• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Management of nitrogen and composted biosolids to cycle nutrients and enhance environmental quality during production and after transplanting turfgrass sod

Schnell, Ronnie Wayne 15 May 2009 (has links)
Land application of large, volume-based rates of municipal biosolids (MB) enhances soil physical properties and provides an alternative to disposal in landfills. Yet, topdressing or incorporation of the volume-based rates can increase non-point source losses of sediment and nutrients from excavated soils to surface waters. Research objectives were developed to evaluate the options for cycling of MB through turfgrass sod during production and after transplanting. The first objective was to compare the production of Tifway bermudagrass sod between fields grown with and without MB under increasing rates of supplemental fertilizer N. The second objective was to compare runoff losses between soils constructed with and without MB before planting to sprigs or sod transplanted from turfgrass grown in soil with and without incorporation of MB. Incorporation of 25% by volume of MB in soil enhanced (p < 0.001) turfgrass coverage of the soil surface compared to soil without MB. In addition, amending soil with MB reduced wet and dry sod weights (p < 0.001) and increased soil water content (p < 0.001) at harvest compared to sod without MB. Runoff concentrations and mass loss of total dissolved P (TDP) were significantly greater (P=0.001) for MB-amended compared to un-amended sod. In addition, a linear relationship (R2 = 0.94) was observed between water extractable soil P within the 0- to 2-cm depth and concentrations and mass loss of TDP in runoff. Similarly, runoff loss of NO3-N was greater (P = 0.05) for soil mixed with 25% by volume of MB than soil alone and variation of NO3-N loss among treatments was directly related to soil NO3-N concentration within the 0- to 5-cm depth. In contrast, runoff concentrations of NH4-N were directly related to inputs of N from turf clippings returned to soil rather than soil NH4-N concentrations. Total Kjeldahl N (TKN) concentration in runoff was unrelated to soil N concentrations, but was linearly related to mass loss of sediment in runoff. Transplanted sod reduced sediment loss compared to sprigged soil during turfgrass establishment and MB-amended soil reduced sediment loss compared to soil without MB. In addition, the MB imported in sod or incorporated in soil before sprigging increased soil organic carbon and mean soil water content compared to sod or soil without MB over a 92 day period. Incorporation of MB within soil prior to planting fertilizer grown turfgrass sod enhanced water conservation and reduced nutrient loss compared to planting MB-grown sod on un-amended soils.
2

Response of nitrogen and phosphorus leaching and soil properties to applications of biosolids during turfgrass establishment

Kerns, James Patrick 17 February 2005 (has links)
Regulations for total maximum daily loads require management of phosphorus loading from farms and municipalities. This study evaluated environmental impacts of a system for using and exporting the phosphorus in composted dairy manure (CDM) and composted municipal biosolids (CMB) through turfgrass sod. Responses of soil physical, chemical, and biological properties within and below the sod layer were monitored during turfgrass establishment in two experiments under greenhouse conditions. During turf establishment in column lysimeters, phosphorus and nitrogen leaching from an amended surface layer through soil were evaluated. In addition, growth of turf was related to the observed changes in soil nutrients and properties. In the first experiment, four replications of a factorial design comprised three soil types (USGA greens sand, Windthorst fine sandy loam [fine, mixed, thermic Udic Paleustalf], Houston black clay [fine, smectitic, thermic, Udic Hapustert]), two dairy manure rates ( 200 kg P ha-1, 400kg P ha-1), and two turf species (St. Augustinegrass (Stenotaphrum secundatum [Walt.] Kuntze var. Raleigh) and Tifway 419 Bermudagrass (Cynodon dactylon [L.] Pers. x C. transvaaleensis Burtt-Davy). Columns received three separate leaching events in which a 9-cm depth of distilled water was applied. A similar experimental design was implemented for Experiment 2 in January 2004. Treatments consisted of the same three soils and three volume-based rates of CDM and CMB (0, 150, 250 cm3 L-1) during establishment of St. Augustinegrass turf. Columns received one pore volume of distilled water on three separate occasions. In both experiments, soil physical properties (bulk density, water infiltration rate, and water content) and microbial populations were unaffected by CDM or CMB. Applications of CDM at P-based rates utilized in the first experiment yielded no variation of leaching loss among rates of P or N. Most of the P applied was retained in the top 10 cm of soil. When large volume-based rates were used, leaching losses of P and N varied among CDM or CMB application rates. Leaching losses were only observed in the USGA sand and were highest for the 250 cm3 L-1 rate of CDM or CMB. Regardless of compost source, applications of organic amendments at volume-based rates can increase leaching loss of P and N on sandy soils. However, if P-based rates are used there is little risk for leaching loss of N and P during sod establishment.
3

