• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 40
  • 38
  • 20
  • 20
  • 10
  • 7
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 409
  • 107
  • 61
  • 54
  • 48
  • 47
  • 45
  • 45
  • 43
  • 42
  • 41
  • 38
  • 38
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Modelling of Auxiliary Devices for a Hardware-in-the-Loop Application / Modellering av hjälpaggregat för en hardware-in-the-loop-applikation

Olsén, Johan January 2005 (has links)
<p>The engine torque is an important control signal. This signal is disturbed by the devices mounted on the belt. To better be able to estimate the torque signal, this work aims to model the auxiliary devices'influence on the crankshaft torque. Physical models have been developed for the air conditioning compressor, the alternator and the power steering pump. If these models are to be used in control unit function development and testing, they have to be fast enough to run on a hardware-in-the-loop simulator in real time. The models have been simplified to meet these demands. </p><p>The compressor model has a good physical basis, but the validity of the control mechanism is uncertain. The alternator model has been tested against a real electronic control unit in a hardware-in-the-loop simulator, and tests show good results. Validation against measurements is however necessary to confirm the results. The power steering pump model also has a good physical basis, but it is argued that a simple model relating the macro input-output power could be more valuable for control unit function development.</p>
162

Surge Modeling and Control of Automotive Turbochargers

Leufvén, Oskar, Bergström, Johan January 2007 (has links)
<p>Mean Value Engine Modeling (MVEM) is used to make engine control development less expensive. With more and more cars equipped with turbocharged engines good turbo MVEM models are needed. A turbocharger consists of two major parts: turbine and compressor. Whereas the turbine is relatively durable, there exist phenomenons on the compressor that can destroy the turbocharger. One of these is surge.</p><p>Several compressor models are developed in this thesis. Methods to determine the compressor model parameters are proposed and discussed both for the stable operating range as well as for the surge region of a compressor map. For the stationary region methods to automatically parameterize the compressor model are developed. For the unstable surge region methods to get good agreement for desired surge properties are discussed. The parameter sensitivity of the different surge properties is also discussed. A validation of the compressor model shows that it gives good agreement to data, both for the stationary region as well as the surge region.</p><p>Different open loop and closed loop controllers as well as different performance variables are developed and discussed. A benchmark is developed, based on a measured vehicle acceleration, and the control approaches are compared using this benchmark. The best controller is found to be a open loop controller based on throttle and surge valve mass flow.</p>
163

Analytical and experimental evaluation of the leakage and stiffness characteristics of high pressure pocket damper seals

Gamal Eldin, Ahmed Mohamed 30 September 2004 (has links)
This thesis presents numerical predictions for the leakage and direct stiffness coefficients of pocket damper seals. Modifications made to earlier flow-prediction models are discussed. Leakage and static pressure measurements on straight-through and diverging configurations of eight-bladed and twelve-bladed seals were used for code validation and for calculation of seal discharge coefficients. Higher than expected leakage rates were measured in the case of the twelve-bladed seal, while the leakage rates for the eight-bladed seals were predicted reasonably accurately. Results are presented for shake tests conducted on the seals at pressures of up to 1000 Psi (6.90 MPa). Test variables included pressure drop across the seals and rotor speed. The experimentally obtained stiffness coefficients are compared to results of a rotordynamic damper seal code, which uses the corrected mass flow-rate calculation method. Results show that the code under-predicts the magnitude of the seal's stiffness for most test cases. However, general trends in the frequency dependency of the direct stiffness are more accurately predicted. The expectation of high values of negative stiffness in diverging seals is confirmed by the results, but the frequency at which the sign of the stiffness becomes positive is considerably lower than is predicted. In addition to presenting high-pressure test data, this thesis also attempts to provide some insight into how seal parameters can be modified to obtain desired changes in seal stiffness.
164

