• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • Tagged with
  • 35
  • 35
  • 12
  • 10
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Protection de composés bioactifs hydrosolubles et liposolubles par encapsulation dans une émulsion multiple

Reid, Alexandra 17 April 2018 (has links)
En raison de la perception du caractère santé des jus de fruits par les consommateurs, il serait intéressant de développer des jus de fruit fonctionnels par l'ajout de composés bioactifs. Or, nombreux sont les composés bioactifs qui sont sensibles aux procédés de transformation des aliments et à leurs conditions d'entreposage. Une technique originale d'encapsulation par emulsion multiple (E1/H/E2) pour différents composés bioactifs a été développée. Le type d'émulsifiant, leur concentration, les ratios d'eau et d'huile, les conditions d'agitation (temps, vitesse, température) et les caractéristiques des emulsions produites (viscosité, microscopie, granulométrie laser) ont été étudiés. La cinétique de stabilisation de la tension interfaciale et la concentration micellaire critique (CMC) ont été déterminées. De façon à valider le choix des concentrations optimales en émulsifiants, les isothermes de compression de Langmuir ont été mesurés. Des gouttelettes multiples (E1/H) d'un diamètre volumétrique d'environ 90 um contenant des gouttelettes aqueuses (E1) inférieures à 1 um ont été obtenues. Après 25 jours à température ambiante, le diamètre des gouttelettes multiples a atteint 110 um, indiquant une coalescence limitée. Les emulsions multiples protègent les acides gras oméga-3 et les composés hydrosolubles comme la vitamine C. Cependant, une portion de la vitamine C des emulsions multiples est instable physiquement et serait relarguée de la phase interne des emulsions vers la phase externe (dans le jus). L'effet de la température d'entreposage a montré que, quelque soit le type de composé encapsulé, il s'avère nécessaire de réfrigérer les jus à 4°C pour améliorer l'effet protecteur des emulsions.
12

Étude des mécanismes de formation d'hydrogels peptidiques issus de l'hydrolyse trypsique des protéines sériques et évaluation de leur capacité d'utilisation comme système de délivrance de composés bioactifs

