• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 47
  • 33
  • 20
  • 17
  • 10
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 706
  • 706
  • 369
  • 189
  • 173
  • 106
  • 96
  • 94
  • 90
  • 82
  • 81
  • 78
  • 78
  • 76
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

<b>Agent-Based Modeling Of </b><b>Infectious Disease Dynamics: Insights into Tuberculosis, Pediatric HIV, and Tuberculosis-HIV Coinfection</b>

Alexis Lynn Hoerter (18424443) 23 April 2024 (has links)
<p dir="ltr">Tuberculosis (TB), caused by <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), and human immunodeficiency virus-1 (HIV) are major public health concerns, individually and in combination. The status of the host immune system, previous <i>Mtb</i> infection and HIV-mediated T cell exhaustion, can have significant impacts on immune dynamics during reinfection. Individuals with asymptomatic latent TB infection (LTBI) may be protected against <i>Mtb </i>reinfection, as demonstrated by animal and <i>in vitro </i>studies. However, the underlying dynamics and protective mechanisms of LTBI are poorly understood. In HIV, long-term infection in children and associated T cell exhaustion leads to weakened immune responses to HIV reinfection. The complexity of these infections, particularly in the context of the heightened vulnerability of HIV+ individuals to TB, underscores the need for novel investigative approaches to study host-pathogen and pathogen-pathogen interactions. To this, we have developed an agent-based model (ABM) as a mechanistic computational tool to simulate the immune response to <i>Mtb </i>and HIV, separately and during coinfection. Our ABM integrates clinical and experimental data; simulates immune cell dynamics between macrophages, CD4+ and CD8+ T cells; and produces emergent granuloma-like structures – a critical response to <i>Mtb</i>. This <i>in silico</i> approach allows us to efficiently explore host-pathogen interactions and their clinical implications. By unraveling the complex interplay of immune cell activation, T cell exhaustion, and pathogen dynamics, our model offers insights that could guide the development of targeted therapies. By quantifying the multifaceted nature of these diseases and their interactions, we highlight the potential of computational approaches in understanding and treating complex diseases, individually and in combination.</p>
682

<b>Agent-Based Modeling of </b><b>Cell Culture Granuloma Models: </b><b>The Role of Structure, Dimension, Collagen, and Matrix Metalloproteinases</b>

Alexa A Petrucciani (18422784) 22 April 2024 (has links)
<p dir="ltr">Tuberculosis (TB) remains a global public health crisis, causing over 10 million new infections and 1.3 million deaths in 2022 alone. TB is caused by <i>Mycobacterium tuberculosis </i>(<i>Mtb</i>), which initiates heterogeneous pathology in the lungs, including granulomas and cavities. Granulomas are organized structures of immune cells, traditionally thought to contain bacteria. Cavities are pathological spaces caused by the destruction of extracellular matrix (ECM), which can worsen disease outcomes and cause long-lasting pulmonary impairment.<i> In vitro </i>methods are commonly used to study host-pathogen interactions in <i>Mtb</i> infection, and recent developments have led to models that represent the TB granuloma environment more closely than traditional cell culture. These advances include the development of 3D models and the inclusion of physiological ECM components like collagen. Increasing complexity has been accomplished in a piece-wise manner – minimally necessary components are included to minimize cost while maintaining throughput and tractability. This creates a need for tools to analyze these systems and, more importantly, integrate the independent data created. We developed an agent-based model to characterize multiple <i>in vitro</i> models of TB and apply it to 1) separate the contributions of dimension and structure to bacterial control in granuloma-like spheroids and 2) explore how the interactions of collagen and matrix metalloproteinases (MMP) contribute to clinically relevant outputs such as bacterial load and ECM destruction. The model provides insights into the role of granuloma structure and the conflicting results of MMP inhibition, generating new hypotheses to be tested in tandem with <i>in vitro</i> models.</p>
683

Three-dimensional hydrodynamic models coupled with GIS-based neuro-fuzzy classification for assessing environmental vulnerability of marine cage aquaculture