Contribution to Throughflow Modelling for Axial Flow Turbomachines

Simon, Jean-Francois 31 May 2007 (has links)
La thèse de Jean-François Simon est consacrée au développement d'un outil de simulation numérique de l'écoulement dans les turbomachines axiales. La démarche proposée a pour but de réduire l'empirisme présent dans les outils de calcul méridien en turbomachines. Cet objectif est atteint en deux étapes, l'une consistant à traiter de manière cohérente les effets dus à la viscosité du fluide dans le plan méridien, l'autre à injecter dans le calcul méridien les tensions déterministes et circonférentielles ainsi que les forces d'aubes. Les équations de Navier-Stokes sont moyennées azimutalement et sont résolues par une approche volumes-finis. La capture des effets dus à la viscosité du fluide le long des parois de carter et de moyeu permet d'éviter l'introduction d'un coefficient de blocage, ou le recours à un calcul couche-limite séparé. Jean-François Simon prolonge en outre l'approche d'Adamczyk par un opérateur de moyenne circonférentielle. Différents termes additionnels apparaissent alors dans les équations du modèle et traduisent entre autres linfluence des phénomènes non axisymétriques. L'importance relative de ces différentes contributions est analysée. Les méthodologies développées sont appliquées à plusieurs cas-tests (rotor simple, étages de compresseur ou de turbine, compresseur multi- étagé), qui permettent d'illustrer l'intérêt de la démarche proposée.
165

Numerical computations of the unsteady flow in turbochargers

Hellström, Fredrik January 2010 (has links)
Turbocharging the internal combustion (IC) engine is a common technique to increase the power density. If turbocharging is used with the downsizing technique, the fuel consumption and pollution of green house gases can be decreased. In the turbocharger, the energy of the engine exhaust gas is extracted by expanding it through the turbine which drives the compressor by a shaft. If a turbocharged IC engine is compared with a natural aspirated engine, the turbocharged engine will be smaller, lighter and will also have a better efficiency, due to less pump losses, lower inertia of the system and less friction losses. To be able to further increase the efficiency of the IC engine, the understanding of the highly unsteady flow in turbochargers must be improved, which then can be used to increase the efficiency of the turbine and the compressor. The main objective with this thesis has been to enhance the understanding of the unsteady flow in turbocharger and to assess the sensitivity of inflow conditions on the turbocharger performance. The performance and the flow field in a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has been assessed by using Large Eddy Simulation (LES). To assess the effects of different operation conditions on the turbine performance, different cases have been considered with different perturbations and unsteadiness of the inflow conditions. Also different rotational speeds of the turbine wheel were considered. The results show that the turbine cannot be treated as being quasi-stationary; for example,the shaft power varies for different frequencies of the pulses for the same amplitude of mass flow. The results also show that perturbations and unsteadiness that are created in the geometry upstream of the turbine have substantial effects on the performance of the turbocharger. All this can be summarized as that perturbations and unsteadiness in the inflow conditions to the turbine affect the performance. The unsteady flow field in ported shroud compressor has also been assessed by using LES for two different operational points. For an operational point near surge, the flow field in the entire compressor stage is unsteady, where the driving mechanism is an unsteadiness created in the volute. For an operational point far away from surge, the flow field in the compressor is relatively much more steady as compared with the former case. Although the stable operational point exhibits back-flow from the ported shroud channels, which implies that the flow into the compressor wheel is disturbed due to the structures that are created in the shear layer between the bulk flow and the back-flow from the ported shroud channels. / QC20100622
166

Experimental investigation of scroll based organic Rankine systems

Tarique, Md. Ali 01 April 2011 (has links)
In this thesis, an experimental research is conducted on scroll-based Organic Rankine Cycle (ORC) focusing on the expansion process. An important feature of the ORC is the ability to utilize low or moderate temperature heat sources derived from renewable energy such as concentrated solar radiation, biomass/biofuels combustion streams, geothermal heat and waste heat recovery. The ORC is more appropriate than steam Rankine cycle to generate power from low capacity heat sources (5-500 kW thermal). For example, expansion of superheated steam from 280oC/1000 kPa to a pressure corresponding to 35oC saturation requires a volume ratio as high as 86, whereas for the same operating conditions toluene shows an expansion ratio of 6 which can be achieved in a single stage turbine or expander. The objective of this work is to experimentally study the performance of a selected refrigeration scroll compressor operating in reverse as expander in an ORC. To this purpose, three experimental systems are designed, built and used for conducting a comprehensive experimental programme aimed at determining the features of the expansion process. In preliminary tests the working fluid utilized is dry air while the main experiments are done with the organic fluid R134a. Experimental data of the scroll expander are collected under different operating conditions. Power generation in various conditions is analyzed in order to determine the optimum performance parameters for the scroll expander. In addition, thermodynamic analysis of the system is conducted through energy and exergy efficiencies to study the system performance. Based on the experimental measurements, the optimum parameters for an ORC cycle operating with the Bitzer-based expander-generator unit are determined. The cycle energy and exergy efficiencies are found 5% and 30% respectively from a heat source of 120oC. / UOIT
167

Development and Characterization of a Regeneratively Amplified Ultrafast Laser System with an All-Glass Stretcher and Compressor