Pimont Farge, Mathilde Garance Hélène 22 January 2024 (has links)
Titre de l'écran-titre (visionné le 15 décembre 2023) / Les peptides auto-assembleurs présentent des intérêts majeurs dans le secteur des nanotechnologies. Ils peuvent former des structures spécifiques capables de piéger des molécules bioactives et d'améliorer leur stabilité lors de la digestion gastro-intestinale. Plusieurs travaux ont montré que le peptide auto-assembleur f1-8 (β-Lg f1-8) généré par l'hydrolyse trypsique d'un isolat de protéines du lactosérum (IPL) formait un hydrogel après des étapes de concentration et de purification par filtration membranaire et lavage par centrifugation. Bien que ce procédé ne permettait pas de purifier le peptide β-Lg f1-8 avec le rendement attendu (~90%), un mélange peptidique complexe a été obtenu. Ces fractions peptidiques pourraient former des nanostructures capables de piéger des molécules bioactives. Une des applications ciblées serait donc d'utiliser ces fractions peptidiques pour la délivrance de composés bioactifs. Pour confirmer cette propriété, les interactions peptide-peptide impliquées dans la gélification des fractions peptidiques lors de la purification du peptide β-Lg f1-8 doivent être caractérisées afin de valider les mécanismes mis en jeu. Le premier objectif de cette thèse était de comprendre le processus de purification du β-Lg f1-8 et les interactions peptide-peptide impliquées. Pour cela, les fractions peptidiques obtenues lors des étapes de production du peptide β-Lg f1-8 ont été caractérisées en termes de profils peptidiques, de taux de pureté du peptide β-Lg f1-8 et de la capacité de gélification de chaque fraction. De manière générale, la pureté du β-Lg f1-8 était améliorée en augmentant le nombre de lavages. Néanmoins, malgré les faibles proportions en β-Lg f1-8 obtenues lors des premiers stades de lavage, la formation d'un hydrogel était tout de même constatée. Deux autres peptides (β-Lg f15-20 et β-Lg f41-60) identifiés dans des proportions importantes pourraient être impliqués dans la formation d'hydrogel. Il a été démontré qu'aux premiers stades de lavage, des interactions entre les différents peptides permettaient la formation d'un gel. À l'inverse, lorsque la pureté du β-Lg f1-8 était maximale, un cas particulier de gélification correspondant à l'auto-assemblage a été constaté. Le deuxième objectif de cette thèse visait à étudier l'impact de la concentration peptidique, de la température, du pH et de la concentration en β-Lg f1-8 sur la formation d'un hydrogel par une fraction peptidique issue de l'hydrolyse trypsique d'un isolat de protéines du lactosérum. De plus, l'impact des peptides β-Lg f15-20 et β-Lg f41-60 sur la formation de l'hydrogel par auto-assemblage du peptide β-Lg f1-8 a été déterminé. La formation d'hydrogel par les hydrolysats de protéines du lactosérum résultait d'un équilibre entre les liaisons hydrogène et les interactions hydrophobes et électrostatiques. Les interactions entre les peptides β-Lg f15-20 et β-Lg f41-60 et le peptide β-Lg f1-8 avaient un impact négatif sur l'auto-assemblage du β-Lg f1-8. Grâce aux résultats générés, un mécanisme pour la gélification des fractions peptidiques a été proposé. Le troisième objectif consistait à évaluer la capacité de l'hydrogel de peptide de lactosérum à piéger la curcumine, et à la protéger lors d'une digestion gastro-intestinale en système de digestion statique in vitro. Les résultats obtenus ont été comparés à ceux générés pour un gel d'isolat de protéines sériques (IPL). Une efficacité de piégeage de la curcumine de 91% dans l'hydrogel peptidique a été obtenue contre 99,9% pour le gel d'IPL. À la fin de la digestion intestinale, la rétention de la curcumine était de 98% dans l'hydrogel peptidique, alors qu'elle était de 90% pour le gel d'IPL. Contrairement à ce dernier, la préservation du réseau de nanofibres, et donc des interactions hydrophobes peptide-curcumine au cours de la digestion intestinale, pouvait expliquer cette plus faible libération de curcumine. Les travaux de cette thèse ont donc mis en évidence la capacité de formation d'hydrogel par des fractions peptidiques lors des étapes de purification du peptide β-Lg f1-8. Par ailleurs, la compréhension des mécanismes mis en jeu au cours de la formation d'hydrogel par des fractions peptidiques issues d'une hydrolyse d'un IPL a pu être significativement améliorée afin de proposer une application potentielle de ces fractions peptidiques comme système de piégeage de la curcumine. Finalement, cette étude a permis d'améliorer la compréhension de la libération de la curcumine par la β-lactoglobuline. En conséquence ces différentes conclusions représentent une contribution novatrice pour le développement de nanostructures issues de peptides naturels constituant des systèmes de délivrance de composés bioactifs. / Self-assembling peptides have recently attracted attention in the nanotechnology sector. They can form specific nanostructures with the ability to trap bioactive molecules and enhance their stability during gastro-intestinal digestion. Several works showed that the self-assembling peptide β-Lg f1-8 generated by the tryptic hydrolysis of a whey protein isolate (WPI) could form hydrogels after concentration and purification by membrane filtration and wash steps. Despite the non-optimized purification rate of β-Lg f1-8 reached during the different processing steps, a complex mixture of peptides was obtained. These peptide fractions formed nanostructures with entrapment capacity of bioactive molecules, particularly hydrophobic compounds. A possible application would be to use these peptide fractions for the bioactive compound delivery. To confirm this property, the peptide-peptide interactions involved in the gelation of peptide fractions during purification of the β-Lg f1-8 peptide need to be characterized in order to validate the mechanisms involved. The first objective of this thesis was to understand the purification process of β-Lg f1-8 and the peptide-peptide interactions involved. Thus, the peptide fractions obtained during the β-Lg f1-8 production were characterized for their peptide profiles, β-Lg f1-8 purity and the gelation capacity of each fraction. Overall, the relative proportion of β-Lg f1-8 was correlated with the number of wash steps. Nevertheless, despite the low proportions of β-Lg f1-8 obtained for early purification steps, hydrogel formation was observed. Two other peptides (β-Lg f15-20 and β-Lg f41-60) identified in significant proportions could be involved in hydrogel formation. At the beginning of the purification steps, interactions between peptides with the capacity to form gel were observed. On the contrary, when the purity of β-Lg f1-8 was maximal, gels were produced by self-assembling of β-Lg f1-8. The second objective of this thesis was to investigate the impact of peptide concentration, temperature, pH and β-Lg f1-8 concentration on hydrogel formation by a peptide fraction from the tryptic hydrolysis of a WPI. In addition, the impact of β-Lg f15-20 and β-Lg f41-60 peptides on the β-Lg f1-8 self-assembling was determined. Hydrogel formation by whey protein hydrolysates involved a balance between hydrogen bonds and hydrophobic and electrostatic interactions. The presence of the β-Lg f1-8 peptide initiated gelation by increasing the nanofiber density. Interactions between the β-Lg f15-20 and β-Lg f41-60 peptides and β-Lg f1-8 had a negative impact on β-Lg f1-8 self-assembling. Thanks to the results generated, a mechanism for the peptide fractions gelation was proposed. The third objective was to assess the ability of the whey peptide hydrogel to trap curcumin, widely used as a model hydrophobic bioactive compound, and to protect it from gastro-intestinal digestion in a static in vitro digestion system. The results obtained were compared with those obtained for a whey protein isolate gel. A curcumin entrapment efficiency of 91.0% was obtained in the peptide hydrogel versus 99.9% for the WPI gel. At the end of the intestinal digestion, curcumin retention was 98% in the peptide hydrogel, compared to 90% for the whey protein gel. In contrast to the whey protein gel, the preservation of the nanofiber network, and thus of hydrophobic peptide-curcumin interactions during intestinal digestion, could explain this lower curcumin release. The works carried out in this thesis showed that hydrogel formation occurred with peptide fractions obtained during the purification steps of β-Lg f1-8. Furthermore, understanding of the mechanisms involved in hydrogel formation by peptide fractions derived from hydrolysis of a WPI has been significantly improved to propose a potential application of these peptide fractions as curcumin trapping systems. Finally, this study has improved our understanding regarding the curcumin release from β-lactoglobulin. Consequently, this findings represent a relevant contribution to the development of nanostructures derived from natural peptides for bioactive compounds delivery systems.
13

Structural and functional studies of flavoenzymes involved in natural product biosynthesis