Navas, Juan Moreno January 2010 (has links)
There is considerable opportunity to develop new modelling techniques within a Geographic Information Systems (GIS) framework for the development of sustainable marine cage culture. However, the spatial data sets are often uncertain and incomplete, therefore new spatial models employing “soft computing” methods such as fuzzy logic may be more suitable. The aim of this study is to develop a model using Neuro-fuzzy techniques in a 3D GIS (Arc View 3.2) to predict coastal environmental vulnerability for Atlantic salmon cage aquaculture. A 3D hydrodynamic model (3DMOHID) coupled to a particle-tracking model is applied to study the circulation patterns, dispersion processes and residence time in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system), an area of restricted exchange, geometrically complicated with important aquaculture activities. The hydrodynamic model was calibrated and validated by comparison with sea surface and water flow measurements. The model provided spatial and temporal information on circulation, renewal time, helping to determine the influence of winds on circulation patterns and in particular the assessment of the hydrographic conditions with a strong influence on the management of fish cage culture. The particle-tracking model was used to study the transport and flushing processes. Instantaneous massive releases of particles from key boxes are modelled to analyse the ocean-fjord exchange characteristics and, by emulating discharge from finfish cages, to show the behaviour of waste in terms of water circulation and water exchange. In this study the results from the hydrodynamic model have been incorporated into GIS to provide an easy-to-use graphical user interface for 2D (maps), 3D and temporal visualization (animations), for interrogation of results. v Data on the physical environment and aquaculture suitability were derived from a 3- dimensional hydrodynamic model and GIS for incorporation into the final model framework and included mean and maximum current velocities, current flow quiescence time, water column stratification, sediment granulometry, particulate waste dispersion distance, oxygen depletion, water depth, coastal protection zones, and slope. The Neuro-fuzzy classification model NEFCLASS–J, was used to develop learning algorithms to create the structure (rule base) and the parameters (fuzzy sets) of a fuzzy classifier from a set of classified training data. A total of 42 training sites were sampled using stratified random sampling from the GIS raster data layers, and the vulnerability categories for each were manually classified into four categories based on the opinions of experts with field experience and specific knowledge of the environmental problems investigated. The final products, GIS/based Neuro Fuzzy maps were achieved by combining modeled and real environmental parameters relevant to marine fin fish Aquaculture. Environmental vulnerability models, based on Neuro-fuzzy techniques, showed sensitivity to the membership shapes of the fuzzy sets, the nature of the weightings applied to the model rules, and validation techniques used during the learning and validation process. The accuracy of the final classifier selected was R=85.71%, (estimated error value of ±16.5% from Cross Validation, N=10) with a Kappa coefficient of agreement of 81%. Unclassified cells in the whole spatial domain (of 1623 GIS cells) ranged from 0% to 24.18 %. A statistical comparison between vulnerability scores and a significant product of aquaculture waste (nitrogen concentrations in sediment under the salmon cages) showed that the final model gave a good correlation between predicted environmental vi vulnerability and sediment nitrogen levels, highlighting a number of areas with variable sensitivity to aquaculture. Further evaluation and analysis of the quality of the classification was achieved and the applicability of separability indexes was also studied. The inter-class separability estimations were performed on two different training data sets to assess the difficulty of the class separation problem under investigation. The Neuro-fuzzy classifier for a supervised and hard classification of coastal environmental vulnerability has demonstrated an ability to derive an accurate and reliable classification into areas of different levels of environmental vulnerability using a minimal number of training sets. The output will be an environmental spatial model for application in coastal areas intended to facilitate policy decision and to allow input into wider ranging spatial modelling projects, such as coastal zone management systems and effective environmental management of fish cage aquaculture.
684

Human population history and its interplay with natural selection

Siska, Veronika January 2019 (has links)
The complex demographic changes that underlie the expansion of anatomically modern humans out of Africa have important consequences on the dynamics of natural selection and our ability to detect it. In this thesis, I aimed to refine our knowledge on human population history using ancient genomes, and then used a climate-informed, spatially explicit framework to explore the interplay between complex demographies and selection. I first analysed a high-coverage genome from Upper Palaeolithic Romania from ~37.8 kya, and demonstrated an early diversification of multiple lineages shortly after the out-of-Africa expansion (Chapter 2). I then investigated Late Upper Palaeolithic (~13.3ky old) and Mesolithic (~9.7 ky old) samples from the Caucasus and a Late Upper Palaeolithic (~13.7ky old) sample from Western Europe, and found that these two groups belong to distinct lineages that also diverged shortly after the out of Africa, ~45-60 ky ago (Chapter 3). Finally, I used East Asian samples from ~7.7ky ago to show that there has been a greater degree of genetic continuity in this region compared to Europe (Chapter 4). In the second part of my thesis, I used a climate-informed, spatially explicit demographic model that captures the out-of-Africa expansion to explore natural selection. I first investigated whether the model can represent the confounding effect of demography on selection statistics, when applied to neutral part of the genome (Chapter 5). Whilst the overlap between different selection statistics was somewhat underestimated by the model, the relationship between signals from different populations is generally well-captured. I then modelled natural selection in the same framework and investigated the spatial distribution of two genetic variants associated with a protective effect against malaria, sickle-cell anaemia and β⁰ thalassemia (Chapter 6). I found that although this model can reproduce the disjoint ranges of different variants typical of the former, it is incompatible with overlapping distributions characteristic of the latter. Furthermore, our model is compatible with the inferred single origin of sickle-cell disease in most regions, but it can not reproduce the presence of this disorder in India without long-distance migrations.
685

