• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 11
  • 1
  • Tagged with
  • 61
  • 61
  • 28
  • 25
  • 20
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Dependency constrained minimum spanning tree / Ãrvore geradora com dependÃncias mÃnima

Luiz Alberto do Carmo Viana 31 May 2016 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Introduzimos o problema de Ãrvore Geradora com DependÃncias MÃnima, AGDM(G,D,w), definido sobre um grafo G(V,E) e um digrafo D(E,A), cujos vÃrtices sÃo as arestas de G e cujos arcos definem dependÃncias entre tais arestas. O problema consiste em encontrar, dentre as Ãrvores geradoras do grafo G(V,E) que satisfaÃam as restriÃÃes de dependÃncia impostas pelo digrafo de entrada D(E,A), uma que tenha custo mÃnimo, segundo a ponderaÃÃo w das arestas de G. As restriÃÃes de dependÃncia exigem que uma aresta e de G sà pode fazer parte de uma soluÃÃo se for uma fonte em D ou se fizer parte da soluÃÃo alguma outra aresta à tal que o arco (e′, e) esteja em D. Provamos que decidir se hà soluÃÃo viÃvel para AGDM(G,D,w) à um problema NP-completo, mesmo quando G à um cacto cordal e D à a uniÃo de arborescÃncias de altura no mÃximo 2. Sua NP-completude tambÃm à mostrada ainda que G seja bipartido, as restriÃÃes de dependÃncia ocorram apenas entre arestas adjacentes de G e formem arborescÃncias de altura no mÃximo 2. Resultados idÃnticos sÃo obtidos para as variantes do problema onde, nas restriÃÃes de dependÃncia, substitui-se o requisito âalgumaâ por âexatamente umaâ ou âtodaâ. Para resolver o problema, apresentamos algumas formulaÃÃes de programaÃÃo inteira e desigualdades vÃlidas. Propomos uma estratÃgia para reduzir a dimensÃo do problema, excluindo arestas de G com base na estrutura de D. Avaliamos os modelos e algoritmos propostos usando instÃncias geradas aleatoriamente. Resultados computacionais sÃo reportados. / We introduce the Dependency Constrained Minimum Spanning Tree Problem, DCMST(G,D,w), defined over a graph G(V,E) and a digraph D(E,A), whose vertices are the edges of G and whose arcs describe dependency relations between these edges. Such problem consists of finding, among the spanning trees of G(V,E) satisfying the dependency constraints imposed by D(E,A), that one whose cost is minimum, according to a edgeweight function w. The dependency constraints impose that an edge e of G can be part of a solution either if it is a source in D or if some other edge e′, such that the arc (e′, e) is in D, is part of it as well. We prove that deciding whether there is a feasible solution to DCMST(G,D,w) is an NP-complete problem, even if G is a chordal cactus and D is a union of arborescences of height at most 2. NP-completeness also applies if G is bipartite, the dependency constraints occur only between adjacent edges of G and their related arcs describe arborescences whose height is at most 2. The same results are obtained for the problem variants which demand that, instead of âsomeâ, âexactly oneâor âallâdependencies be part of a solution. To solve the problem, we introduce some integer programming formulations and some valid inequalities. We propose a strategy to reduce the problem dimension by excluding some edges of G according to the structure of D. We evaluate the introduced models and algorithms using randomly generated instances. Computational results are reported.
52

Extração de aleatoriedade a partir de fontes defeituosas / Randomness extraction from weak random sources

Domingos Dellamonica Junior 27 March 2007 (has links)
Recentemente, Barak et al. (2004) exibiram construções de extratores e dispersores determinísticos (funções computáveis em tempo polinomial) com parâmetros melhores do que era anteriormente possível. Introduziremos os conceitos envolvidos em tal trabalho e mencionaremos suas aplicações; em particular, veremos como é possível obter cotas muito melhores para o problema Ramsey bipartido (um problema bem difícil) utilizando as construções descritas no artigo. Também apresentamos resultados originais para melhorar tais construções. Tais idéias são inspiradas no trabalho de Anup Rao (2005) e utilizam o recente êxito de Jean Bourgain (2005) em obter extratores que quebram a \"barreira 1/2\". / Recently, Barak et al. (2004) constructed explicit deterministic extractors and dispersers (these are polynomial-time computable functions) with much better parameters than what was known before. We introduce the concepts involved in such a construction and mention some of its applications; in particular, we describe how it is possible to obtain much better bounds for the bipartite Ramsey problem (a very hard problem) using the machinery developed in that paper. We also present some original results that improve on these constructions. They are inspired by the work of Anup Rao (2005) and uses the recent breakthrough of Jean Bourgain (2005) in obtaining 2-source extractors that break the \"1/2-barrier\".
53