Manenda, Mahder Seifu 13 December 2023 (has links)
La découverte et l'application de produits naturels bioactifs en médecine humaine continuent d'attirer l'attention des scientifiques. De plus en plus de données montrent que les produits naturels ayant une valeur médicinale ont un taux de réussite plus élevé que les drogues purement synthétiques. En plus, les produits naturels bioactifs possèdent des propriétés stéréochimiques complexes qui compliquent leur synthèse totale en laboratoire. Il existe donc un effort soutenu pour découvrir de nouvelles voies de biosynthèse de produits naturels provenant de différents environnements et/ou de producteurs naturels afin d'obtenir une bioactivité plus efficace ou nouvelle. De tels efforts sur des bactéries ont révélé que le métabolisme secondaire riche de Streptomyces produit les deux tiers des produits bactériens naturels connus ayant une valeur médicinale. Les enzymes liant la flavine sont connues pour jouer un rôle crucial dans la catalyse de réactions uniques et difficiles dans plusieurs voies de biosynthèse de produits naturels chez les bactéries, les champignons et les plantes. Récemment, nos collaborateurs ont élucidé les voies de biosynthèse menant aux produits naturels piericidine et à la xiamycine. Ces voies contiennent deux flavoenzymes intéressantes, PieE et XiaI, qui catalysent les réactions de monooxygénation impliquant certaines similitudes et certaines différences. Ce projet de thèse a été conçu pour étudier les propriétés structurelles et fonctionnelles sous-jacentes à ces deux flavoenzymes en utilisant la cristallographie aux rayons X et des dosage enzymatiques comme méthodes principales. PieE est classé en tant que monooxygénase dépendante de la flavine à un composant, par opposition à XiaI, qui est une monooxygénase à liaison à la flavine à deux composants. Naturellement, PieE utilise deux sous-sites distincts pour la réduction de la flavine (position OUT) et son utilisation ultérieure en monooxygénation (position IN). Nous observons en effet cette dynamique dans nos structures et ceci a également été rapporté auparavant pour d'autres protéines apparentées dans le groupe A des monooxygénases flavine-dépendantes. Cependant, une étude systématique des différentes structures cristallines de PieE en complexe avec flavin adenine nucleotide (FAD) et avec son substrat ainsi que d'autres monooxygénases flavine-dépendantes du groupe A nous a permis d'identifier la position «glissante» de FAD qui relie les positions OUT et IN qui n'avait pas été signalée auparavant. De plus, une analyse minutieuse de la structure de PieE et des enzymes qui s'y rapportent nous a amenés à identifier la présence d'un ion chlorure que l'on trouve près de la position IN de ces enzymes et qui avait déjà été confondu avec une molécule d'eau. Cet ion chlorure semble verrouiller la flavine dans cette position IN et inhiber sa réduction, comme le confirment les dosages enzymatiques en présence ou en l'absence de celle-ci. D'autre part, XiaI interagit avec la flavine d'une manière totalement différente. XiaI et les enzymes apparentées ont une plus grande affinité pour la flavine réduite par rapport à la flavine oxydée. Les déterminants structurels dictant cette différence n'avaient pas été observés auparavant. En déterminant la structure cristalline aux rayons X de XiaI dans différentes conditions réductrices, nous avons pu observer des changements significatifs dans les éléments de structure secondaire locaux de la protéine. Ces changements incluent la «fusion» d'une hélice C-terminale qui semble non seulement «ouvrir» le site de liaison de la flavine, mais également déclencher une structuration à l'échelle du tétramère des régions de boucle moyenne de la protéine. Ces événements semblent conduire à la réorganisation du site catalytique de l'enzyme. Nous avons également observé un mouvement de la région de boucle F123 avec un rôle potentiel d'accueil ou d'éjection de la flavine. Ces observations appellent des recherches plus approfondies sur la dynamique de XiaI et des enzymes de liaison à la flavine à deux composants apparentés en relation avec leur interaction différentielle avec le cofacteur de la flavine. Globalement, nous avons observé des évènements structurels uniques chez PieE et XiaI après la liaison avec leur substrat ou leur cofacteur. Ces observations soulignent l'importance de déterminer les structures cristallines et la activité d'une même protéine dans différentes conditions pour attraper des instantanés de possibles mouvements dynamiques fonctionnels qui pourraient autrement être manqués. Nos résultats fournissent les bases d'une étude plus approfondie de la dynamique dans ces deux systèmes, qui concerne d'autres protéines ayant une dynamique similaire mais des fonctions différentes. / The discovery and application of bioactive natural products in human medicine continues to attract scientific interest. Increasing amount of data show that natural products of medicinal value have more hit-rates than purely synthetic molecules and usually show complex stereo chemical properties that complicate their total laboratory synthesis. Hence, there is a sustained effort to discover new natural product biosynthetic pathways from different environments and/or natural producers to obtain more efficient or new bioactivities. Such efforts in bacteria revealed that the rich secondary metabolism of Streptomyces produces two-third of known bacterial natural products of medicinal value. Flavin-binding enzymes are known to play a crucial role in catalyzing unique and challenging reactions in numerous natural product biosynthetic pathways in Streptomyces, fungi and plants. Recently, our collaborators elucidated the biosynthetic pathways leading to the synthesis of piericidin A1 and xiamycin. The pathways contain two interesting flavoenzymes, PieE and XiaI that catalyze monooxygenation reactions involving some similarities and certain differences. This doctoral project was designed to investigate the underlying structural and functional properties of these two flavoenzymes using X-ray crystallography and enzymatic assays as the main experimental approaches. PieE is classified as a one-component flavin-dependent monooxygenase as opposed to XiaI which is a two-component flavin-binding monooxygenase. Naturally, PieE uses two distinct sub-sites forthe reduction of flavin (OUT position) and its subsequent use in monooxygenation (IN position). We indeed observed this dynamics in our structures and this has also been reported before for other related proteins in the group A flavin-dependent monooxygenases. However, a systematic investigation of different crystal structures of PieE in complex with FAD and with its substrate as well as other group A Flavin-dependent monooxygenases enabled us to identify a "sliding" position of FAD that bridges the OUT and IN positions that had not been reported before. Moreover, a careful analysis of the structure of PieE and related enzymes has led us to identify the presence of a chloride ion that is found near the IN position of these enzymes that has at times been mistaken for a water molecule in other group A monooxygenases. This chloride ion seems to lock the flavin in this IN position and inhibit its reduction as confirmed by enzymatic assays in its presence or absence. On the other hand, XiaI interacts with flavin in a totally different manner. XiaI's close relatives were reported to have higher affinity to reduced flavin compared to the oxidized one. The structural determinants dictating this difference have not been reported before. By determining the X-ray crystal structure of XiaI under different reducing an aerobic conditions, we were able to observe significant changes in local secondary structure elements of the protein. These changes include "melting" of a C-terminal helix that seems to not only "open up" the flavin binding-site but also to trigger a tetramer-wide structuring of middle loop regions of the protein. These events seem to lead to the reorganization of the catalytic site of the enzyme. We have also observed movement of the F123 loop region with a potential role of flavin welcoming or ejection. These observations call for further investigation of the dynamics in XiaI and related two-component flavin-binding enzymes in relation to their differential interaction with the flavin cofactor. Overall, we have observed unique structural events in both PieE and XiaI that follow substrate or cofactor binding. These observations point to the importance of determining crystal structures and activity of the same protein in different conditions to trap snap-shots of possible functional dynamic movements that could otherwise be difficult to predict. Our results lay the ground for further study of dynamics in both these systems as it relates to other proteins with similar dynamics but different functions.
14

