• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diagonal Tension Testing of Interlocking Compressed Earth Block Panels

Pringle, Sean Anthony 01 June 2016 (has links)
This thesis examines the use of diagonal tension (shear) testing to determine factors affecting shear strength of Interlocking Compressed Earth Block (ICEB) panels. This work expands on the current information available about strength properties of ICEB assemblies, which are dry-stacked, as opposed to having mortared beds. Variables such as block strength, grout strength and grouting pattern can influence the results of these types of tests and are examined in this investigation. To study variables affecting diagonal shear strength, 9 panels were tested, consisting of blocks produced by a manual block press. Strength testing was adopted from common ASTM standards to determine constituent material properties. A modified version of ASTM E519 test procedure is used to perform diagonal tension testing. Imaging analysis, using a high resolution camera, was run simultaneously during testing to capture displacement histories of select panels. It was determined that both block and grout strength significantly affect the shear strength of ICEB panels. Additionally, vertical grouting and block type also have a strong influence. Imaging analysis results confirm that the dominant failure mode in ICEB panels is bed joint sliding both pre and post peak load, with noticeable displacements at head joint locations on a few panels. Lastly, diagonal cracking along the block face was noticeable on several panels following peak load. Further testing remains to determine other factors affecting shear strength, namely, the application of normal pre-compression loads to the panel.
2

Suitability of Lateritic Soils as Construction Material in Sustainable Housing Development in Africa : a Geological Perspective

Oyelami, Charles Adebayo January 2017 (has links)
Lateritic soils which have been described as highly weathered tropical or sub-tropical residual soils with varying proportions of particle sizes ranging from clay size to gravel, were studied in an attempt to establish its suitability or otherwise as sustainable material in building bricks and housing developments that will meet the present challenge of sustaining the environment without costing too much and maintaining a high standard of strength, durability and aesthetics. Index properties of the lateritic soils tested revealed them as mostly well-graded, comprising both cohesive (silt and clay) and cohesionless (sand and gravel) soil fraction. The mineralogical analysis shows the presence of sesquioxides in the clay portion which were found to be very useful in the natural binding process as well as in the presence of a stabiliser (cement). The geotechnical analysis on the lateritic soil revealed a strong compressive strength with a relatively sound dry density which could guarantee a good durability in resulting bricks made from these soil materials. Further test on the strength and durability of compressed earth bricks (CEBs) made from these lateritic soils revealed a brick with compressive strength ranging between 6.33 and 15.57 MPa which are considered to be of very good strength coupled with its sound durability strength established over a period more than one year under different kinds of severe weather and seasonal conditions. In conclusion, sesquioxides presence and mineralogy of lateritic soils were found to be largely responsible for their good compressive and durability strength which made them good and sustainable materials for CEBs. / Thesis (PhD)--University of Pretoria, 2017. / Geology / PhD / Unrestricted
3

Seismic Design Manual for Interlocking Compressed Earth Blocks

Kennedy, Nicholas Edwards 01 June 2013 (has links) (PDF)
Seismic Design Manual for Interlocking Compressed Earth Blocks Nicholas Edwards Kennedy This thesis presents a comprehensive seismic design manual to be used to design and construct simple Interlocking Compressed Earth Block (ICEB) structures in seismically active regions. ICEBs are earth blocks made primarily of soil and stabilized with cement. They have female and male stud mechanisms designed to interlock when stacked, eliminating the need for mortar. The blocks can accept reinforcement and grout after they are placed. While ICEB construction is similar to conventional masonry construction, current design code standards for masonry only partially capture the actual behavior of ICEB structures. This thesis seeks to supplement the existing masonry design procedures and tailor them for use with ICEBs. Additionally, this paper presents a preliminary design of ICEB shear walls for a disaster reconstruction project in the Philippines. While many structures in Southeast Asia and the Malay Archipelago are constructed from earthen blocks, very few are engineered. Of those that are, a lack of formal design guidance specific to ICEB construction leaves most engineers and designers with conventional concrete masonry design practices, some of which are not applicable for use with ICEBs.
4