Walker, Stephen January 2006 (has links)
High-peak power laser systems are defined along with a brief introduction of the technology used in their development and application to the project. A review of concepts surrounding optical pulses, focusing on the particular phenomena involved with the ultrafast, follows. Numerical models involving optical pulses are introduced and verified. An extensive description of the laser system is presented, including models used in its design. Data verifying the correct operation of the laser system is presented and interpreted. A dispersion compensation system, including a function model, is introduced, and its application to the laser system is analyzed. An introduction to pulse characterization techniques is presented followed by the design and verification of two different characterization devices. Experiments utlizing the dispersion compensation system and pulse characterization devices are presented and the results are interpreted. Conclusions are made regarding the performance of the laser system models and pulse characterization devices, along with suggested improvements for each. The results of the experiments are discussed including suggestions for future work.
168

Modelling of Auxiliary Devices for a Hardware-in-the-Loop Application / Modellering av hjälpaggregat för en hardware-in-the-loop-applikation

Olsén, Johan January 2005 (has links)
The engine torque is an important control signal. This signal is disturbed by the devices mounted on the belt. To better be able to estimate the torque signal, this work aims to model the auxiliary devices'influence on the crankshaft torque. Physical models have been developed for the air conditioning compressor, the alternator and the power steering pump. If these models are to be used in control unit function development and testing, they have to be fast enough to run on a hardware-in-the-loop simulator in real time. The models have been simplified to meet these demands. The compressor model has a good physical basis, but the validity of the control mechanism is uncertain. The alternator model has been tested against a real electronic control unit in a hardware-in-the-loop simulator, and tests show good results. Validation against measurements is however necessary to confirm the results. The power steering pump model also has a good physical basis, but it is argued that a simple model relating the macro input-output power could be more valuable for control unit function development.
169

Development and Characterization of a Regeneratively Amplified Ultrafast Laser System with an All-Glass Stretcher and Compressor

Walker, Stephen January 2006 (has links)
High-peak power laser systems are defined along with a brief introduction of the technology used in their development and application to the project. A review of concepts surrounding optical pulses, focusing on the particular phenomena involved with the ultrafast, follows. Numerical models involving optical pulses are introduced and verified. An extensive description of the laser system is presented, including models used in its design. Data verifying the correct operation of the laser system is presented and interpreted. A dispersion compensation system, including a function model, is introduced, and its application to the laser system is analyzed. An introduction to pulse characterization techniques is presented followed by the design and verification of two different characterization devices. Experiments utlizing the dispersion compensation system and pulse characterization devices are presented and the results are interpreted. Conclusions are made regarding the performance of the laser system models and pulse characterization devices, along with suggested improvements for each. The results of the experiments are discussed including suggestions for future work.
170

Compressor stability management

Dhingra, Manuj 11 January 2006 (has links)
Dynamic compressors are susceptible to aerodynamic instabilities while operating at low mass flow rates. These instabilities, rotating stall and surge, are detrimental to engine life and operational safety, and are thus undesirable. In order to prevent stability problems, a passive technique, involving fuel flow scheduling, is currently employed on gas turbines. The passive nature of this technique necessitates conservative stability margins, compromising performance and/or efficiency. In the past, model based active control has been proposed to enable reduction of margin requirements. However, available compressor stability models do not predict the different stall inception patterns, making model based control techniques practically infeasible. This research presents active stability management as a viable alternative. In particular, a limit detection and avoidance approach has been used to maintain the system free of instabilities. Simulations show significant improvements in the dynamic response of a gas turbine engine with this approach. A novel technique has been developed to enable real-time detection of stability limits in axial compressors. It employs a correlation measure to quantify the chaos in the rotor tip region. Analysis of data from four axial compressors shows that the value of the correlation measure decreases as compressor loading is increased. Moreover, sharp drops in this measure have been found to be relevant for stability limit detection. The significance of these drops can be captured by tracking events generated by the downward crossing of a selected threshold level. It has been observed that the average number of events increases as the stability limit is approached in all the compressors studied. These events appear to be randomly distributed in time. A stochastic model for the time between consecutive events has been developed and incorporated in an engine simulation. The simulation has been used to highlight the importance of the threshold level tosuccessful stability management. The compressor stability management concepts have also been experimentally demonstrated on a laboratory axial compressor rig. The fundamental nature of correlation measure has opened avenues for its application besides limit detection. The applications presented include stage load matching in a multi-stage compressor and monitoring the aerodynamic health of rotor blades.

Page generated in 0.0821 seconds