Fabrication d'extraits bioactifs bénéfiques pour la santé et riches en glucoraphanine à partir de rejets industriels de Brassica oleracea (brocoli) en utilisant la technologie verte

Thomas, Minty 03 May 2024 (has links)
Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%... / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un IV matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à V l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Broccoli is an excellent source of nutraceutical compounds with many health effects such as anticancerous, anti-diabetic, antioxidant and anti-microbial properties. Glucosinolates, polyphenols, vitamins, minerals, dietary fibers are the most important molecules present in broccoli. The global annual production of broccoli is 21 million tons. It is estimated that 35-40% of the horticultural crops are lost due to inadequate agricultural practices, generating huge quantities of agro-waste. These lost crops, could be used as raw materials for the extraction and purification of bioactive ingredients for the nutraceutical and food industry. The main objective of this project was to develop an economical and environmental friendly technique for the fabrication of an extract rich in glucoraphanin from broccoli industrial discards, providing an alternative route for its valorization. This work predominantly focuses on the identification, characterization and quantification of glucosinolates and polyphenols present in 10 rejected lots of broccoli seeds and broccoli industrial residues such as florets, stalks and the mixture of florets and stalks. Additionally, the glucoraphanin extraction process was optimized using green solvents such as ethanol and water. Further, the glucoraphanin from crude broccoli extracts were purified using ion exchange resins by Response Surface Methodology, based on Box-Behnken Design (BBD) and Principle component analysis. Finally, pilot experiments were performed using the optimized parameters to verify their industrial applicability. The simultaneous characterization and quantification by UPLC MS/MS indicated the presence of 12 glucosinolates (predominantly glucoraphanin) and 5 polyphenols in broccoli by-products. The glucosinolates content varied from 0.2 to 2% dry weight (DW), whereas, the polyphenols were less than 0.02% DW. The relative abundance of glucoraphanin in broccoli by-products makes it a promising starting material for the fabrication of functional food supplements. Further, an eco-friendly, solvent based glucoraphanin extraction process was optimized for broccoli seeds and florets by-products. A single batch magnetically stirred extractor was found to maximize glucoraphanin extractability. The optimized extraction parameters were 50% and 70% aqueous ethanol extracted for 60 and 30 minutes at 60 and 23°C for seeds and florets by-products, respectively, using a feed to solvent ratio of 1:20. The optimized green process provided a glucoraphanin yield of 55.5 g/Kg DW seeds and 4.3 g/kg DW florets by-products. The green process developed in this study provided 37 and 81 times more glucoraphanin extractability than the standardized methanol based analytical technique. Finally, an environmental friendly and industrially feasible glucoraphanin purification process was developed using ion exchange resins by response surface approach for broccoli seeds and florets by-products. A 27 run, 3 level BBD, were proposed for cationic and anionic resins in series, to maximize the process responses. Glucoraphanin purification from broccoli seeds extract using cationic resin provided a maximal recovery of 94% and purity of 14% using 1:5 of feed to resin ratio for 30 min, at 80 rpm agitation speed and eluting solvent concentration of 100% water. For anionic resin, the experimental variables of 1:5, 140 min, 160 rpm and 7% ammonium hydroxide in 70% ethanol provided a process efficiency of 72% and a purity of 37%. Whereas, for broccoli florets industrial discards, the optimized process parameters for the purification of glucoraphanin were a feed to resin ratio of 1:1.87, contact time of 30 min, agitation speed of 80 rpm and eluting solvent of 100% water. Subsequent purification of the cationic extract using the anionic resin was performed using the optimized experimental parameters of feed to resin ratio of 1:1.3 for 170 min at 140 rpm and eluted using 7% ammonium hydroxide in 70% ethanol, providing a recovery of 78% and purity of 5%. Finally, the laboratory scale optimized extraction and purification process parameters was extrapolated onto the pilot scale for the fabrication of powdered extracts, indicated that the optimized process was highly efficient in recovering glucoraphanin with high purity even on large scale operation. Hence, the present study developed an efficient, industrially viable green process, for the fabrication of extracts from broccoli industrial discards. The optimized process provided an economically feasible alternative route for the valorization of the lost crop bringing us closer to food security and environmental sustainability.
15

Production de fractions antihypertensives par hydrolyses enzymatiques des protéines de lentilles d'eau