Algoritmos para junções em digrafos acíclicos e uma aplicação na Antropologia / Algorithms for junctions in acyclic digraphs and an application in the Anthropology

Álvaro Junio Pereira Franco 18 December 2013 (has links)
Neste trabalho consideramos um problema da Antropologia. A modelagem de sociedades e casamentos de indivíduos é feita com grafos mistos e encontrar caminhos disjuntos é uma questão central no problema. O problema é NP-completo e, quando visto como um problema parametrizado, ele é W[1]-difícil. Alguns subproblemas que surgem durante o processo de obter uma solução para o problema, envolvem caminhos disjuntos e podem ser resolvidos em tempo polinomial. Implementamos algoritmos polinomiais que são usados em uma ferramenta desenvolvida para solucionar o problema na Antropologia considerado. Nossa solução funcionou bem para as sociedades fornecidas pelos nossos parceiros. / In this work we consider a problem from the Anthropology. The model of the societies and the marriages of individuals is done with mixed graphs and to find disjoint paths is a central question in the problem. The problem is NP-complete and W[1]-hard when it is considered a parameterized problem. Some subproblems that arise during the process to obtain a solution for the problem, involve disjoint paths and can be solved in polynomial time. We implemented some polynomial algorithms that are used in a tool developed to solve the problem in the Anthropology considered. Our solution worked well for the societies provided by our partners.
54

The k-hop connected dominating set problem: approximation algorithms and hardness results / O problema do conjunto dominante conexo com k-saltos: aproximação e complexidade

Coelho, Rafael Santos 13 June 2017 (has links)
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. / Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante conexo de k-saltos com cardinalidade mínima (Mink-CDS). Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau máximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro independente da ordem do grafo. Também discutimos a complexidade computacional do problema de se computar tal parâmetro. No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja razão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente, quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com um número polinomial de separadores minimais. Além disso, discutimos uma formulação de programação linear inteira para essa versão do problema e provamos resultados poliédricos a respeito de algumas das desigualdades que constituem o politopo associado à formulação.
55

Graph colorings and digraph subdivisions / Colorações de grafos e subdivisões de digrafos

Moura, Phablo Fernando Soares 30 March 2017 (has links)
The vertex coloring problem is a classic problem in graph theory that asks for a partition of the vertex set into a minimum number of stable sets. This thesis presents our studies on three vertex (re)coloring problems on graphs and on a problem related to a long-standing conjecture on subdivision of digraphs. Firstly, we address the convex recoloring problem in which an arbitrarily colored graph G is given and one wishes to find a minimum weight recoloring such that each color class induces a connected subgraph of G. We show inapproximability results, introduce an integer linear programming (ILP) formulation that models the problem and present some computational experiments using a column generation approach. The k-fold coloring problem is a generalization of the classic vertex coloring problem and consists in covering the vertex set of a graph by a minimum number of stable sets in such a way that every vertex is covered by at least k (possibly identical) stable sets. We present an ILP formulation for this problem and show a detailed polyhedral study of the polytope associated with this formulation. The last coloring problem studied in this thesis is the proper orientation problem. It consists in orienting the edge set of a given graph so that adjacent vertices have different in-degrees and the maximum in-degree is minimized. Clearly, the in-degrees induce a partition of the vertex set into stable sets, that is, a coloring (in the conventional sense) of the vertices. Our contributions in this problem are on hardness and upper bounds for bipartite graphs. Finally, we study a problem related to a conjecture of Mader from the eighties on subdivision of digraphs. This conjecture states that, for every acyclic digraph H, there exists an integer f(H) such that every digraph with minimum out-degree at least f(H) contains a subdivision of H as a subdigraph. We show evidences for this conjecture by proving that it holds for some particular classes of acyclic digraphs. / O problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.
56

Complexidade descritiva das lógicas de ordem superior com menor ponto fixo e análise de expressividade de algumas lógicas modais / Descriptive complexity of the logic of higher order with lower fixed point and analysis of expression of some modal logics

