1 |
Richardson Extrapolation-Based High Accuracy High Efficiency Computation for Partial Differential EquationsDai, Ruxin 01 January 2014 (has links)
In this dissertation, Richardson extrapolation and other computational techniques are used to develop a series of high accuracy high efficiency solution techniques for solving partial differential equations (PDEs).
A Richardson extrapolation-based sixth-order method with multiple coarse grid (MCG) updating strategy is developed for 2D and 3D steady-state equations on uniform grids. Richardson extrapolation is applied to explicitly obtain a sixth-order solution on the coarse grid from two fourth-order solutions with different related scale grids. The MCG updating strategy directly computes a sixth-order solution on the fine grid by using various combinations of multiple coarse grids. A multiscale multigrid (MSMG) method is used to solve the linear systems resulting from fourth-order compact (FOC) discretizations. Numerical investigations show that the proposed methods compute high accuracy solutions and have better computational efficiency and scalability than the existing Richardson extrapolation-based sixth order method with iterative operator based interpolation.
Completed Richardson extrapolation is explored to compute sixth-order solutions on the entire fine grid. The correction between the fourth-order solution and the extrapolated sixth-order solution rather than the extrapolated sixth-order solution is involved in the interpolation process to compute sixth-order solutions for all fine grid points. The completed Richardson extrapolation does not involve significant computational cost, thus it can reach high accuracy and high efficiency goals at the same time.
There are three different techniques worked with Richardson extrapolation for computing fine grid sixth-order solutions, which are the iterative operator based interpolation, the MCG updating strategy and the completed Richardson extrapolation. In order to compare the accuracy of these Richardson extrapolation-based sixth-order methods, truncation error analysis is conducted on solving a 2D Poisson equation. Numerical comparisons are also carried out to verify the theoretical analysis.
Richardson extrapolation-based high accuracy high efficiency computation is extended to solve unsteady-state equations. A higher-order alternating direction implicit (ADI) method with completed Richardson extrapolation is developed for solving unsteady 2D convection-diffusion equations. The completed Richardson extrapolation is used to improve the accuracy of the solution obtained from a high-order ADI method in spatial and temporal domains simultaneously. Stability analysis is given to show the effects of Richardson extrapolation on stable numerical solutions from the underlying ADI method.
|
2 |
Analysis and Implementation of High-Order Compact Finite Difference SchemesTyler, Jonathan G. 30 November 2007 (has links) (PDF)
The derivation of centered compact schemes at interior and boundary grid points is performed and an analysis of stability and computational efficiency is given. Compact schemes are high order implicit methods for numerical solutions of initial and/or boundary value problems modeled by differential equations. These schemes generally require smaller stencils than the traditional explicit finite difference counterparts. To avoid numerical instabilities at and near boundaries and in regions of mesh non-uniformity, a numerical filtering technique is employed. Experiments for non-stationary linear problems (convection, heat conduction) and also for nonlinear problems (Burgers' and KdV equations) were performed. The compact solvers were combined with Euler and fourth-order Runge-Kutta time differencing. In most cases, the order of convergence of the numerical solution to the exact solution was the same as the formal order of accuracy of the compact schemes employed.
|
3 |
Study of Vortex Ring Dynamics in the Nonlinear Schrödinger Equation Utilizing GPU-Accelerated High-Order Compact Numerical IntegratorsCaplan, Ronald Meyer 01 January 2012 (has links)
We numerically study the dynamics and interactions of vortex rings in the nonlinear Schrödinger equation (NLSE). Single ring dynamics for both bright and dark vortex rings are explored including their traverse velocity, stability, and perturbations resulting in quadrupole oscillations. Multi-ring dynamics of dark vortex rings are investigated, including scattering and merging of two colliding rings, leapfrogging interactions of co-traveling rings, as well as co-moving steady-state multi-ring ensembles. Simulations of choreographed multi-ring setups are also performed, leading to intriguing interaction dynamics.
Due to the inherent lack of a close form solution for vortex rings and the dimensionality where they live, efficient numerical methods to integrate the NLSE have to be developed in order to perform the extensive number of required simulations. To facilitate this, compact high-order numerical schemes for the spatial derivatives are developed which include a new semi-compact modulus-squared Dirichlet boundary condition. The schemes are combined with a fourth-order Runge-Kutta time-stepping scheme in order to keep the overall method fully explicit. To ensure efficient use of the schemes, a stability analysis is performed to find bounds on the largest usable time step-size as a function of the spatial step-size.
The numerical methods are implemented into codes which are run on NVIDIA graphic processing unit (GPU) parallel architectures. The codes running on the GPU are shown to be many times faster than their serial counterparts. The codes are developed with future usability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with a MEX-compiler interface. Reproducibility of results is achieved by combining the codes into a code package called NLSEmagic which is freely distributed on a dedicated website.