Bernier, Marie-Ève 15 January 2025 (has links)
Les lentilles d'eau, de petites plantes aquatiques flottantes, présentent un fort potentiel pour la production de peptides bioactifs. Cela est principalement dû à leur teneur en protéines, pouvant atteindre jusqu'à 45 % et à leur croissance exceptionnellement rapide, capable de doubler en seulement 24 à 48 heures. Dans ce contexte, les lentilles d'eau ont été hydrolysées pour obtenir des peptides antihypertenseurs potentiels. Les objectifs spécifiques de ce projet étaient les suivants : (1) Réaliser l'hydrolyse enzymatique des protéines de lentilles d'eau en utilisant quatre enzymes différentes (pepsine, chymotrypsine, papaïne et trypsine) et évaluer le degré d'hydrolyse (DH) des différents hydrolysats ; (2) évaluer l'impact de la centrifugation des hydrolysats en caractérisant les fractions obtenues et en identifiant les séquences peptidiques présentes ; (3) évaluer le contenu phénolique total (TPC) de chaque fraction avant et après centrifugation de l'hydrolysat, et (4) évaluer l'activité inhibitrice de l'enzyme de conversion de l'angiotensine (ECA) (activité antihypertensive) des fractions générées. Parmi les enzymes utilisées, la pepsine et la trypsine ont montré les plus hauts DHs, soit environ 9%. Les peptides présents dans les différentes fractions (hydrolysat final, surnageant et culot) ont été caractérisés à l'aide de l'UPLC-MS/MS, révélant des différences dans les populations peptidiques entre les fractions dérivées de différentes enzymes, ainsi qu'entre les diverses fractions obtenues à l'aide de la même enzyme. L'étape de centrifugation a donc permis la concentration de peptides spécifiques dans certaines fractions. Au total, 485 séquences peptidiques ont été identifiées dans les hydrolysats finaux. De ces séquences, 434 étaient spécifiques à un hydrolysat donné, tandis que 51 étaient communes à deux ou trois hydrolysats et aucune n'était commune aux quatre hydrolysats. L'analyse du contenu phénolique total (TPC) a révélé que les composés phénoliques étaient libérés lors des hydrolyses enzymatiques, principalement retrouvés dans les surnageants après centrifugation, avec des concentrations atteignant 11 mg d'acide gallique/g d'échantillon. Les fractions les plus prometteuses en ce qui concerne l'activité antihypertensive étaient l'hydrolysat chymotrypsique (CHY DFH), le surnageant chymotrypsique (CHY DS) et le surnageant de la papaïne (PAPA DS), présentant des valeurs d'IC$\mathsf{_{50}}$ de 0,55 ± 0,19; 0,70 ± 0,09 et 0,62 ± 0,11 mg peptides/mL respectivement. Ces fractions ne correspondent pas à celles récupérées des hydrolyses ayant le DH le plus élevé, ni à celles possédant le TPC le plus élevé, ce qui suggère que les peptides présents dans ces fractions pourraient être responsables de l'activité biologique observée. À notre connaissance, il s'agit de la première étude portant sur l'hydrolyse enzymatique des protéines de lentilles d'eau pour produire des fractions peptidiques ayant une activité antihypertensive. Selon la fraction analysée, l'inhibition de l'ECA peut être attribuée à des peptides bioactifs, à des composés phénoliques ou à une synergie entre les deux. L'hydrolyse effectuée avec la chymotrypsine et la papaïne a augmenté de manière significative l'activité inhibitrice de l'ECA de plus de huit fois et sept fois respectivement. Les fractions résultant de ces hydrolyses contiennent potentiellement des séquences ayant des propriétés antihypertensives, nécessitant ainsi des analyses complémentaires pour les révéler. / Water lentils, small floating aquatic plants, have significant potential to produce bioactive peptides. This is mainly due to their protein content, which can reach up to 45%, and their exceptionally fast growth, capable of doubling in just 24 to 48 hours. In this context, water lentils were hydrolysed to yield potential antihypertensive peptides. The specific objectives of this project were: (1) to perform enzymatic hydrolysis of duckweed proteins utilizing several enzymes (pepsin, chymotrypsin, papain and trypsin) and evaluate the degree of hydrolysis (DH) of the different hydrolysates; (2) to assess the impact of hydrolysate centrifugation by characterizing the fractions obtained and identifying the peptide sequences present; (3) to evaluate the total phenolic content (TPC) of each fraction before and after centrifugation of the hydrolysate, and (4) to evaluate inhibitory activity of angiotensin-converting enzyme (ACE) (antihypertensive activity) of the generated fractions. Among the enzyme used, pepsin and trypsin showed the ability to achieve the highest degree of hydrolysis (DH), approximately 9%. Peptides present in the various fractions (Final hydrolysate, supernatant and pellet) were characterized and identified using UPLC-MS/MS, unveiling differences in peptide populations between fractions derived from different enzymes, as well as between diverse fractions originating from the same enzyme. This underscored that the centrifugation step enabled the concentration of specific peptides within certain fractions. In total, 485 peptide sequences were identified in the final hydrolysates. Of these sequences, 434 were specific to a particular hydrolysate, while 51 were common to two or three hydrolysates, and none were common to all four hydrolysates. Analysis of total phenolic content (TPC) revealed that phenolic compounds were released during enzymatic hydrolysis, primarily found in the supernatants after centrifugation, with concentrations reaching up to 11 mg of gallic acid/g of sample. The most promising fractions in terms of antihypertensive activity were the chymotryptic hydrolysate (CHY DFH), the chymotryptic supernatant (CHY DS) and the papain supernatant (PAPA DS), with IC$\mathsf{_{50}}$ values of 0.55 ± 0.19, 0.70 ± 0.09 and 0.62 ± 0.11 mg peptides/mL, respectively. These fractions did not correspond to those recovered from the hydrolysates with the highest DH or the highest TPC. This suggests that the peptides present in these fractions may be responsible for the observed biological activity. To our knowledge, this was the first study to investigate the enzymatic hydrolysis of duckweed proteins to produce bioactive peptide fractions with antihypertensive activity. Depending on the fraction analyzed, ACE inhibition can be attributed to bioactive peptides, phenolic compounds, or a synergy between the two. The resulting fractions from these hydrolyses potentially contain sequences with antihypertensive properties, thus requiring additional analyses to reveal them.
16

