Spelling suggestions: "subject:"combined fewer"" "subject:"combined newer""
11 |
The effect of combined sewer overflows on the abundance of antibiotic resistance genes and bacteria in the James RiverLevengood, Enjolie 01 January 2017 (has links)
Antibiotic resistance is a major threat to human health. Clinical situations are the main focus for antibiotic resistance research, but understanding the spread of resistance in the environment is also vital. A major contributor to this spread is wastewater from combined sewer overflow (CSO) events. The effect of CSO events on antibiotic resistance in the James River near Richmond, Virginia was studied using genomic and microbiological approaches. The abundance of genes associated with resistance to quinolones (qnrA) and tetracycline (tetW) was strongly correlated with the presence of fecal indicator bacteria (E. coli abundance) as well as total nitrogen and phosphorus loads, which suggests an anthropogenic source of these genes. Abundance of the blaTEM gene, which confers resistance to β-lactam antibiotics, was elevated during CSO events and increased with precipitation and river discharge. Bacteria isolated during a CSO event were resistant to more antibiotics and had higher multi-drug resistance when compared to isolates from a non-event. This study demonstrated that CSO events are contributing to the spread of antibiotic resistance.
|
12 |
Sewer Overflows and the Vector Mosquito Proximity to Human West Nile Virus InfectionsBowers, Andrea Simone 01 January 2015 (has links)
DeKalb and Fulton Counties, which share the metropolitan Atlanta area, have seen an increase in West Nile infected vector mosquitoes; the increase is associated with close proximity to combined sewer overflow facilities. Despite completion of the remediation system in 2008, the mosquito population testing positive for West Nile virus has increased each year from 2010 through 2012. Guided by the Geographical Information System framework and using spatial analysis and regression analyses, this study described and quantified the relationship between sewer system overflows and amplification of vector mosquitoes; an additional goal was to investigate their proximity to human cases of West Nile VIrus (WNV) infections. Comparing the prominence of all WNV vectors revealed how different mosquito species occupy the area. The Culex species was not detected in adult surveillance in 2012; however, the infection rate of mosquito pools increased by 15% and the human infection more than doubled. The influence of sewer system overflows became pronounced when this study analysis also identified that a proportion of West Nile-virus positive mosquito pools was significantly higher in approximately 58% of trap sites within 1 km of sewer overflow events and 30% over 1 km distance from sewer overflow events. Thus, the research contributes to shared information both in support of previous findings and considering novel sources that contribute to the proliferation of WNV. This research can help reduce the rate of WNV infection and decrease the resources needed to protect the public.
|
13 |
The application of A/O-MBR system for domestic wastewater treatment in Hanoi / Ứng dụng công nghệ A/O kết hợp màng vi lọc để xử lý nước thải sinh hoạt ở Hà NộiTran, Thi Viet Nga, Tran, Hoai Son 06 August 2012 (has links) (PDF)
The study aims to investigate an appropriate wastewater treatment process to treat domestic wastewater in Hanoi City which contain low-strength for COD (120-200 mg/L) but high in nitrogen content (10-40 mg/L). A lab scale anoxic-oxic system with a hollow fiber-Membrane Separation Bioreactor was operated at a flow rate of 5-10 L/h over a period of 150 days. The reactor was operated at different sludge recirculation rates. The MBR maintained relatively constant transmembrane pressure. During 150 days of reactor operation, treated water quality have COD of around 20 mg/L, NH4-N of less than 1 mg/L, NO3-N of less than 5 mg/L. The system shows good and stable efficiency for organic matter and nitrogen removal without adding an external carbon source and coagulants. The results based on the study indicated that the proposed process configuration has potential to treat the low-strength wastewater in Hanoi. / Mục tiêu của nghiên cứu là đề xuất được một công nghệ hiệu quả và phù hợp để xử lý nước thải sinh họat ở các đô thị của Việt nam, là loại nước thải được thu gom từ hệ thống thoát nước chung có nồng độ chất hữu cơ thấp (COD 120-200 mg/l) nhưng hàm lượng chất dinh dưỡng như Nitơ, Phốt pho khá cao (T-N: 10-40 mg/L). Chúng tôi đã nghiên cứu và vận hành chạy thử mô hình xử lý sinh học yếm khí - kỵ khí (AO) kết hợp với màng vi lọc ở quy mô mô hình phòng thí nghiệm (công suất 5-10 L/h) ở các chế độ công suất bùn tuần hoàn khác nhau. Kết quả xử lý trong thời gian 5 tháng vận hành mô hình cho thấy chất lượng nước thải sau xử lý có hàm lượng COD nhỏ hơn 20 mg/L, NH4-N nhỏ hơn 1 mg/L, NO3-N nhỏ hơn 5 mg/L. Hiệu suất xử lý chất hữu cơ và chất dinh dưỡng rất ổn định và hệ thống không phải sử dụng các nguồn bổ sung chất hữu cơ hay các hóa chất trợ lắng như các công nghệ đang áp dụng.
