifiera och urskilja icke-stationärt beteende

Wik, Hannah January 2023 (has links)
Collisionless shocks are widespread phenomena in the universe, and understanding the mechanisms behind their energy dissipation, with a rare number of collisions between particles, remains a significant unresolved question. The Earth’s bow shock provides an excellent opportunity to study this phenomena in situ. For high Mach number shocks, the shock cannot be sustained without partial reflection of the incoming ions. At higher Mach numbers, the shock surface starts to exhibit non-stationary behaviours, meaning that the shock surface starts evolving. One such behaviour is known as shock reformation, where a new shock forms upstream of an existing one. This study aims to investigate shock reformation using data obtained from NASA’s MMS mission, which offers precise measurements with high spatial and temporal resolutions through its constellation of four spacecraft. Using the MMS shocks database (Lalti et al., 2022), the gradient of the magnetic field magnitude is computed to infer non-stationary behaviour and identify potential instances of shock reformation and other shock behaviours. Through the analysis of the MMS measurements, some insight into the non-stationary characteristics of shocks is obtained using the gradient of the magnetic field. However, further analysis is needed in order to refine the method of identifying non-stationary behaviour of shocks, for future applications. / Kollisionsfria chocker är ett vanligt fenomen som förekommer i universum, och att förstå hur energidissipation inträffar i chocker med ett fåtal kollisioner mellan partikar är ett olöst problem. Jordens bogchock utger en bra möjlighet att studera detta på plats med mätningar från rymdfarkoster. Detta projekt försöker studera delar av jordens bogchock och undersöka dess dynamic. För chocker med högt machtal, måste en del av jonerna från solvinden reflekteras för att chocken ska skunna upprätthållas. Vid högre machtal kan chockytan visa icke-stationära beteenden, vilket innebär att den börjar förändras. Ett exempel på sådant beteende är chockreformation, där en ny chock formas framför en befintlig chock. Denna studie har som mål att undersöka chockreformation med hjälp av data som erhållits från NASA:s MMS-uppdrag, vilket erbjuder precisa mätningar med hög rumslig och tidsmässig upplösning genom sin konstellation av fyra rymdfarkoster. Genom användning av MMS-shockdatabasen (Lalti et al., 2022) beräknades gradienten av magnetfältets magnitud för att härleda icke-stationärt beteende och identifierade potentiella fall av chockreformation och andra beteenden. Genom analys av MMS-mätningarna erhölls viss insikt i de icke-stationära egenskaperna hos chocker med hjälp av gradienten av magnetfältet, men ytterligare analys krävs för att förbättra metoden för framtida tillämpningar.

Page generated in 0.0607 seconds