Valorisation de coproduits de la viticulture, les sarments de vigne, comme source de polyphénols à activité fongicide / Viticultural bioproducts valorization, grapes canes, as fungicidal polyphenol bioresource

Houillé, Benjamin 14 December 2015 (has links)
Ce travail porte sur la valorisation de sarments de vigne comme source de polyphénols bioactifs. Après purification d’oligomères du resvératrol et hémi synthèse d’analogues du resvératrol, l’activité antifongique de ces molécules a été testée. Le 3,5-diméthoxyresvératrol a montré des activités intéressantes sur douze espèces du genre Candida. Pendant le stockage des sarments, une forte augmentation en E-resvératrol et E-picéatannol a lieu de façon thermo dépendante et l’expression des gènes PAL, C4H et STS participent à la biosynthèse de novo du E-resvératrol. Une infection par le mildiou au vignoble pendant la période de croissance modifie à la fois la composition et la répartition spatiale des stilbénoïdes dans les sarments. L’analyse métabolomique ciblée par UPLC-MS couplée à une analyse PLS-DA permet de discriminer les sarments selon leur génotype et de déterminer des métabotypes. La distance biochimique observée correspond à la distance génétique inter cépage. Ces résultats démontrent le potentiel antifongique des stilbènoïdes et permettent d’identifier quelques facteurs clés influençant la composition phytochimique des sarments de vigne. / This work aims at grape cane valorization as a source of bioactive polyphenols. After purifying E-resveratrol oligomers and obtaining E-resveratrol analogues through semi-synthesis, the antifungal activity of the compounds was evaluated. The 3,5-dimethoxyresveratrol exhibited interesting activity against twelves Candida species. During post-pruned grape cane storage, a strong and temperature dependent increase in E-resveratrol and E-piceatannol was observed and the expression of PAL, C4H, 4CL and STS genes contributed to a de novo biosynthesis of E-resveratrol. Downy mildew infection in vineyard during the growing season modified both the composition and the spatial distribution of stilbenoids in grape canes. UPLC-MS-based targeted metabolomics coupled to multivariate statistical analysis discriminates grape canes according to their genotypic origin and determines metabotypes. The observed biochemical distances between genotypes corresponded to genetic distances. Finally, results highlight the antifungal potential of stilbenoids and several key factors affecting the phytochemical composition of grape canes
17

Application de technologies avancées pour optimiser l'extraction et les propriétés nutritionnelles et bioactives de protéines de lentilles vertes canadiennes

Munger, Raphaëlle 12 December 2024 (has links)
Depuis quelques années, la demande en protéines durables est en constante augmentation. Les légumineuses, riches en protéines, peu coûteuses et représentant un acteur majeur de l'économie agricole du Canada, sont prometteuses pour assurer une offre adéquate en protéines. Dans ce projet, quatre technologies avancées (TA), nommément, le chauffage ohmique (OH), champs électriques pulsés (PEF), micro-ondes (MW) et ultrasons (US), et un chauffage humide (CH) conventionnel (contrôles) ont été utilisés comme pré-traitements de lentilles vertes canadiennes afin d'améliorer les rendements d'extraction des protéines et leur qualité nutritionnelle. Trois seuils de température (25°C, 45°C, 85°C) ont été ciblés, et des isolats de protéines ont été préparés à partir de lentilles (IPL) prétraitées. L'impact des traitements sur le rendement d'extraction, la pureté, la qualité nutritionnelle (digestibilité, profil en acides aminés et facteurs antinutritionnels) et les propriétés bioactives des IPL a été étudié. Les résultats ont révélé qu'une température élevée (85°C) influe négativement sur la pureté et le rendement d'extraction. Les TA ont cependant augmenté ce dernier par rapport aux CH; particulièrement pour l'US. La majorité des conditions des TA ont amélioré le score en acides aminés corrigé par la digestibilité des protéines *in vitro* (IV-PDCAAS). La digestion *in vitro*, puis l'ultrafiltration (10 kDa) ont été effectuées sur les IPL. La mesure ORAC (capacité d'absorption des radicaux oxygénés) du filtrat de l'échantillon US à 25°C a été significativement (p<0,05) augmentée. L'activité de chélation des ions Fe²⁺ des CH 3 (85°C), PEF 4 kV/cm-50 kJ (~45°C) et MW 300W (85°C) a été significativement augmentée. Les traitements par OH semblent avoir un impact positif sur l'inhibition de l'enzyme de conversion de l'angiotensine (ACE) *in vitro*, alors que l'US améliorerait l'activité antidiabétique *in vitro* à 25°C. Ces résultats ouvrent la voie au développement d'isolats de protéines végétales avec un rendement d'extraction optimisé et/ou une qualité nutritionnelle bonifiée. / In recent years, the demand for sustainable proteins has been steadily increasing. Legumes, which are rich in protein, affordable, and a major player in Canada's agricultural economy, show great promise in ensuring an adequate protein supply. In this project, four advanced technologies (AT), namely ohmic heating (OH), pulsed electric fields (PEF), microwaves (MW), and ultrasound (US), as well as a conventional wet heating (CH) method (controls), were used as pretreatments for Canadian green lentils to improve protein extraction yield and nutritional quality. Three temperature thresholds (25°C, 45°C, 85°C) were targeted, and protein isolates were prepared from the pretreated lentils (LPI). The impact of the treatments on extraction yield, purity, nutritional quality (digestibility, amino acid profile, and antinutritional factors content), and bioactive properties of the LPIs was studied. The results showed that a high temperature (85°C) negatively impacted purity and extraction yield. However, the ATs increased the yield compared to the CH treatment, particularly for US. Most AT conditions improved the *in vitro* Protein Digestibility Corrected Amino Acid Score (IV-PDCAAS). *In vitro* digestion and subsequent ultrafiltration (10 kD) were performed on the LPIs. The ORAC (Oxygen Radical Absorbance Capacity) measurement of the filtrate from the US sample at 25°C was significantly (p<0.05) increased. The Fe²⁺ chelation activity of the CH 3 (85°C), PEF 4 kV/cm-50 kJ (~45°C), and MW 300W (85°C) treatments were significantly increased. OH treatments appeared to positively impact the inhibition of angiotensin-converting enzyme (ACE) *in vitro*, while US treatment improved *in vitro* antidiabetic activity at 25°C. These results pave the way for the development of plant protein isolates with optimized extraction yields and/or improved nutritional quality.
18