|
4 |
Méthodes compactes d’ordre élevé pour les écoulements présentant des discontinuités / High-order compact schemes for discontinuous flow field simulationLamouroux, Raphaël 02 December 2016 (has links)
Dans le cadre du développement récent des schémas numériques compacts d’ordre élevé, tels que la méthode de Galerkin discontinu (discontinuous Galerkin) ou la méthode des différences spectrales (spectral differences), nous nous intéressons aux difficultés liées à l’utilisation de ces méthodes lors de la simulation de solutions discontinues.L’utilisation par ces schémas numériques d’une représentation polynomiale des champs les prédisposent à fournir des solutions fortement oscillantes aux abords des discontinuités. Ces oscillations pouvant aller jusqu’à l’arrêt du processus de simulation, l’utilisation d’un dispositif numérique de détection et de contrôle de ces oscillations est alors un prérequis nécessaire au bon déroulement du calcul. Les processus de limitation les plus courants tels que les algorithmes WENO ou l’utilisation d’une viscosité artificielle ont d’ores et déjà été adaptés aux différentes méthodes compactes d’ordres élevés et ont permis d’appliquer ces méthodes à la classe des écoulements compressibles. Les différences entre les stencils utilisés par ces processus de limitation et les schémas numériques compacts peuvent néanmoins être une source importante de perte de performances. Dans cette thèse nous détaillons les concepts et le cheminement permettant d’aboutir à la définition d’un processus de limitation compact adapté à la description polynomiale des champs. Suite à une étude de configurations monodimensionnels, différentes projections polynomiales sont introduites et permettent la construction d’un processus de limitation préservant l’ordre élevé. Nous présentons ensuite l’extension de cette méthodologie à la simulation d’écoulements compressibles bidimensionnels et tridimensionnels. Nous avons en effet développé les schémas de discrétisation des différences spectrales dans un code CFD non structuré, massivement parallèle et basé historiquement sur une méthodologie volumes finis. Nous présentons en particulier différents résultats obtenus lors de la simulation de l’interaction entre une onde de choc et une couche limite turbulente. / Following the recent development of high order compact schemes such as the discontinuous Galerkin or the spectraldifferences, this thesis investigates the issues encountered with the simulation of discontinuous flows. High order compactschemes use polynomial representations which tends to introduce spurious oscillations around discontinuities that can lead to computational failure. To prevent the emergence of these numerical issues, it is necessary to improve the schemewith an additional procedure that can detect and control its behaviour in the neighbourhood of the discontinuities,usually referred to as a limiting procedure or a limiter. Most usual limiters include either the WENO procedure, TVB schemes or the use of an artificial viscosity. All of these solutions have already been adapted to high order compact schemes but none of these techniques takes a real advantage of the richness offered by the polynomial structure. What’s more, the original compactness of the scheme is generally deteriorated and losses of scalability can occur. This thesis investigates the concept of a compact limiter based on the polynomial structure of the solution. A monodimensional study allows us to define some algebraic projections that can be used as a high-order tool for the limiting procedure. The extension of this methodology is then evaluated thanks to the simulation of different 2D and 3D test cases. Those results have been obtained thanks to the development of a parallel solver which have been based on a existing unstructured finite volume CFD code. The different exposed studies detailed end up to the numerical simulation of the shock turbulent boundary layer.
|
5 |
Transport et production dans les écoulements turbulents de paroi à des nombres de Reynolds modérés / Transport and production in turbulent flows at moderate Reynolds numbersBauer, Frédéric 21 May 2015 (has links)
L'approche de simulation numérique directe est utilisée pour la simulation d'un écoulement en canal pleinement turbulent afin d'étudier l'influence des grandes échelles de l'écoulement ainsi que la dynamique du transport des contraintes de Reynolds et de la vorticité. Les simulations sont réalisées sur un domaine de calcul de grande taille afin de pouvoir capturer l'intégralité des grandes structures de l'écoulement, et portent sur une gamme relativement étendue de nombres de Reynolds (Reτ =180, 395, 590 et 1100) allant des écoulements faiblement turbulents à des écoulements modérément turbulents. L'invariance remarquable des fluctuations de vorticité normale est expliquée à travers une analyse spectrale de la vorticité. L'étude des différents termes du transport de l'intensité turbulente de la vorticité révèle par ailleurs que le pic de production de la vorticité transverse est situé à proximité immédiate de la paroi et pourrait ouvrir la voie à des stratégies de réduction de la traînée basées sur la réduction de la vorticité transverse. Le transport des contraintes de Reynolds dans la couche interne et dans la couche de recouvrement est également étudié. A proximité des parois, la dépendance des termes de transport avec le nombre de Reynolds dans les échelles internes montre que ces dernières ne suffisent pas à caractériser la dynamique des contraintes de Reynolds dans cette zone. Cette insuffisance des échelles internes nous a amenés à nous intéresser plus particulièrement au processus de production à travers les statistiques de la production conditionnées par le passage par niveau des fluctuations de la vitesse normale ou longitudinale. Cette étude nous a permis d'identifier les fluctuations qui contribuent le plus à la production et celles qui sont à l'origine de la dépendance avec le nombre de Reynolds. / The direct numerical simulations of a fully turbulent channel flow are investigated to study the large scales effects on the flow quantities such as the Reynolds stresses and vorticity transport processes. Large computational domains are used so as to cover the largest scales of the flow. The simulations are performed in a wide range of Reynolds numbers (Reτ=180, 395, 590 and 1100) going from weakly to moderately high Reynolds number turbulent flows. The invariance of the wall-normal vorticity fluctuations scaled in wall variables in the inner layer versus the Reynolds number is analyzed using a spectral analysis. The vorticity transport equations are investigated in detail, presumably for the first time. The transport mechanism of the Reynolds shear stresses are subsequently analyzed in the inner layer and the overlapping zone. In the wall layer, different terms of the Reynolds stresses transport expressed in inner scales depend on the Reynolds number. This scaling failure lead us to focus on the statistics of the production when the streamwise or normal velocity fluctuations cross a given level, through the conditional Palm statistics. The main aim is to identify those amplitudes of the fluctuations that contribute more to the production and those which are responsible for the production Reynolds dependence.
|
Page generated in 0.0556 seconds