Response of nitrogen and phosphorus leaching and soil properties to applications of biosolids during turfgrass establishment

Kerns, James Patrick 17 February 2005 (has links)
Regulations for total maximum daily loads require management of phosphorus loading from farms and municipalities. This study evaluated environmental impacts of a system for using and exporting the phosphorus in composted dairy manure (CDM) and composted municipal biosolids (CMB) through turfgrass sod. Responses of soil physical, chemical, and biological properties within and below the sod layer were monitored during turfgrass establishment in two experiments under greenhouse conditions. During turf establishment in column lysimeters, phosphorus and nitrogen leaching from an amended surface layer through soil were evaluated. In addition, growth of turf was related to the observed changes in soil nutrients and properties. In the first experiment, four replications of a factorial design comprised three soil types (USGA greens sand, Windthorst fine sandy loam [fine, mixed, thermic Udic Paleustalf], Houston black clay [fine, smectitic, thermic, Udic Hapustert]), two dairy manure rates ( 200 kg P ha-1, 400kg P ha-1), and two turf species (St. Augustinegrass (Stenotaphrum secundatum [Walt.] Kuntze var. Raleigh) and Tifway 419 Bermudagrass (Cynodon dactylon [L.] Pers. x C. transvaaleensis Burtt-Davy). Columns received three separate leaching events in which a 9-cm depth of distilled water was applied. A similar experimental design was implemented for Experiment 2 in January 2004. Treatments consisted of the same three soils and three volume-based rates of CDM and CMB (0, 150, 250 cm3 L-1) during establishment of St. Augustinegrass turf. Columns received one pore volume of distilled water on three separate occasions. In both experiments, soil physical properties (bulk density, water infiltration rate, and water content) and microbial populations were unaffected by CDM or CMB. Applications of CDM at P-based rates utilized in the first experiment yielded no variation of leaching loss among rates of P or N. Most of the P applied was retained in the top 10 cm of soil. When large volume-based rates were used, leaching losses of P and N varied among CDM or CMB application rates. Leaching losses were only observed in the USGA sand and were highest for the 250 cm3 L-1 rate of CDM or CMB. Regardless of compost source, applications of organic amendments at volume-based rates can increase leaching loss of P and N on sandy soils. However, if P-based rates are used there is little risk for leaching loss of N and P during sod establishment.
4

Utilizing Animal Waste Amendments to Impaired Rangeland Soils to Reduce Runoff

Thomas, Diana M. 2011 May 1900 (has links)
Composted biological wastes contain vital plant nutrients that assist in plant growth as well as contain organic matter that promotes good soil conditions; both aid in rangeland restoration. Most importantly, it has the potential to restore water availability through increased infiltration and reduced runoff. In this thesis, local sources of composted dairy manure are utilized for application onto the degraded Fort Hood Western Training Grounds in central Texas in hopes to restore the rangeland for continued military training. Small scale rainfall simulations are applied two and eight months post-application of seven different agronomic rates of composted waste treatment (0, 5, 10, 15, 20, 25, and 30 y^3/acre) in order to determine changes in infiltration rates. July 2004 rainfall simulations, two months post application, indicate that composted wastes have not had sufficient time to incorporate into the soil matrix. Percent organic matter of the parent soil is the only significant variable of impact on maximum infiltration capacity. Composted waste treatments are concluded to have no effect on infiltration rates for any of the application rates in the summer rainfall simulations and are observed to exhibit very high variability in the amount of infiltration by a plot. January 2005 rainfall simulations, eight months post waste application, are observed to continue the trend of high variability across all treatment application rates. This variability is attributed to masking any potential effects from the treatment applications. Overall, this high natural variability disables the detection of potential effects of waste application treatments leading to the conclusion that composted waste applications do not affect infiltration on the Fort Hood Western Training Grounds. Runoff nutrient analysis observed nitrate-N to be well below Texas drinking water standards for all plots and phosphate to be above non-standardized values known to cause problematic algal growth. Natural rainfall events at intensities needed to generate runoff observed in this study are rare; therefore, nutrient pollution concern for local water bodies is low.
5