Effective Statistical Energy Function Based Protein Un/Structure Prediction

Mishra, Avdesh 05 August 2019 (has links)
Proteins are an important component of living organisms, composed of one or more polypeptide chains, each containing hundreds or even thousands of amino acids of 20 standard types. The structure of a protein from the sequence determines crucial functions of proteins such as initiating metabolic reactions, DNA replication, cell signaling, and transporting molecules. In the past, proteins were considered to always have a well-defined stable shape (structured proteins), however, it has recently been shown that there exist intrinsically disordered proteins (IDPs), which lack a fixed or ordered 3D structure, have dynamic characteristics and therefore, exist in multiple states. Based on this, we extend the mapping of protein sequence not only to a fixed stable structure but also to an ensemble of protein conformations, which help us explain the complex interaction within a cell that was otherwise obscured. The objective of this dissertation is to develop effective ab initio methods and tools for protein un/structure prediction by developing effective statistical energy function, conformational search method, and disulfide connectivity patterns predictor. The key outcomes of this dissertation research are: i) a sequence and structure-based energy function for structured proteins that includes energetic terms extracted from hydrophobic-hydrophilic properties, accessible surface area, torsion angles, and ubiquitously computed dihedral angles uPhi and uPsi, ii) an ab initio protein structure predictor that combines optimal energy function derived from sequence and structure-based properties of proteins and an effective conformational search method which includes angular rotation and segment translation strategies, iii) an SVM with RBF kernel-based framework to predict disulfide connectivity pattern, iv) a hydrophobic-hydrophilic property based energy function for unstructured proteins, and v) an ab initio conformational ensemble generator that combines energy function and conformational search method for unstructured proteins which can help understand the biological systems involving IDPs and assist in rational drugs design to cure critical diseases such as cancer or cardiovascular diseases caused by challenging states of IDPs.
686

Integrative approaches to investigate the molecular basis of diseases and adverse drug reactions: from multivariate statistical analysis to systems biology

Bauer-Mehren, Anna 08 November 2010 (has links)
Despite some great success, many human diseases cannot be effectively treated, prevented or cured, yet. Moreover, prescribed drugs are often not very efficient and cause undesired side effects. Hence, there is a need to investigate the molecular basis of diseases and adverse drug reactions in more detail. For this purpose, relevant biomedical data needs to be gathered, integrated and analysed in a meaningful way. In this regard, we have developed novel integrative analysis approaches based on both perspectives, classical multivariate statistics and systems biology. A novel multilevel statistical method has been developed for exploiting molecular and pharmacological information for a set of drugs in order to investigate undesired side effects. Systems biology approaches have been used to study the genetic basis of human diseases at a global scale. For this purpose, we have developed an integrated gene-disease association database and tools for user-friendly access and analysis. We showed that modularity applies for mendelian, complex and environmental diseases and identified disease-related core biological processes. We have constructed a workflow to investigate adverse drug reactions using our gene-disease association database. A detailed study of currently available pathway data has been performed to evaluate its applicability to build network models. Finally, a strategy to integrate information about sequence variations with biological pathways has been implemented to study the effect of the sequence variations onto biological processes. In summary, the developed methods are of immense practical value for other biomedical researchers and can aid to improve the understanding of the molecular basis of diseases and adverse drug reactions.A pesar de que existen tratamientos eficaces para las enfermedades, no hay todavía una cura o un tratamiento efectivo para muchas de ellas. Asimismo los medicamentos pueden ser ineficaces o causar efectos secundarios indeseables. Por lo tanto, es necesario investigar en profundidad las bases moleculares de las enfermedades y de los efectos secundarios de los medicamentos. Para ello, es necesario identificar y analizar de forma integrada los datos biomédicos relevantes. En este sentido, hemos desarrollado nuevos métodos de análisis e integración de datos biomédicos que van desde el análisis estadístico multivariante a la biología de sistemas. En primer lugar, hemos desarrollado un nuevo método estadístico multinivel para la explotación de la información molecular y farmacológica de un conjunto de drogas a fin de investigar efectos secundarios no deseados. Luego, hemos usado métodos de biología de sistemas para estudiar las bases genéticas de enfermedades humanas a escala global. Para ello, hemos integrado en una base de datos asociaciones entre genes y enfermedades y hemos desarrollado herramientas para el fácil acceso y análisis de los datos. Mostramos que las enfermedades mendelianas, complejas y ambientales presentan modularidad e identificamos los procesos biológicos relacionados con dichas enfermedades. Hemos construido una herramienta para investigar las reacciones adversas a los medicamentos basada en nuestra base de datos de asociaciones entre genes y enfermedades. Realizamos un estudio detallado de los datos disponibles sobre los procesos biológicos para evaluar su aplicabilidad en la construcción de modelos dinámicos. Por último, desarrollamos una estrategia para integrar la información sobre las variaciones de secuencia de genes con los procesos biológicos para estudiar el efecto de dichas variaciones en los procesos biológicos. En resumen, los métodos presentados en esta tesis constituyen una herramienta valiosa para otros investigadores y pueden ayudar a mejorar la comprensión de las bases moleculares de las enfermedades y de las reacciones adversas a los medicamentos.
687

