281 |
Single-trial classification of an EEG-based brain computer interface using the wavelet packet decomposition and cepstral analysisLodder, Shaun 12 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Brain-Computer Interface (BCI) monitors brain activity by using signals
such as EEG, EcOG, and MEG, and attempts to bridge the gap between
thoughts and actions by providing control to physical devices that range from
wheelchairs to computers. A crucial process for a BCI system is feature extraction,
and many studies have been undertaken to find relevant information
from a set of input signals.
This thesis investigated feature extraction from EEG signals using two
different approaches. Wavelet packet decomposition was used to extract information
from the signals in their frequency domain, and cepstral analysis was
used to search for relevant information in the cepstral domain. A BCI was implemented
to evaluate the two approaches, and three classification techniques
contributed to finding the effectiveness of each feature type.
Data containing two-class motor imagery was used for testing, and the BCI
was compared to some of the other systems currently available. Results indicate
that both approaches investigated were effective in producing separable
features, and, with further work, can be used for the classification of trials
based on a paradigm exploiting motor imagery as a means of control. / AFRIKAANSE OPSOMMING: ’n Brein-Rekenaar Koppelvlak (BRK) monitor brein aktiwiteit deur gebruik
te maak van seine soos EEG, EcOG, en MEG. Dit poog om die gaping
tussen gedagtes en fisiese aksies te oorbrug deur beheer aan toestelle soos
rolstoele en rekenaars te verskaf. ’n Noodsaaklike proses vir ’n BRK is die
ontginning van toepaslike inligting uit inset-seine, wat kan help om tussen verskillende
gedagtes te onderskei. Vele studies is al onderneem oor hoe om sulke
inligting te vind.
Hierdie tesis ondersoek die ontginning van kenmerk-vektore in EEG-seine
deur twee verskillende benaderings. Die eerste hiervan is golfies pakkie ontleding,
’n metode wat gebruik word om die sein in die frekwensie gebied voor
te stel. Die tweede benadering gebruik kepstrale analise en soek vir toepaslike
inligting in die kepstrale domein. ’n BRK is geïmplementeer om beide metodes
te evalueer.
Die toetsdata wat gebruik is, het bestaan uit twee-klas motoriese verbeelde
bewegings, en drie klassifikasie-tegnieke was gebruik om die doeltreffendheid
van die twee metodes te evalueer. Die BRK is vergelyk met ander stelsels
wat tans beskikbaar is, en resultate dui daarop dat beide metodes doeltreffend
was. Met verdere navorsing besit hulle dus die potensiaal om gebruik te word
in stelsels wat gebruik maak van motoriese verbeelde bewegings om fisiese
toestelle te beheer.
|
282 |
Automated Knowledge Extraction from Archival DocumentsMalki, Khalil 31 July 2019 (has links)
Traditional archival media such as paper, film, photographs, etc. contain a vast storage of knowledge. Much of this knowledge is applicable to current business and scientific problems, and offers solutions; consequently, there is value in extracting this information. While it is possible to manually extract the content, this technique is not feasible for large knowledge repositories due to cost and time. In this thesis, we develop a system that can extract such knowledge automatically from large repositories. A Graphical User Interface that permits users to indicate the location of the knowledge components (indexes) is developed, and software features that permit automatic extraction of indexes from similar documents is presented. The indexes and the documents are stored in a persistentdata store.The system is tested on a University Registrar’s legacy paper-based transcript repository. The study shows that the system provides a good solution for large-scale extraction of knowledge from archived paper and other media.