Sustainable Management of Biogeochemical Cycles in Soils Amended with Bio-Resources from Livestock, Bioenergy, and Urban Systems

Schnell, Ronnie Wayne 2010 August 1900 (has links)
Bioresources are generated in a variety of environments and each presents unique risks and benefits associated with land application. Bioresources from livestock, urban and bioenergy systems were selected and evaluated through field, greenhouse and laboratory studies of potential risk and benefits of recycling to agricultural and urban landscapes. The waste stream, including feedstock sources and treatment processes, affects composition and properties of bioresources and effects on biogeochemical cycles of amended soils. Variation of decomposition and nutrient mineralization rates among bioresources used to amend soil for turfgrass and forage reflected variation among contrasting feedstock sources and treatments prior to application. During turfgrass establishment, plant available nitrogen and nitrogen mineralized from a bioresource from livestock waste streams, (Geotube! residual solids, supplied N in excess of crop uptake potential and contributed to leaching loss of N. In contrast, N mineralization rates from bioresources generated during methane production from dairy manure (manure solids) were not sufficient to maximize crop production, necessitating N fertilizer application. In addition to variation of composition, bioresource effects on crop productivity and environmental quality vary among management practices and between forage and turfgrass cropping systems. Large application rates of bioresources increase soil nutrient concentration and potential crop productivity, but contribute to increased nutrient loss in drainage and surface runoff. Yet, incorporation or Alum treatment of bioresources will reduce runoff loss of dissolved P and protect water quality without sacrificing crop productivity. Alum treatment of bioresources prior to land application effectively reduced runoff loss of dissolved P to levels observed for control soil. For situations in which large, volume-based bioresource rates are top-dressed or incorporated, export of applied nutrients environmental impacts were compared between forage and turfgrass systems. Starting during the initial year of production, annual export of applied N and P in Tifway bermudagrass sod was greater than export through forage harvests of Tifton 85. Low forage yield limited N and P export from Tifton 85 during the year of establishment, but increased forage yield during the second year increased export of manure N and P to levels more comparable to sod. As variation between compost sources, turfgrass and forage production systems, and application methods indicated, effective management of bioresources is necessary to balance benefits and risk in cropping systems. Integrated assessment of bioresource composition and crop-specific management of application method and rate will enable sustainable bioresource cycling and crop productivity.
6

The Use of Summer Cover Crops and Composted Broiler Litter in Fall Organic Vegetable Production

Reynolds, Sarah M 11 May 2013 (has links)
Cover crops and composted broiler litter (CBL) are two organic methods used to improve soils and organic vegetable production. The objectives of this study included determining the extent summer cover crops and CBL alter nutrient availability in soil, determining how summer cover crops and CBL influence fall vegetable crops in organic production systems and identifying which cover crops/ CBL combinations improve fall vegetable crop production best. Four cover crops were tested: sunn hemp (Crotalaria juncea), sesame (Sesamum indicum), sorghum sudan grass (Sorghum X drummondii) and a sunn hemp + sesame blend, in combination with four composted broiler litter rates: 0, 2,800, 5,600, 11,200 kg.ha-1 for two years. Few differences were seen among cover crop treatments except for the sorghum sudan grass treatment, which had negative effects on fall broccoli production unless combined with CBL. The CBL increased nutrient availability, percent organic matter, pH and broccoli yield as the rate increased.
7

Qualidade de mudas de eucalipto e acácia em substratos de resíduos agroindustriais / Quality of eucalyptus and acacia seedlings in agro-industrial waste substrates