Freire, Cibele Matos January 2010 (has links)
Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-06-14T19:46:59Z No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-14T19:48:16Z (GMT) No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5) / Made available in DSpace on 2016-06-14T19:48:16Z (GMT). No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5) Previous issue date: 2010 / In Descriptive Complexity, we investigate the use of logics to characterize computational classes os problems through complexity. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the rst result in this area, other relations between logics and complexity classes have been established. Wellknown results usually involve rst-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the rst-order logic extended by the least xed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this dissertation, we will initially analyze the expressive power of some modal logics with respect to the decision problem REACH and see that is possible to express it with temporal logics CTL and CTL . We will also analyze the combined use of higher-order logics extended by the least xed-point operator and obtain as result that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i 2, does not collapse, that is, HOi(LFP) HOi+1(LFP) / Em Complexidade Descritiva investigamos o uso de logicas para caracterizar classes problemas pelo vies da complexidade. Desde 1974, quando Fagin provou que NP e capturado pela logica existencial de segunda-ordem, considerado o primeiro resultado da area, outras relac~oes entre logicas e classes de complexidade foram estabelecidas. Os resultados mais conhecidos normalmemte envolvem logica de primeira-ordem e suas extens~oes, e classes de complexidade polinomiais em tempo ou espaco. Alguns exemplos são que a l ogica de primeira-ordem estendida com o operador de menor ponto xo captura a clsse P e que a l ogica de segunda-ordem estendida com o operador de fecho transitivo captura a classe PSPACE. Nesta dissertação, analisaremos inicialmente a expressividade de algumas l ogicas modais com rela cão ao problema de decisão REACH e veremos que e poss vel express a-lo com as l ogicas temporais CTL e CTL . Analisaremos tamb em o uso combinado de l ogicas de ordem superior com o operador de menor ponto xo e obteremos como resultado que cada n vel dessa hierarquia captura cada n vel da hierarquia determin stica em tempo exponencial. Como corol ario, provamos que a hierarquia de HOi(LFP) não colapsa, ou seja, HOi(LFP) HOi+1(LFP) / FREIRE, Cibele Matos. Complexidade descritiva das lógicas de ordem superior com menor ponto fixo e análise de expressividade de algumas lógicas modais. 2010. 54 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2010.
57

Redução da complexidade computacional do método de estimação de ângulos de incidência através da diferença entre os valores singulares da matriz de covariância espacial / Computacional complexity reduction of direction-of-arrival estimation method through the difference between singular values from spatial covariance matrix

SILVA, Hugo Vinícius Leão e 13 March 2009 (has links)
Made available in DSpace on 2014-07-29T15:08:20Z (GMT). No. of bitstreams: 1 Dissertacao_Hugo_Silva.pdf: 1463961 bytes, checksum: 3a6b5b3e5e7db58659b1bb58d6d4cd66 (MD5) Previous issue date: 2009-03-13 / This work is concerned with the estimation of Direction-Of-Arrival (DOA) angles of plane waves impinging on a sensor array. Among all methods of estimation found in litera-ture, MODEX (MODE with eXtra roots) outstands for its performance and computational complexity. However, recently, a method called SEAD (SEArch of Direction by differential spectrum) was proposed. It has shown better estimation performance against noise than MODEX has. However, its computational complexity is prohibitive for real-time applications. In order to reduce it s computational complexity, a new estimate selection procedure on SEAD is proposed, that yields to significantly less candidate angles than before. Additionally, the introduction of iterative refinements on estimates has allowed improving resolution as well as complexity reduction / Este trabalho aborda o problema de estimação de ângulos de incidência (DOA) de ondas planas sobre um arranjo de sensores. Dentre os vários métodos encontrados na literatu-ra, o método MODEX (MODE with eXtra roots) se destaca por seu desempenho e complexi-dade computacional. Recentemente, foi proposto o método SEAD (SEArch of Direction by differential spectrum), que apresenta desempenho de estimação mais robusto que o MODEX aos efeitos do ruído, contudo, possui complexidade computacional proibitiva para aplicações de tempo-real. Na busca por reduzir esta complexidade computacional, este trabalho apresenta uma nova proposta de seleção de estimativas para o SEAD que gera uma quantidade signifi-cativamente menor de ângulos candidatos. Adicionalmente, a inserção de um processo iterati-vo de refinamento de soluções permitiu que a resolução do estimador fosse aprimorada em relação àquela inicialmente ajustada, além de reduzir a complexidade computacional da sele-ção
58