|
283 |
Méthodes d'analyse et de débruitage multicanaux à partir d'ondelettes pour améliorer la détection de potentiels évoqués sans moyennage : application aux interfaces cerveau-ordinateur / Wavelet-based semblance methods to enhance single-trial ERP detectionSaavedra Ruiz, Carolina Verónica 14 November 2013 (has links)
Une interface cerveau-ordinateur permet d'interagir avec un système, comme un système d'écriture, uniquement par l'activité cérébrale. Un des phénomènes neurophysiologiques permettant cette interaction est le potentiel évoqué cognitif P300, lequel correspond à une modification du signal 300 ms après la présentation d'une information attendue. Cette petite réaction cérébrale est difficile à observer par électroencéphalographie car le signal est bruité. Dans cette thèse, de nouvelles techniques basées sur la théorie des ondelettes sont développées pour améliorer la détection des P300 en utilisant des mesures de similarité entre les canaux électroencéphalographiques. Une technique présentée dans cette thèse débruite les signaux en considérant simultanément la phase des signaux. Nous avons également étendu cette approche pour étudier la localisation du P300 dans le but de sélectionner automatiquement la fenêtre temporelle à étudier et faciliter la détection / Brain-Computer Interfaces (BCI) are control and communication systems which were initially developed for people with disabilities. The idea behind BCI is to translate the brain activity into commands for a computer application or other devices, such as a spelling system. The most popular technique to record brain signals is the electroencephalography (EEG), from which Event-Related Potentials (ERPs) can be detected and used in BCI systems. Despite the BCI popularity, it is generally difficult to work with brain signals, because the recordings contains also noise and artifacts, and because the brain components amplitudes are very small compared to the whole ongoing EEG activity. This thesis presents new techniques based on wavelet theory to improve BCI systems using signals' similarity. The first one denoises the signals in the wavelet domain simultaneously. The second one combines the information provided by the signals to localize the ERP in time by removing useless information
|
284 |
A noisy-channel based model to recognize words in eye typing systems / Um modelo baseado em canal de ruído para reconhecer palavras digitadas com os olhosHanada, Raíza Tamae Sarkis 04 April 2018 (has links)
An important issue with eye-based typing iis the correct identification of both whrn the userselects a key and which key is selected. Traditional solutions are based on predefined gaze fixation time, known as dwell-time methods. In an attempt to improve accuracy long dwell times are adopted, which un turn lead to fatigue and longer response limes. These problems motivate the proposal of methods free of dwell-time, or with very short ones, which rely on more robust recognition techniques to reduce the uncertainty about user\'s actions. These techniques are specially important when the users have disabilities which affect their eye movements or use inexpensive eye trackers. An approach to deal with the recognition problem is to treat it as a spelling correction task. An usual strategy for spelling correction is to model the problem as the transmission of a word through a noisy-channel, such that it is necessary to determine which known word of a lexicon is the received string. A feasible application of this method requires the reduction of the set of candidate words by choosing only the ones that can be transformed into the imput by applying up to k character edit operations. This idea works well on traditional typing because the number of errors per word is very small. However, this is not the case for eye-based typing systems, which are much noiser. In such a scenario, spelling correction strategies do not scale well as they grow exponentially with k and the lexicon size. Moreover, the error distribution in eye typing is different, with much more insertion errors due to specific sources, of noise such as the eye tracker device, particular user behaviors, and intrinsic chracteeristics of eye movements. Also, the lack of a large corpus of errors makes it hard to adopt probabilistic approaches based on information extracted from real world data. To address all these problems, we propose an effective recognition approach by combining estimates extracted from general error corpora with domain-specific knowledge about eye-based input. The technique is ablçe to calculate edit disyances effectively by using a Mor-Fraenkel index, searchable using a minimun prfect hashing. The method allows the early processing of most promising candidates, such that fast pruned searches present negligible loss in word ranking quality. We also propose a linear heuristic for estimating edit-based distances which take advantage of information already provided by the index. Finally, we extend our recognition model to include the variability of the eye movements as