Jesus, Roberta Paula de 14 March 2016 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-04-19T15:45:44Z No. of bitstreams: 2 Tese - Roberta Paula de Jesus - 2016.pdf: 3672637 bytes, checksum: 89514084d5a7940f363e804c66f87807 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-04-23T11:43:19Z (GMT) No. of bitstreams: 2 Tese - Roberta Paula de Jesus - 2016.pdf: 3672637 bytes, checksum: 89514084d5a7940f363e804c66f87807 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-23T11:43:19Z (GMT). No. of bitstreams: 2 Tese - Roberta Paula de Jesus - 2016.pdf: 3672637 bytes, checksum: 89514084d5a7940f363e804c66f87807 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-14 / Demand for quality seedlings of forest species is becoming increasingly widespread, due to increased planted area and the restoration of degraded environments. Based on the importance of substrate for seedling production and use of renewable materials in its formulation, the aim of this work was to characterize the physical properties of renewable substrates composed by coconut fiber and composted sludge and evaluate the feasibility of using these substrates in the production of seedlings of Eucalyptus grandis and Acacia mangium. Therefore, there were three studies. The sources of organic materials used for the composition of the substrates were commercial substrate, coconut fiber and composted sludge (waste from the tomato processing industry). The treatments were: commercial substrate; commercial substrate + 10% sludge; commercial substrate + 20% sludge; commercial substrate + 40% sludge; coconut fiber; Coconut fiber + 10% sludge; coconut fiber + 20% sludge and coconut fiber + 40% sludge. In the first study were performed following physical analysis of formulated substrates: volume density, particle density, porosity, air space, readily available water, buffering water, available water, the remaining water of 100 cm and water retention capacity. It was observed that treatments showed a great variability in the physical characteristics and no advantage in doing mixtures to obtain a more efficient substrate on these properties. As a conditioner of the mixes, the composted sludge promoted increased density, reduced porosity and increased water retention capacity. In the second study, parameters relating to the growth of Eucalyptus grandis seedlings were evaluated, and the third study evaluated parameters relating to the growth of Acacia mangium seedlings. The evaluated parameters were: plant height, stem diameter, dry matter of aerial part and radicial part, ease of removal of the cartridge seedlings, roots aggregation of the substrate and chemical analysis of the aerial part of the plant. The results showed that the use of sludge and composted coconut fiber as substrate for the production of Eucalyptus grandis and Acacia mangium seedlings is a promising alternative because it resulted in the adequate development of the same. The use of organic waste in the substrate composition for the production of forest trees seedlings is a technically feasible option and is an alternative to recycling and use of by-products of agribusiness. / A demanda por mudas de essências florestais de qualidade está em crescente expansão, devido ao aumento da área plantada, bem como a recomposição de ambientes degradados. Baseado na importância do substrato para a produção de mudas e da utilização de materiais renováveis para sua formulação, objetivou-se nesse trabalho caracterizar as propriedades físicas de substratos renováveis a base de fibra de coco e lodo compostado e avaliar a viabilidade da utilização desses substratos para a produção de mudas de Eucalyptus grandis e Acacia mangium. Para tanto, foram realizados três estudos. As fontes de materiais orgânicos utilizados para a composição dos substratos foram substrato comercial, fibra de coco e lodo compostado (resíduo proveniente da indústria de processamento de tomate). Os tratamentos foram: substrato comercial; substrato comercial + 10% de lodo; substrato comercial + 20% de lodo; substrato comercial + 40% de lodo; fibra de coco; fibra de coco + 10% de lodo; fibra de coco + 20% de lodo e fibra de coco + 40% de lodo. No primeiro estudo foram realizadas as seguintes análises físicas dos substratos formulados: densidade de volume, densidade de partícula, porosidade total, espaço de aeração, água facilmente disponível, água tamponante, água disponível, água remanescente a 100 cm e capacidade de retenção de água. Observou-se que os tratamentos apresentaram uma grande variabilidade para as características físicas e há vantagem em realizar misturas para obtenção de um substrato mais eficiente quanto a estas propriedades. Como condicionador nas misturas, o lodo compostado promoveu o aumento da densidade, redução da porosidade e o aumento da capacidade de retenção de água. No segundo estudo foram avaliados parâmetros relativos ao crescimento das mudas de Eucalyptus grandis, e no terceiro estudo foram avaliados parâmetros relativos ao crescimento das mudas de Acacia mangium. Os parâmetros avaliados foram: altura da planta, diâmetro do colo, massa de matéria seca aérea e radicial, facilidade de retirada das mudas do tubete, agregação das raízes ao substrato e análise química do tecido vegetal da parte aérea. Os resultados revelaram que a utilização do lodo compostado e da fibra de coco como substrato para produção de mudas de Eucalyptus grandis e Acacia. mangium é uma alternativa promissora, pois resultaram em um desenvolvimento adequado das mesmas. A utilização de resíduos orgânicos na composição de substratos para produção de mudas de essências florestais é uma opção tecnicamente viável e representa uma alternativa para a reciclagem e emprego de subprodutos da agroindústria.
8