Lap Splice Development Length of Rebar in Stabilized Hollow Interlocking Compressed Earth Blocks

Bowdey, Thomas S 01 December 2016 (has links)
This thesis investigates the tensile performance of unconfined lap splices in specimens constructed from interlocking compressed earth block (ICEB) units. All lap splice specimens were constructed from hollow ICEB half units with one side grouting channel. ICEB units used in this research were exclusively produced from the Soeng Thai Model BP6 block press. The BP6 block press is currently manufactured in Thailand under the guidance and direction of the Center of Vocational Building Technologies (CVBT). All ICEB units and grout constructed for this research were created from mix proportions of soil, sand, cement, and water. Rebar bar sizes were restricted to M10 (#3) and M13 (#4) for all lap splice specimens due to the limited area of the hollow 2-inch diameter rebar cavity of the ICEB unit. The limited size and strength of the ICEB units also made the use of larger bar diameters impractical. Three ICEB unit types of varying strengths (3.78 MPa, 7.81 MPa, and 11.38 MPa) and three grout types of varying strengths (1.35 MPa, 7.47 MPa, and 15.50 MPa) were developed and used to construct all specimens. The measured ICEB lap splice specimen strengths were compared against the predicted strength calculated from the Masonry Standards Joint Committee (MSJC). Findings suggested that the MSJC design equation did not adequately predict the lap splice strength of specimens, particularly for specimens constructed from weaker materials. The measured ICEB lap splice results were used to create a new ICEB lap splice design equation. This paper also investigates the compressive performance of fully grouted ICEB prisms constructed from the range of ICEB unit and grout strengths stated above. Findings suggested that the compressive strength of fully grouted ICEB prisms were exclusively controlled by the compressive strength of the ICEB units used to construct the prism. The strength of the grout had no discernable effect on the strength of the fully grouted prism. A design equation was proposed to calculate prism strengths based on measured strength results of ICEB units.
5

Investigation of Out-of-Plane Properties of Interlocking Compressed Earth Block Walls

Herskedal, Nicholas Anthony 01 December 2012 (has links)
Interlocking compressed earth blocks (ICEBs) are cement stabilized soil blocks that allow for dry stacked construction. The incomplete understanding of the inelastic performance of ICEB building systems limits widespread acceptance of this structural system in earthquake prone areas. This thesis presents results from an experimental program designed to explore the behavior of ICEB walls, built according to current design practice in Indonesia and Thailand, and subjected to out-of-plane loading. A total of five reinforced and grouted ICEB walls were constructed and tested. Results from experimentation show the current masonry design code, ACI 530, adequately predicts the yield strength of these walls. However, ACI 530 grossly over-predicts the ICEB wall stiffness. All tests showed flexural behavior and failure, except for one wall. A brittle failure was observed in one wall before reaching the predicted flexural strength, prompting a suggested maximum shear tie spacing. The testing results provide useful data for developing analytical models that predicts the seismic behavior of ICEB walls under out-of-plane loading. A moment-curvature relationship was developed that accurately predicts the behavior of these walls in the elastic range as well as the inelastic range. By comparing the data provided by two walls of similar sizes, one including a pilaster and one without a pilaster, insight into stiffener elements was gained. Analysis of these two walls provides a limit on the length and height of ICEB walls without stiffener elements to prevent significant structural damage during a seismic event. In all, conclusions based on experimental data from ICEB out-of-plane loading tests are aimed to provide suggestions for ICEB construction in areas of high-seismicity.
6

Flexural Behavior of Interlocking Compressed Earth Block Shear Walls Subjected to In-Plane Loading

Stirling, Bradley James 01 July 2011 (has links)
This thesis investigates the flexural behavior of interlocking compressed earth block (ICEB) shear walls. In-plane cyclic tests were conducted to evaluate the performance of three flexure dominant large scale ICEB specimens: a slim wall with a 2:1 height to width aspect ratio, a flanged wall, and a wall with an opening at the center. Following the experimental investigation, two types of analyses were conducted for calculating the ultimate strength of flexure dominant ICEB walls: a nonlinear static analysis model assuming lumped plasticity and a plastic analysis model. In addition, incremental dynamic analysis was conducted to address the seismic performance of flexure dominant ICEB buildings. Based on the database from the incremental dynamic analysis, the collapse potential of demonstration ICEB buildings were compared for the countries of interest.
7