Kết quả cho thấy công nghệ AO kết hợp màng vi lọc có khả năng áp dụng thực tế, phù hợp với những nơi có quỹ đất nhỏ, chất lượng nước sau xử lý rất cao có thể phục vụ cho mục đích tái sử dụng.
|
14 |
The Effect of Physicochemical Properties of Wastewater Flocs on UV Disinfection Following Hydrodynamic Particle BreakageBest, Robert 20 December 2012 (has links)
This study showed that hydrodynamic particle breakage had potential as a method to help improve the disinfection of wastewater effluents. The physicochemical properties of flocs from four distinct effluents sources (combined sewer overflow, settled combined sewer overflow, primary effluent, and final effluent) were compared before and after hydrodynamic treatment. The use of hydrodynamic force to cause floc breakage was shown to be effective, though variable, across all source types. This variation in floc breakage did not have a significant impact on the UV disinfection achieved, as the UV dose kinetics were similar across samples from the same source type. The results of this study demonstrate how the physicochemical properties of floc are affected when exposed to shear force. These observations further the understanding of floc composition and behaviour when shear forces are applied while also providing evidence to indicate this process improves the performance of UV disinfection technology.
|
15 |
A geographic approach to modeling the impact of green roofs on combined sewer overflows in the BronxHartman, Danielle M. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Geography." Includes bibliographical references (p. 119-124).
|
16 |
Multivariate Time-Series Data Requirements in Deep Learning ModelsChalla, Harshitha 01 October 2021 (has links)
No description available.
|
17 |
Characterization of domestic wastewater discharge and its impact on material flows in urban Hue, Vietnam / ベトナム国フエ都市部における生活排水の排出特性及び物質フローへの影響Tran, Nguyen Quynh Anh 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第20039号 / 地環博第155号 / 新制||地環||31(附属図書館) / 33135 / 京都大学大学院地球環境学舎環境マネジメント専攻 / (主査)教授 藤井 滋穂, 准教授 田中 周平, 准教授 大下 和徹 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
|
18 |
Impact of Stormwater reuse (Rainwater Harvesting) in areas with combined sewer networkHamid, Roaa January 2019 (has links)
Due to the combined effect of intense rainfall events together with the expected impact of climate change, this will put pressure on the existing and future infrastructure for storm water management. One of the challenges related to this is the combined sewer system which is still operating in large areas of many cities worldwide. In Stockholm, combined sewer represents around 50% of the total sewer pipe length. In a Combined sewer system, once the conveyed discharge exceeds the system capacity, the system overflows, which can result in a diverse range of health and environmental problems. The cause of overflow has been strongly linked to runoff from intense rainfall events. Therefore, a key proposal to overcome this problem is to disconnect runoff from hard surfaces. This research aims to investigate the impact of applying a rainwater harvesting (RWH) and reuse system to collect runoff water from roof surfaces in areas with combined sewer system. A simulation water balance model for a rooftop RWH system was developed and two reuse purposes were considered, which entails toilet flushing and garden irrigation within the property. The study area consists of one building block within Kungsholmen area in Stockholm. The obtained results indicate that applying such systems can reduce runoff to the sewer system. Toilet flushing reuse shows a higher reduction impact on sewer flow than the use for irrigation. Toilet flushing reuse reduces annual runoff volumes to sewer in a range of 49.5% - 93.4% while irrigation provided reduction in a range of 11.6% - 26.3%. Regarding number of times that overflow from the combined sewer system occurs, toilet flushing reuse demonstrated reduction of 40% - 100% while 20% to 60% was reduced by irrigation reuse. For overflow volume, a reduction rate of 11% to 100% was reached through toilet flushing in contrast to 9% to 43% reduction from irrigation reuse. 19% to 37% of toilet flushing water demand was covered by the tank, while arange of 48% to 100% was covered for irrigation demand. All these parameters were found to be sensitive to change in tank size where increasing the size result in higher flow reduction rates. When considering implementing a reuse system, it is important to consider the applicability of RWH and reuse within the specific property. In areas that are under development, either of the two reuses can be considered depending on local conditions. However, in already built up area it is difficult to introduce a system that requires significant adjustment to existing pipe networks, such as reuse systems for toilet flushing. Systems for outdoor irrigation are possible to implement in most situations. When it comes to tank size, the optimal size will depend on the intended reuse, the catchment area and the objective of the system. For example, if the main objective is to reduce potable water consumption, a smaller tank can be used compared to where the main objective is to reduce sewer overflow. Hence, when considering implementing a rainwater reuse systems, each project will need to consider the local conditions as well as the individual objectives when determining the optimal reuse purpose and tank size. A cost-benefit analysis should also be considered when determining the optimal tank size for the intended use.