Kompostierte Gärreste aus Bioabfällen als Düngestoffe: Bodenökologische und pflanzenbauliche Wirkungen

Roß, Christina-Luise 09 January 2018 (has links)
Im Rahmen dieser Arbeit sollten Einsatzmöglichkeiten und -grenzen von kompostierten und durch Agglomeration oder Pelletierung weiter aufbereiteten Bioabfall-Gärresten untersucht werden. Außerdem sollte geprüft werden, ob durch verschiedene Zuschlagstoffe die Eigenschaften der Produkte so verbessert werden können, dass ein marktfähiges Düngeprodukt entsteht. Dazu wurden ein Feldversuch, Gefäß-, Rhizoboxen- und Bodenatmungsversuche, phytotoxikologische Tests und Regenwurm-Vermeidungstests durchgeführt. Die Ergebnisse können wie folgt zusammengefasst werden: Die Stickstoffverfügbarkeit von kompostierten Gärprodukten aus Bioabfällen ist gering, der Gehalt an Phosphor und Kalium aber hoch. Langfristig sind so der Aufbau eines Nährstoffdepots im Boden und die Einsparung anderer Dünger möglich. Die Produkte enthalten zudem basisch wirksame Bestandteile, welche die Kalkung teilweise ersetzen können. Komposte und Gärprodukte aus Bioabfällen können zur Steigerung der Humusgehalte im Boden beitragen. Ca. 80 % des enthaltenen Kohlenstoffs liegt in stabilisierter Form vor und kann im Boden sequestriert werden. Problematisch sind hohe Schwermetall- und Störstoffgehalte. Die gesetzlich vorgegebenen Grenzwerte wurden in 50 % der getesteten Chargen überschritten. Phytotoxische Effekte wurden nur in Einzelfällen festgestellt und waren nicht dosisabhängig, sondern traten punktuell auf. Die Aktivität der Mikroorganismen im Boden wurde durch Anwendung der Gärprodukte gefördert. Der Einfluss der Gärprodukte auf Regenwürmer konnte nicht eindeutig bestimmt werden. Eine Einschränkung der Habitatfunktion nach Gärproduktanwendung wurde nicht festgestellt. Die Aufbereitung durch Agglomeration oder Pelletierung ist möglich, ohne dass die wesentlichen positiven Eigenschaften davon beeinträchtigt werden. Durch Beimengung von Zuschlagstoffen können die Düngewirkung und die physikalischen Eigenschaften der Produkte verändert werden. Dies reduziert jedoch auch den Gehalt an stabiler organischer Substanz. / The scope of the present work was to determine the possibilities and limits for the application of composted digestates from biowaste on agricultural land. Furthermore it was tested whether it is possible to enhance the properties of the products by adding different amendments and to thereby create a marketable fertilizer product. A field trial, pot and rhizobox experiments, phytotoxicity tests and avoidance tests with earthworms were carried out. The results can be summarized as follows: The nitrogen availability of composted biowaste digestates is limited but they have high contents of phosphorus and potassium. Repeated application of biowaste digestate can help to establish a stable nutrient pool in the soil save up on other fertilizers. In addition, the products are characterized by basic constituents who can partly replace liming. Composts and fermentation products made from organic waste can contribute significantly to the increase of humus content in the soil. Approx. 80 % of the contained carbon is in stabilized form and can be sequestered in the soil. High concentrations of heavy metals and other contaminants are problematic. The legal limits were exceeded in 50 % of the tested batches. Phytotoxic effects were observed only in isolated cases and were not dose-dependent. The activity of the microorganisms in the soil was significantly promoted by the application of the digestates. The influence of the digestate products on earthworms could not be determined unequivocally. A restriction of the habitat function after digestate application was not detected. Processing by agglomeration or pelletizing to increase transportability and storage stability is possible without impairing the essential positive properties of the digestates. The addition of amendments can be used to adjust the fertilizing and physical properties of the products. This, however, reduces the content of stable organic matter.
9