Efeito da ativação alcalina dos aluminossilicatos nas propriedades mecânicas e microestruturais de compósitos argilosos prensados / Effect of alkaline activation of the aluminosilicates on the mechanical and microstructural properties of compressed clay composites

Sousa, Soenia Marques Timoteo de 31 March 2011 (has links)
Made available in DSpace on 2015-05-08T14:59:39Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5053819 bytes, checksum: 17706f3ce2da78369a2da9e99266b131 (MD5) Previous issue date: 2011-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In the chain of energy and motor fuel, in agreement with the policy to adopt green technologies, Brazilian government has encouraged the installation of biodiesel plants to produce an alternative, less polluting and less cost fuel to replace diesel and gasoline. In Paraíba State, the Biodiesel Program was created by the Law 7761 of June 15, 2005. This program initially aims to accomplish two goals: generating clean energy and social inclusion of family farmers. A plant will be built in Campina Grande and will occupy a total area of 704 m2 with a production capacity of approximately 134,000 liters/day (40 million liters/year). These biodiesel plants generate by product in the production process. Some of then, as the water from purification of the biodiesel, have high pH. It is necessary to find a way to avoid that these waste causes high environmental impact. The alkaline activation of certain materials has been studied as an alternative to Portland cement binder. In this work clay-based alkaline activated composites were investigated, with the aim to produce construction blocks. Soil available locally and metakaolin were used. As alkaline activators the Na2SiO3 (sodium silicate) and the NaOH (sodium hydroxide) were obtained commercially, but the KOH (potassium hydroxide) was obtained from the wash water from biodiesel production process. The activators and some small percentage of metakaolin are mixed with the soil and water, and the mix was compressed by a static strength of about 2 MPa, which is commonly provided by hand presses for the fabricate compressed earth blocks. The results show the feasibility of such use of liquid waste from biodiesel. The mechanical strength depends on the concentration of metakaolin, which can reach up to 17 MPa for composites with 22% activated alkaline soil. The durability, physical properties and microstructures of samples with different compositions were also studied. / Na cadeia da energia e do combustível automotor, dentro da política mundial de adoção de tecnologias verdes, o governo brasileiro vem incentivado à instalação de usinas de biodiesel, material que está sendo empregado como uma alternativa, menos poluente e de menor custo em substituição ao diesel e à gasolina. Na Paraíba, o Programa de Biodiesel foi criado através da Lei Estadual 7.761 de 15 de junho de 2005. O projeto visa inicialmente cumprir duas metas: geração de energia limpa e inclusão social de agricultores familiares. Uma usina será construída em Campina Grande, com capacidade de produção de cerca de 134 mil litros/dia. Estas usinas geram, no processo produtivo, resíduos. Faz-se necessário encontrar uma alternativa para que os resíduos tenham o menor impacto possível no ambiente. Aqueles provenientes da purificação do biodiesel são alcalinos. A ativação alcalina de certos materiais tem sido estudada como um ligante alternativo ao cimento Portland. Neste trabalho estudou-se a formação de um compósito à base de argila alcalinamente ativada para confecção de blocos para construção, nos quais foi usado um solo local e metacaulinita. Como ativadores alcalinos empregaram-se o silicato de sódio, hidróxido de sódio e o hidróxido de potássio proveniente da água de lavagem de biodiesel. Os ativadores são misturados com o solo e a mistura recebe uma compactação estática da ordem de 2 MPa, que é a comumente fornecida por prensas manuais para a fabricação de blocos prensados de terra crua. Os resultados mostram a viabilidade desse tipo de emprego do resíduo líquido de biodiesel. A resistência mecânica depende do teor de ligantes, podendo atingir valores de até 17 MPa para compósitos com 22%de solo alcalinamente ativado. A durabilidade, as propriedades físicas e microestruturais de amostras com diferentes composições foram estudadas.
8