Transcript-Specific Cytoplasmic Degradation of YRA1 Pre-mRNA Mediated by the Yeast EDC3 Protein: A Dissertation

Dong, Shuyun 17 December 2007 (has links)
mRNA degradation is a fundamental process that controls both the level and the fidelity of gene expression. Using a combination of bioinformatic, genomic, genetic, and molecular biology approaches, we have shown that Edc3p, a yeast mRNA decay factor, controls the stability of the intron-containing YRA1 pre-mRNA. We found that Edc3p-mediated degradation of YRA1 pre-mRNA: 1) is a component of a negative feedback loop involved in the autoregulation of YRA1, 2) takes place in the cytoplasm, 3) is independent of translation, 4) occurs through a deadenylation-independent decapping and 5΄ to 3΄ exonucleotic decay mechanism, and 5) is controlled by specific cis-acting elements and trans-regulatory factors. Cis-regulation of YRA1 pre-mRNA degradation is complicated and precise. Sequences in exon1 inhibit YRA1 pre-mRNA splicing and/or promote pre-mRNA export in a size-dependent but sequence-independent manner. Sequences in the intron dictate the substrate specificity for Edc3p-mediated decay. Five structurally different but functionally interdependent modules were identified in the YRA1 intron. Two modules, designated Edc3p-responsive elements (EREs), are required for triggering an Edc3p-response. Three other modules, designated translational repression elements (TREs), are required for repressing translation of YRA1 pre-mRNA. TREs enhance the efficiency of the response of the EREs to Edc3p by inhibiting translation-dependent nonsense-mediated mRNA decay (NMD). Trans-regulation of YRA1 pre-mRNA is governed by Yra1p, which inhibits YRA1 pre-mRNA splicing and commits the pre-mRNA to nuclear export, and the RNP export factors, Mex67p and Crm1p, which jointly promote YRA1 pre-mRNA export. Mex67p also appears to interact with sequences in the YRA1 intron to promote translational repression and to enhance the Edc3p response of YRA1 pre-mRNA. These results illustrate how common steps in the nuclear processing, export, and degradation of a transcript can be uniquely combined to control the expression of a specific gene and suggest that Edc3p-mediated decay may have additional regulatory functions in eukaryotic cells.
688

Searching for novel protein-protein specificities using a combined approach of sequence co-evolution and local structural equilibration

Nordesjö, Olle January 2016 (has links)
Greater understanding of how we can use protein simulations and statistical characteristics of biomolecular interfaces as proxies for biological function will make manifest major advances in protein engineering. Here we show how to use calculated change in binding affinity and coevolutionary scores to predict the functional effect of mutations in the interface between a Histidine Kinase and a Response Regulator. These proteins participate in the Two-Component Regulatory system, a system for intracellular signalling found in bacteria. We find that both scores work as proxies for functional mutants and demonstrate a ~30 fold improvement in initial positive predictive value compared with choosing randomly from a sequence space of 160 000 variants in the top 20 mutants. We also demonstrate qualitative differences in the predictions of the two scores, primarily a tendency for the coevolutionary score to miss out on one class of functional mutants with enriched frequency of the amino acid threonine in one position.
689