source of errors, provide a comprehensive study about the importance of the noise model when combined with a language model and determine how it affects the user behaviour while she is typing. As result, we obtain a method very effective on the task of recognizing words and fast enough to be use in real eye typing systems. In a transcription experiment with 8 users, they archived 17.46 words per minute using proposed model, a gain of 11.3% over a state-of-the-art eye-typing system. The method was particularly userful in more noisier situations, such as the first use sessions. Despite significant gains in typing speed and word recognition ability, we were not able to find statistically significant differences on the participants\' perception about their expeience with both methods. This indicates that an improved suggestion ranking may not be clearly perceptible by the users even when it enhances their performance. / Um problema importante em sistemas de digitação com os olhos é a correta identificação tanto de quando uma letra é selecionada como de qual letra foi selecionada pelo usuário. As soluções tradicionais para este problema são baseadas na verificação de quanto tempo o olho permanece retido em um alvo. Se ele fica por um certo limite de tempo, a seleção é reconhecida. Métodos em que usam esta ideia são conhecidos como baseados em tempo de retenção (dwell time). É comum que tais métodos, com intuito de melhorar a precisão, adotem tempos de retenção alto. Isso, por outro lado, leva à fadiga e tempos de resposta altos. Estes problemas motivaram a proposta de métodos não baseados em tempos de retenção reduzidos, que dependem de técnicas mais robustas de reconhecimento para inferir as ações dos usuários. Tais estratégias são particularmente mais importantes quando o usuário tem desabilidades que afetam o movimento dos olhos ou usam dispositivos de rastreamento ocular (eye-trackers) muito baratos e, portanto, imprecisos. Uma forma de lidar com o problema de reconhecimento das ações dos usuários é tratá-lo como correção ortográfica. Métodos comuns para correção ortográfica consistem em modelá-lo como a transmissão de uma palavra através de um canal de ruído, tal que é necessário determinar que palavra de um dicionário corresponde à string recebida. Para que a aplicação deste método seja viável, o conjunto de palavras candidatas é reduzido somente àquelas que podem ser transformadas na string de entrada pela aplicação de até k operações de edição de carácter. Esta ideia funciona bem em digitação tradicional porque o número de erros por palavra é pequeno. Contudo, este não é o caso de digitação com os olhos, onde há muito mais ruído. Em tal cenário, técnicas de correção de erros ortográficos não escalam pois seu custo cresce exponencialmente com k e o tamanho do dicionário. Além disso, a distribuição de erros neste cenário é diferente, com muito mais inserções incorretas devido a fontes específicas de ruído como o dispositivo de rastreamento ocular, certos comportamentos dos usuários e características intrínsecas dos movimentos dos olhos. O uso de técnicas probabilísticas baseadas na análise de logs de digitação também não é uma alternativa uma vez que não há corpora de dados grande o suficiente para tanto. Para lidar com todos estes problemas, propomos um método efetivo de reconhecimento que combina estimativas de corpus de erros gerais com conhecimento específico sobre fontes de erro encontradas em sistemas de digitação com os olhos. Nossa técnica é capaz de calcular distâncias de edição eficazmente usando um índice de Mor-Fraenkel em que buscas são feitas com auxílio de um hashing perfeito mínimo. O método possibilita o processamento ordenado de candidatos promissores, de forma que as operações de busca podem ser podadas sem que apresentem perda significativa na qualidade do ranking. Nós também propomos uma heurística linear para estimar distância de edição que tira proveito das informações já mantidas no índice, estendemos nosso modelo de reconhecimento para incluir erros vinculados à variabilidade decorrente dos movimentos oculares e fornecemos um estudo detalhado sobre a importância relativa dos modelos de ruído e de linguagem. Por fim, determinamos os efeitos do modelo no comportamento do usuário enquanto ele digita. Como resultado, obtivemos um método de reconhecimento muito eficaz e rápido o suficiente para ser usado em um sistema real. Em uma tarefa de transcrição com 8 usuários, eles alcançaram velocidade de 17.46 palavras por minuto usando o nosso modelo, o que corresponde a um ganho de 11,3% sobre um método do estado da arte. Nosso método se mostrou mais particularmente útil em situação onde há mais ruído, tal como a primeira sessão de uso. Apesar dos ganhos claros de velocidade de digitação, não encontramos diferenças estatisticamente significativas na percepção dos usuários sobre sua experiência com os dois métodos. Isto indica que uma melhoria no ranking de sugestões pode não ser claramente perceptível pelos usuários mesmo quanto ela afeta positivamente os seus desempenhos.