Graph colorings and digraph subdivisions / Colorações de grafos e subdivisões de digrafos

Phablo Fernando Soares Moura 30 March 2017 (has links)
The vertex coloring problem is a classic problem in graph theory that asks for a partition of the vertex set into a minimum number of stable sets. This thesis presents our studies on three vertex (re)coloring problems on graphs and on a problem related to a long-standing conjecture on subdivision of digraphs. Firstly, we address the convex recoloring problem in which an arbitrarily colored graph G is given and one wishes to find a minimum weight recoloring such that each color class induces a connected subgraph of G. We show inapproximability results, introduce an integer linear programming (ILP) formulation that models the problem and present some computational experiments using a column generation approach. The k-fold coloring problem is a generalization of the classic vertex coloring problem and consists in covering the vertex set of a graph by a minimum number of stable sets in such a way that every vertex is covered by at least k (possibly identical) stable sets. We present an ILP formulation for this problem and show a detailed polyhedral study of the polytope associated with this formulation. The last coloring problem studied in this thesis is the proper orientation problem. It consists in orienting the edge set of a given graph so that adjacent vertices have different in-degrees and the maximum in-degree is minimized. Clearly, the in-degrees induce a partition of the vertex set into stable sets, that is, a coloring (in the conventional sense) of the vertices. Our contributions in this problem are on hardness and upper bounds for bipartite graphs. Finally, we study a problem related to a conjecture of Mader from the eighties on subdivision of digraphs. This conjecture states that, for every acyclic digraph H, there exists an integer f(H) such that every digraph with minimum out-degree at least f(H) contains a subdivision of H as a subdigraph. We show evidences for this conjecture by proving that it holds for some particular classes of acyclic digraphs. / O problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.
59

The k-hop connected dominating set problem: approximation algorithms and hardness results / O problema do conjunto dominante conexo com k-saltos: aproximação e complexidade

Rafael Santos Coelho 13 June 2017 (has links)
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. / Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante conexo de k-saltos com cardinalidade mínima (Mink-CDS). Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau máximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro independente da ordem do grafo. Também discutimos a complexidade computacional do problema de se computar tal parâmetro. No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja razão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente, quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com um número polinomial de separadores minimais. Além disso, discutimos uma formulação de programação linear inteira para essa versão do problema e provamos resultados poliédricos a respeito de algumas das desigualdades que constituem o politopo associado à formulação.
60

[pt] DETECÇÃO DE SINAIS EM SISTEMAS OFDM OPERANDO EM CANAIS QUE VARIAM RAPIDAMENTE NO TEMPO / [en] SIGNAL DETECTION IN OFDM SYSTEMS OVER FAST TIME-VARYING CHANNELS

LAISA OLIVEIRA CARVALHO 19 December 2019 (has links)
[pt] Este trabalho tem como finalidade analisar diferentes estratégias de detecção passíveis de aplicação em sistemas de transmissão OFDM (Orthogonal Frequency Division Multiplexing) operando em canais que variam rapidamente no tempo. Além dos métodos clássicos de detecção lineares tais como filtro casado, Zero Forcing e MMSE (Minimum Mean-Square Error), outras duas técnicas são estudadas, abrangendo também combinações entre elas. A primeira é a técnica de cancelamento paralelo de interferência (PIC - Parallel Interference Cancellation), a segunda é a detecção por busca por verossimilhança ascendente (LAS – Likelihood Ascent Search), ambas empregadas em conjunção com o filtro casado. Esse trabalho apresenta também um estudo dos efeitos de uma estimativa imperfeita do canal, no desempenho dos esquemas de detecção aqui enfocados. Os resultados dos experimentos são analisados em termos da taxa de erro de bit (BER) e custo computacional (complexidade)associado a estes esquemas. / [en] This work analyzing different detection strategies that can be applied in OFDM (Orthogonal Frequency Division Multiplexing) transmission systems over fast time-varying channels. In addition to classical linear methods of detection such as a Matched Filter, Zero Forcing and MMSE, two other techniques are studied, also encompassing combinations of them. The first is the Parallel Interference Cancellation (PIC) technique, the second is Likelihood Ascent Search (LAS), both used in conjunction with the Matched Filter. This work also presents a study of the effects of imperfect channel estimation on the performance of the detection schemes studied here. The results of the experiments are analyzed in terms of bit error rate (BER) and computational cost (complexity) associated with these schemes.

Page generated in 0.1225 seconds