Zinnia Growth and Water Use Efficiency in a Rate Study of Coconut Coir Pith and Sphagnum Peat Moss in Container Growing Substrates

Lowry, Bonita Kristine 15 May 2015 (has links)
No description available.
10

Populações de fungos fitopatogênicos e concentrações de nutrientes no solo em pomares de fruteiras temperadas adubados com Dejeto suíno compostado / Pathogenic fungi populations and nutrient concentrations in soil in orchards of temperate fruit trees fertilized with swine manure composted

Costa Junior, Avanor Cidral da 31 July 2014 (has links)
Made available in DSpace on 2016-12-08T16:44:49Z (GMT). No. of bitstreams: 1 PGPV14MA158.pdf: 622907 bytes, checksum: 4bef911008ae5cffa26706180f710db4 (MD5) Previous issue date: 2014-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The addition and incorporation of organic matter to the soil, besides favoring crops by improving soil physical, can increase nutrients and add specific biochemicals capable of renewing the native microflora and microfauna. These compounds may, depending on the organic material to act as a suppressant effect and biocontrol. The aim of this study was to evaluate the effect of swine manure compost (DSC) in an orchard of apple, pear and grape vines on the population dynamics of Verticillium dahliae, Fusarium solani, Fusarium oxysporum, Fusarium verticillioides and Trichoderma sp. Soil samples for quantification of fungal colonies and nutrient analysis were collected at a depth of 0-10 cm soil of the orchard with apple, pear and grape vines. The population of pathogenic soil fungi and Trichoderma sp. were obtained by dilution and plating of 10 g of soil samples from soil orchard who received two doses of DSC (50 to 100%) compost and two (50 and 100%), using two culture media (BDA potato-dextrose-agar) and Sabouraud-ágar-chloramphenicol. The application of different doses of DSC and chemical fertilizer began in December 2012, repeated at intervals of 60 days until the 2014 harvest analysis of macronutrients (nitrogen, phosphorus, potassium, calcium and magnesium) and micronutrients (iron, copper, zinc and Manganese) DSC and chemical fertilizer were run using Mehlich-1, spectrophotometry, acid-base titration and Kjeldahl method, all described by Tedesco et al. (1995). Results in the concentration of nutrients was related to the population of Verticillium dahliae, Fusarium solani, Fusarium oxysporum, Fusarium verticillioides and Trichoderma sp. The experimental design was completely randomized, factorial 2 x 5, repeated in time (months). The data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC, v.9.2) and mean comparisons using Tukey least significant difference p &#8804; 0.05. In the apple orchard, Fusarium oxysporum and Fusarium solani showed higher populations in Q100 treatments (0-110 x 103 CFU / g of soil) and Q50 (0-70 x 103 CFU/g of soil) respectively. There were differences in the population periods. Phosphorus, Potassium and Sodium showed significant differences among the treatments tested. In the orchard of pear trees the largest population of Fusarium solani was the S100 treatment (0-50 x 103 CFU/ g of soil). Treatments Q50 and Q100 had higher populations of Verticillium dahliae, Fusarium oxysporum and Fusarium verticillioides in different periods. Concentrations of Nitrogen and Potassium differ between treatments tested. In vineyards the largest populations of Fusarium solani and Fusarium oxysporum were found in December-2012 periods (0-70 x 103 CFU / g of soil) and August 2013 (0-60 x 103 CFU / g of soil) respectively. Concentrations of potassium, phosphorus