|
19 |
Natural Air Circulation Model Development for The DigIndy TunnelLuis Carlos Maldonado jaime (11191881) 28 July 2021 (has links)
The DigIndy tunnel is an
extension of the Indianapolis combined sewer system that stores the combined
sewer overflow during heavy rain conditions. The tunnel system has several
openings in and around the city of Indianapolis. Gasses emitted from the tunnel
may create health concerns and affect the quality of life for nearby residents.
Understanding the air circulation patterns provides valuable insight into where
gases are likely to emerge from the tunnel and what steps may be taken to
mitigate gas emissions in undesirable locations. The objective of the present
work is to develop a computational fluid dynamics (CFD) model capable of
predicting the air circulation patterns in the DigIndy tunnel under dry weather
conditions. In order to inform and validate the CFD model, an experimental
campaign was designed and executed to measure weather data and air flow rates
within the DigIndy tunnel. Obtaining accurate results requires careful
consideration of key physical phenomena to include in the model, geometric
simplification strategies, mesh generation strategies, and numerical modeling
strategies. Results showed that the seasonal effect, manifest by thermally-driven
flow, plays a significant role in the air circulation patterns within the
tunnel. Furthermore, results show that tunnel alignment affects the natural air
circulation within the tunnel. Large diameter shafts, as the working and
retrieval shafts, lead to significant circulation rates in the new tunnel
alignments.
|
20 |
The application of A/O-MBR system for domestic wastewater treatment in Hanoi: Research ArticleTran, Thi Viet Nga, Tran, Hoai Son 06 August 2012 (has links)
The study aims to investigate an appropriate wastewater treatment process to treat domestic wastewater in Hanoi City which contain low-strength for COD (120-200 mg/L) but high in nitrogen content (10-40 mg/L). A lab scale anoxic-oxic system with a hollow fiber-Membrane Separation Bioreactor was operated at a flow rate of 5-10 L/h over a period of 150 days. The reactor was operated at different sludge recirculation rates. The MBR maintained relatively constant transmembrane pressure. During 150 days of reactor operation, treated water quality have COD of around 20 mg/L, NH4-N of less than 1 mg/L, NO3-N of less than 5 mg/L. The system shows good and stable efficiency for organic matter and nitrogen removal without adding an external carbon source and coagulants. The results based on the study indicated that the proposed process configuration has potential to treat the low-strength wastewater in Hanoi. / Mục tiêu của nghiên cứu là đề xuất được một công nghệ hiệu quả và phù hợp để xử lý nước thải sinh họat ở các đô thị của Việt nam, là loại nước thải được thu gom từ hệ thống thoát nước chung có nồng độ chất hữu cơ thấp (COD 120-200 mg/l) nhưng hàm lượng chất dinh dưỡng như Nitơ, Phốt pho khá cao (T-N: 10-40 mg/L). Chúng tôi đã nghiên cứu và vận hành chạy thử mô hình xử lý sinh học yếm khí - kỵ khí (AO) kết hợp với màng vi lọc ở quy mô mô hình phòng thí nghiệm (công suất 5-10 L/h) ở các chế độ công suất bùn tuần hoàn khác nhau. Kết quả xử lý trong thời gian 5 tháng vận hành mô hình cho thấy chất lượng nước thải sau xử lý có hàm lượng COD nhỏ hơn 20 mg/L, NH4-N nhỏ hơn 1 mg/L, NO3-N nhỏ hơn 5 mg/L. Hiệu suất xử lý chất hữu cơ và chất dinh dưỡng rất ổn định và hệ thống không phải sử dụng các nguồn bổ sung chất hữu cơ hay các hóa chất trợ lắng như các công nghệ đang áp dụng.
Kết quả cho thấy công nghệ AO kết hợp màng vi lọc có khả năng áp dụng thực tế, phù hợp với những nơi có quỹ đất nhỏ, chất lượng nước sau xử lý rất cao có thể phục vụ cho mục đích tái sử dụng.
|
Page generated in 0.165 seconds