In-Plane Cyclic Shear Performance of Interlocking Compressed Earth Block Walls

Bland, David William 01 June 2011 (has links)
This thesis presents results from testing of interlocking compressed earth block (CEB) masonry shear walls. CEBs are low strength earth masonry units sometimes stabilized with cement or lime. The interlocking compressed earth blocks (ICEBs) used in this experiment are dry stacked interlocking hollow units, which can be reinforced and grouted after they are laid. Although significant research has been undertaken to optimize the material properties of CEBs, little has been done to investigate the performance of structural systems currently being built using this technology. Test results are reported for three 1800 mm x 1800 mm wall specimens constructed with cement stabilized ICEBs and subjected to cyclic in-plane lateral loading. Wall specifications were varied to identify the shear performance of partial and fully grouted walls, and to observe the performance of a flexure dominated wall panel. It was determined that the shear strength of fully grouted walls is significantly higher than that of partially grouted walls and calculation of capacity based on current ACI 530-08 masonry provisions significantly overestimates the shear strength of ICEB wall panels. Based on the observed performance, recommendations are made for limiting the calculated nominal shear strength in design. Results also indicate that calculations based on simple bending theory conservatively predict the flexural strength of a fully grouted ICEB wall. Discussion of ICEB material properties and recommendations for design and construction procedures are included.
9

Exploring Earth-Building Technology for Liberia.

Mayon, Isaac Dompo 19 August 2009 (has links) (PDF)
This paper discusses earth as a building material and the extent to which earth building technology has evolved over the years. In particular it addresses the adobe, compressed and rammed earth techniques of earth building as suitable techniques for Liberia consumption. In addition, the paper investigates the suitability of the Latosols soils of Liberia for earth building construction purposes using standardized earth building principles and requirements. A local Johnson City, Tennessee, earth sample found to have the same physical characteristics of the Latosols of Liberia was used to simulate Liberia soils to produce specimen blocks at different configurations of moisture content and stabilizers (Bentonite and cement). Following 14 days of cure, the blocks were tested for compressive strength. It was found that blocks produced from the natural soil with no stabilizer added were structurally adequate for building construction purposes. A cost-benefit analysis involving blocks with and without stabilizer (cement) added was also performed.
10

In-Plane Shear Wall Performance As Affected by Compressed Earth Block Shape

Ambers, Steven Ellis 01 March 2017 (has links) (PDF)
This thesis investigates the in-plane shear performance of full-scale walls made from compressed earth blocks. Compressed earth blocks are a type of masonry where the blocks are composed of compressed soil and typically dry-stacked without mortar. Prior research has demonstrated that the in-plane shear strength of these blocks falls far short of capacities predicted by conventional masonry building codes, requiring new testing to develop effective and safe designs for seismic conditions. This thesis specifically studies the effects of block type and the use of grouted shear keys at the block head joints. Three full-scale walls were constructed and tested under in-plane, cyclic loading. To compare the effect of block type on shear strength, one wall was constructed from Rhino blocks as used by the Center for Vocational Building Technology, while another used V-Lock blocks designed by the Vermeer Corporation. Apart from differences in size and interlock mechanism, the standard Rhino blocks have shear keys at the head joints which are not present on the V-Lock blocks. To examine the effect of these shear keys, a third wall was built from Rhino blocks with the shear keys removed. The two standard block types displayed no major difference in strength that could not be attributed to grouted area or the presence/absence of the head joint shear keys. The Rhino block wall with shear keys reached a higher peak load relative to the grouted area but experienced a brittle drop in capacity after peaking, while the other two walls exhibited an extended loading plateau after the initial peak. All walls failed with cracking and block sliding along the main diagonals, a failure mode similar to conventional masonry. Proposals are made for modifying the equations for shear capacity from the Masonry Standards Joint Committee (MSJC) 2013 code for use in designing compressed earth block shear walls.

Page generated in 0.0798 seconds