Potentiel de valorisation d'extraits bioactifs issus de bourgeons d'érable à sucre et d'érable rouge

Meda, Naamwin-So-Bâwfu Romaric 06 June 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2018-2019 / Les résidus provenant de l’activité de l’industrie forestière canadienne sont estimés chaque année à plus de 20 millions de tonnes de matière sèche. Des extraits réalisés à partir des écorces de troncs retrouvés dans ces résidus et présentant d’intéressantes propriétés biologiques ont été présentés comme une opportunité de valorisation des produits forestiers vers des domaines de plus fortes valeurs ajoutées. Pourtant, les branches des arbres éliminées durant des éclaircies de peuplements forestiers ou pendant les campagnes d’élagage portent également d’autres tissus végétaux dont la composition chimique et les propriétés biologiques peuvent s’avérer distinctes de celles des écorces. Notre hypothèse de recherche est que les érables, espèces d’importance économique majeure et très répandues des forêts canadiennes, dont les bourgeons se retrouvent dans les résidus forestiers, peuvent également servir à la production d’ingrédients actifs pour les secteurs de l’agroalimentaire, des produits cosmétiques et même de la santé (médicaments, phyto-médicaments, nutraceutiques). En effet, du fait de leur caractère indifférencié, ces bourgeons pourraient contenir des métabolites différents de ceux des autres tissus. Notre projet de recherche a donc eu pour principal objectif, l’exploration des domaines potentiels de valorisation de produits naturels issus de bourgeons de l’érable à sucre et de l’érable rouge. Du fait de la quasi inexistence de données dans la littérature, notre étude a consisté essentiellement à acquérir des connaissances sur la composition chimique de cette matière végétale et à évaluer les effets biologiques in vitro d’extraits et / ou de molécules issues de bourgeons d’érable. Pour cela, différentes méthodes d’extractions et différents solvants peu toxiques et respectueux de l’environnement ont été envisagés. Des explorations chimiques par Chromatographie sur Couche Mince (CCM), des dosages colorimétriques et des déterminations d’activité antioxydante ont ensuite été utilisés pour caractériser et évaluer l’extrait le plus prometteur. La détermination de la nature chimique des constituants majeurs de ce dernier ainsi que des essais biologiques ont été conduits afin de mesurer son potentiel de valorisation dans divers domaines. Les rendements en extraits secs, la nature et quantité en certains types de composés ainsi que les résultats de tests chimiques d’activité antioxydante ont montré que l’extrait à l’eau chaude de bourgeons d’érable rouge présentait un réel potentiel de valorisation comme antioxydant naturel. L’identification des composés phénoliques contenus dans cet extrait et leur quantification ont permis de révéler une forte présence de gallo-tannins, mais également d’hétérosides de quercétine et de cyanidine qui ont été décrits pour la première fois dans cette espèce. L’exploration des effets de cet extrait sur les neutrophiles humains comme première approche n’a indiqué aucune toxicité ni modification significative de leur viabilité jusqu'à 100 μg/mL. Cependant pour des plus fortes concentrations, l’extrait a montré une capacité à accélérer la mort programmée de ces cellules majeures de l’inflammation et cette activité serait due à certains gallotanins. Cette propriété biologique mis en évidence pour la première fois ouvre le champ à de nombreuses voies de valorisation notamment dans la résolution du processus inflammatoire où la survie des neutrophiles est incontestablement liée au développement de pathologies chroniques / The residues from the activities of Canadian forest industry are estimated to be more than 20 million tons of dry matter per year. The extractives of trunk barks from these residues have been studied as a way to valorize these non- wood forest products in areas with higher added values based on their interesting biological properties for human health. However, branches of the trees removed during thinning or pruning also carry other plant tissues with chemical composition and biological properties distinct from barks. Our research hypothesis was that maples, the widespread trees with major economic value from Canadian forests, represent a source of important quantities of forest residues containing buds which could be used to produce active ingredients for food industry and healthcare (drugs, phytomedications, and nutraceuticals). Indeed, buds contain important amount of meristems, undifferentiated embryonic tissues that may be rich in some bioactive compounds that are often found only in small quantities in other plant parts. Thus, the main objective of our research project was to explore the potential areas of valorization of natural products derived from sugar and red maple buds No data dealing with the chemical composition of this plant material nor biological effects of extracts and / or molecules derived from maple buds were found in scientific literature. The extracts of maple buds (therefore obtained with not toxic and environment- respectful solvents), were analysed by qualitative approach by Thin Layer Chromatography (TLC) assays for screening of phytochemicals. The quantitative assays and antioxidant activity assessment were used to characterize and evaluate the best promising extract. The major phytochemicals of the latter were identified, along with the biological tests undertaken in order to measure its potential of valorization in several fields The yields of dry matter, the nature and quantity of some potential bioactive compounds and the results on antioxidant activities evaluation showed that the hot water extract of red maple buds has a real potential for development as natural antioxidant. The identification of the major phenolic compounds contained in this extract and their quantification revealed an important concentration of gallo-tannins, along with quercetin and cyanidin glycosides, determined in this study for the first time in this species. Exploration of the effects of water extract from red maple buds on human neutrophils as a first approach indicated no toxicity nor significant modification of their viability up to 100 μg / mL. However, for higher concentrations, the extract showed an ability to accelerate the programmed death of these major cells of inflammation. Further studies revealed that this activity was due to particular gallotannins. This biological property highlighted for the first time opens the field to several ways of valorization especially for the resolution of inflammatory processes in which neutrophil survival is undoubtedly linked to the development of chronic pathologies.
19