and sodium were higher in treatment S50 and S100. The orchard of apple, pear and grape vines have different response to chemical and organic fertilization. The intensity of response to fertilization has little influence population dynamics of plant pathogens in soil and Trichoderma / A adição e incorporação de matéria orgânica ao solo, além de favorecer as culturas pela melhoria física do solo, podem potencializar nutrientes e adicionar compostos bioquímicos específicos capazes de renovar a microfauna e microflora nativas. Estes compostos podem, dependendo do material orgânico, agir como efeito supressor e como biocontrole. O objetivo deste trabalho foi avaliar o efeito da aplicação de dejeto suíno compostado (DSC) em pomar de macieiras, pereiras e videiras, sobre a dinâmica populacional de Verticillium dahliae, Fusarium solani, Fusarium oxysporum, Fusarium verticillioides e Trichoderma sp. Amostras de solo para quantificação de colônias fúngicas e análise de nutrientes foram retiradas na profundidade 0-10 cm de solo do pomar de macieiras, pereiras e videiras. A população de fungos fitopatogênicos de solo e Trichoderma sp. foram obtidas pela diluição e plaqueamento de 10 g de amostras de solo provenientes do solo do pomar que receberam duas doses de DSC (50 e 100%) e duas de adubo químico (50 e 100%), utilizando dois meios de cultura, BDA (batata-dextrose-agar) e Sabouraud ágar-cloranfenicol. A aplicação das diferentes doses de DSC e adubo químico tiveram início em dezembro-2012, repetidas em intervalos de 60 dias até a safra 2014. A análise dos macronutrientes (nitrogênio, fósforo, potássio, cálcio e magnésio) e micronutrientes (ferro,cobre,zinco e Manganês) do DSC e da adubação química foram realizados pelos métodos de Mehlich -1, espectrofotometria, titulação ácido-base e método Kjeldahl, todas descritas por Tedesco et al. (1995). Resultados da concentração de nutrientes foi relacionado à população de Verticillium dahliae, Fusarium solani, Fusarium oxysporum, Fusarium verticillioides e Trichoderma sp. O delineamento experimental foi inteiramente casualisado, em arranjo fatorial 2 x 5, repetidos no tempo (meses). Os dados foram analisados pelo procedimento MIXED do SAS (SAS Inst. Inc., Cary, NC, v.9.2) e as comparações de médias usando a diferença mínima significativa de Tukey p &#8804; 0,05. No pomar de macieiras, Fusarium oxysporum e Fusarium solani apresentaram maiores populações nos tratamentos Q100 (0-110 x 103 UFC/g de solo) e Q50 (0-70 x 103 UFC/g de solo) respectivamente. Houve diferenças da população nos períodos avaliados. Fósforo, Potássio e Sódio apresentaram diferenças significativas entre os tratamentos testados. No pomar de pereiras a maior população de Fusarium solani foi ao tratamento S100 (0-50 x 103 UFC/g de solo). Os tratamentos Q50 e Q100 apresentaram maiores populações de Verticillium dahliae, Fusarium oxysporum e Fusarium verticillioides em diferentes períodos de avaliação. Concentrações de Potássio e Nitrogênio apresentaram diferenças nos tratamentos testados. Na cultura da videira as maiores populações de Fusarium solani e Fusarium oxysporum foram encontradas nos períodos dezembro-2012 (0-70 x 103 UFC/g de solo) e agosto-2013 (0-60 x 103 UFC/g de solo) respectivamente. Concentrações de Potássio, Fósforo e Sódio foram superiores nos tratamento S50 e S100. O pomar de macieiras, pereiras e videiras apresentam diferentes resposta a adubação química e orgânica. A intensidade de resposta da adubação pouco influencia a flutuação da população de fitopatógenos de solo e Trichoderma

Page generated in 0.0655 seconds