Individualization of fixed-dose combination regimens : Methodology and application to pediatric tuberculosis / Individualisering av design och dosering av kombinationstabletter : Metodologi och applicering inom pediatrisk tuberkulos

Yngman, Gunnar January 2015 (has links)
Introduction: No Fixed-Dose Combination (FDC) formulations currently exist for pediatric tuberculosis (TB) treatment. Earlier work implemented, in the software NONMEM, a rational method for optimizing design and individualization of pediatric anti-TB FDC formulations based on patient body weight, but issues with parameter estimation, dosage strata heterogeneity and representative pharmacokinetics remained. Aim: To further develop the rational model-based methodology aiding the selection of appropriate FDC formulation designs and dosage regimens, in pediatric TB treatment. Materials and Methods: Optimization of the method with respect to the estimation of body weight breakpoints was sought. Heterogeneity of dosage groups with respect to treatment efficiency was sought to be improved. Recently published pediatric pharmacokinetic parameters were implemented and the model translated to MATLAB, where also the performance was evaluated by stochastic estimation and graphical visualization. Results: A logistic function was found better suited as an approximation of breakpoints. None of the estimation methods implemented in NONMEM were more suitable than the originally used FO method. Homogenization of dosage group treatment efficiency could not be solved. MATLAB translation was successful but required stochastic estimations and highlighted high densities of local minima. Representative pharmacokinetics were successfully implemented. Conclusions: NONMEM was found suboptimal for the task due to problems with discontinuities and heterogeneity, but a stepwise method with representative pharmacokinetics were successfully implemented. MATLAB showed more promise in the search for a method also addressing the heterogeneity issue.
690

Ett sannolikhetsbaserat kvalitetsmått förbättrar klassificeringen av oförväntade sekvenser i in situ sekvensering / A probability-based quality measure improves the classification of unexpected sequences in in situ sequencing

Nordesjö, Olle, Pontén, Victor, Herman, Stephanie, Ås, Joel, Jamal, Sabri, Nyberg, Alona January 2014 (has links)
In situ sekvensering är en metod som kan användas för att lokalisera differentiellt uttryck av mRNA direkt i vävnadssnitt, vilket kan ge viktiga ledtrådar om många sjukdomstillstånd. Idag förloras många av sekvenserna från in situ sekvensering på grund av det kvalitetsmått man använder för att säkerställa att sekvenser är korrekta. Det finns troligtvis möjlighet att förbättra prestandan av den nuvarande base calling-metoden eftersom att metoden är i ett tidigt utvecklingsskede. Vi har genomfört explorativ dataanalys för att undersöka förekomst av systematiska fel och korrigerat för dessa med hjälp av statistiska metoder. Vi har framförallt undersökt tre metoder för att korrigera för systematiska fel: I) Korrektion av överblödning som sker på grund avöverlappande emissionsspektra mellan fluorescenta prober. II) En sannolikhetsbaserad tolkningav intensitetsdata som resulterar i ett nytt kvalitetsmått och en alternativ klassificerare baseradpå övervakad inlärning. III) En utredning om förekomst av cykelberoende effekter, exempelvisofullständig dehybridisering av fluorescenta prober. Vi föreslår att man gör följande saker: Implementerar och utvärderar det sannolikhetsbaserade kvalitetsmåttet Utvecklar och implementerar den föreslagna klassificeraren Genomför ytterligare experiment för att påvisa eller bestrida förekomst av ofullständigdehybridisering / In situ sequencing is a method that can be used to localize differential expression of mRNA directly in tissue sections, something that can give valuable insights to many statest of disease. Today, many of the registered sequences from in situ sequencing are lost due to a conservative quality measure used to filter out incorrect sequencing reads. There is room for improvement in the performance of the current method for base calling since the technology is in an early stage of development. We have performed exploratory data analysis to investigate occurrence of systematic errors, and corrected for these by using various statistical methods. The primary methods that have been investigated are the following: I) Correction of emission spectra overlap resulting in spillover between channels. II) A probability-based interpretation of intensity data, resulting in a novel quality measure and an alternative classifier based on supervised learning. III) Analysis of occurrence of cycle dependent effects, e.g. incomplete dehybridization of fluorescent probes. We suggest the following: Implementation and evaluation of the probability-based quality measure Development and implementation of the proposed classifier Additional experiments to investigate the possible occurrence of incomplete dehybridization

Page generated in 0.0926 seconds