Développement du motif sulfahydantoïne comme source de composés bioactifs

Lapointe Verreault, Camille 20 April 2018 (has links)
Le présent mémoire se divise en deux parties. La première décrit le développement d’une nouvelle méthodologie de synthèse de peptides analogues contraints par une sulfahydantoïne. La deuxième partie décrit la synthèse de nouveaux composés dérivés du motif sulfahydantoïne au potentiel antibactérien. Le premier chapitre est consacré à la description des agents thérapeutiques peptidiques et de leurs applications. Il est sujet également de l’intérêt de développer de nouveaux peptides contraints. Le deuxième chapitre décrit la synthèse du motif sulfahydantoïne ainsi que la synthèse de peptides analogues contraints sur support solide et en solution. Le troisième chapitre traite des résultats conformationnelles des peptides contraints obtenus à l’aide de la spectropolarimétrie de dichroïsme circulaire et par la spectroscopie de résonance magnétique nucléaire. Le quatrième et dernier chapitre porte sur la synthèse de nouveaux composés dérivés de la sulfahydantoïne et leur caractérisation. Finalement, les résultats des tests biologiques réalisés avec les composés sont présentés.
20

Extraction verte et caractérisation des molécules bioactives dans les coproduits de la production d'asperge (Asparagus officinalis L.)

Missaoui, Rafik 19 April 2024 (has links)
Les plantes appartenant à la famille des Asparagaceae, notamment les asperges (Asparagus officinalis L.) contiennent une large gamme de molécules bioactives comme les polyphénols, les flavonoïdes et les saponines. Ces composés ont plusieurs propriétés santé : effets antioxydants, anticancéreux et cardioprotecteurs. De plus, la production d'asperge génère des quantités importantes de coproduits ce qui en fait un bon choix pour une valorisation par la production d’extraits bioactifs pour le marché des produits de santé. Dans cette étude, réalisée dans une optique de bioraffinage vert, nous utilisons seulement l’éthanol et l’eau sous des conditions optimales plutôt que les solvants pétrochimiques généralement adoptés en extraction de molécules bioactives et qui peuvent être nocifs pour la santé humaine. Les teneurs en polyphénols et flavonoïdes totaux ont été déterminées dans différents segments de la tige d'asperge (parties supérieure et inférieure), dans différentes variétés d’asperge ainsi que dans les coproduits de la variété Guelph Millenium. L’identification des polyphénols a été réalisée par UPLC-MS/MS et la quantification des saponines a été effectuée par une méthode spectrophotométrique. L'optimisation de l’extraction des polyphénols et des flavonoïdes a été accomplie en modulant la température, la concentration d'éthanol et le ratio solvant/soluté. Les résultats obtenus ont montré que les polyphénols présents dans l’asperge sont des flavonoïdes et des acides phénoliques avec une dominance pour la rutine (92%). Les polyphénols sont davantage concentrés dans la partie supérieure de l’asperge (1.15 %) et représentent 0.6 % pour les parties basales et 1.4 % pour les asperges de calibre inférieur, sur une base de matière sèche. Les paramètres d'extraction optimisés sont 80 % d’éthanol à 70 °C pour 3 heures avec un ratio soluté/solvant de 1:40. Cette étude ne se limite pas à protéger l’environnement en retirant des sites d’enfouissement des coproduits d’asperge, mais elle confère une valeur ajoutée à ces coproduits. Mots clés : Asperge, coproduits, optimisation, polyphénols, flavonoïdes, saponines, UPLCMS/MS. / Plants belonging to the family of Asparagaceae, especially asparagus (Asparagus officinalis L.) contain a wide range of bioactive molecules such as polyphenols, flavonoids and saponins. These compounds have several health properties: antioxidant, anticancer and cardioprotective effects. In addition to that asparagus production generates a significant amounts of co-products, making it a good choice for the valorisation through the production of bioactive extracts for the functional food market. In this study, carried out with a green biorefinery view, we used only ethanol and water under optimum conditions rather than other solvents sometimes adopted in extraction of bioactive molecules and which may be harmful for human health. Total polyphenol and flavonoid were determined in different segments of the asparagus stem (upper and lower parts), differents varieties of asparagus and co-products of the Guelph Millenium variety. Identification of polyphenols was performed by UPLC-MS/MS and quantification of saponins was performed by a spectrophotometric method. The optimization of the extraction of polyphenols and flavonoids was accomplished by modulating the temperature, the ethanol concentration and the solute/solvent ratio. The polyphenols present in asparagus are especially flavonoids and phenolic acids with a dominance for rutin (92%) .The polyphenols have been found to be more concentrated in the upper part of the asparagus stem (1.15 %) and represent 0.6 % for the basal parts of the stem and 1.4 % for the lower grade asparagus based on dry matter. The optimized extraction parameters are 80 % ethanol at 70 °C for 3 hours with a solute/solvent ratio of 1:40. This study is not limited to protect the environment by removing asparagus co-products from landfills, but adds values to these co-products. Key words : Asparagus, co-products, optimization, polyphenols, flavonoids, saponins, UPLC-MS/MS.

Page generated in 0.1118 seconds