|
285 |
Performance analysis of graph metrics for assessing hand motor imagery tasks from electroencephalography data : Análise de desempenho de métricas de grafos para reconhecimento de tarefas de imaginação motora das mãos a partir de dados de eletroencefalografia / Análise de desempenho de métricas de grafos para reconhecimento de tarefas de imaginação motora das mãos a partir de dados de eletroencefalografiaStefano Filho, Carlos Alberto, 1991- 07 July 2016 (has links)
Orientadores: Gabriela Castellano, Romis Ribeiro de Faissol Attux / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-06T19:40:58Z (GMT). No. of bitstreams: 1
StefanoFilho_CarlosAlberto_M.pdf: 6581881 bytes, checksum: fb23f8cb938a72e69a97b2bf2ff14cab (MD5)
Previous issue date: 2016 / Resumo: Interfaces cérebro-computador (BCIs, brain-computer interfaces) são sistemas cuja finalidade é fornecer um canal de comunicação direto entre o cérebro e um dispositivo externo, como um computador, uma prótese ou uma cadeira de rodas. Por não utilizarem as vias fisiológicas convencionais, BCIs podem constituir importantes tecnologias assistivas para pessoas que sofreram algum tipo de lesão e, por isso, tiveram sua interação com o ambiente externo comprometida. Os sinais cerebrais a serem extraídos para utilização nestes sistemas devem ser gerados mediante estratégias específicas. Nesta dissertação, trabalhamos com a estratégia de imaginação motora (MI, motor imagery), e extraímos a resposta cerebral correspondente a partir de dados de eletroencefalografia (EEG). Os objetivos do trabalho foram caracterizar as redes cerebrais funcionais oriundas das tarefas de MI das mãos e explorar a viabilidade de utilizar métricas da teoria de grafos para a classificação dos padrões mentais, gerados por esta estratégia, de usuários de um sistema BCI. Para isto, fez-se a hipótese de que as alterações no espectro de frequências dos sinais de eletroencefalografia devidas à MI das mãos deveria, de alguma forma, se refletir nos grafos construídos para representar as interações cerebrais corticais durante estas tarefas. Em termos de classificação, diferentes conjuntos de pares de eletrodos foram testados, assim como diferentes classificadores (análise de discriminantes lineares ¿ LDA, máquina de vetores de suporte ¿ SVM ¿ linear e polinomial). Os três classificadores testados tiveram desempenho similar na maioria dos casos. A taxa média de classificação para todos os voluntários considerando a melhor combinação de eletrodos e classificador foi de 78%, sendo que alguns voluntários tiveram taxas de acerto individuais de até 92%. Ainda assim, a metodologia empregada até o momento possui várias limitações, sendo a principal como encontrar os pares ótimos de eletrodos, que variam entre voluntários e aquisições; além do problema da realização online da análise / Abstract: Brain-computer interfaces (BCIs) are systems that aim to provide a direct communication channel between the brain and an external device, such as a computer, a prosthesis or a wheelchair. Since BCIs do not use the conventional physiological pathways, they can constitute important assistive technologies for people with lesions that compromised their interaction with the external environment. Brain signals to be extracted for these systems must be generated according to specific strategies. In this dissertation, we worked with the motor imagery (MI) strategy, and we extracted the corresponding cerebral response from electroencephalography (EEG) data. Our goals were to characterize the functional brain networks originating from hands¿ MI and investigate the feasibility of using metrics from graph theory for the classification of mental patterns, generated by this strategy, of BCI users. We hypothesized that frequency alterations in the EEG spectra due to MI should reflect themselves, in some manner, in the graphs representing cortical interactions during these tasks. For data classification, different sets of electrode pairs were tested, as well as different classifiers (linear discriminant analysis ¿ LDA, and both linear and polynomial support vector machines ¿ SVMs). All three classifiers tested performed similarly in most cases. The mean classification rate over subjects, considering the best electrode set and classifier, was 78%, while some subjects achieved individual hit rates of up to 92%. Still, the employed methodology has yet some limitations, being the main one how to find the optimum electrode pairs¿ sets, which vary among subjects and among acquisitions; in addition to the problem of performing an online analysis / Mestrado / Física / Mestre em Física / 165742/2014-3 / 1423625/2014 / CNPQ / CAPES
|
286 |
A noisy-channel based model to recognize words in eye typing systems / Um modelo baseado em canal de ruído para reconhecer palavras digitadas com os olhosRaíza Tamae Sarkis Hanada 04 April 2018 (has links)
An important issue with eye-based typing iis the correct identification of both whrn the userselects a key and which key is selected. Traditional solutions are based on predefined gaze fixation time, known as dwell-time methods. In an attempt to improve accuracy long dwell times are adopted, which un turn lead to fatigue and longer response limes. These problems motivate the proposal of methods free of dwell-time, or with very short ones, which rely on more robust recognition techniques to reduce the uncertainty about user\'s actions. These techniques are specially important when the users have disabilities which affect their eye movements or use inexpensive eye trackers. An approach to deal with the recognition problem is to treat it as a spelling correction task. An usual strategy for spelling correction is to model the problem as the transmission of a word through a noisy-channel, such that it is necessary to determine which known word of a lexicon is the received string. A feasible application of this method requires the reduction of the set of candidate words by choosing only the ones that can be transformed into the imput by applying up to k character edit operations. This idea works well on traditional typing because the number of errors per word is very small. However, this is not the case for eye-based typing systems, which are much noiser. In such a scenario, spelling correction strategies do not scale well as they grow exponentially with k and the lexicon size. Moreover, the error distribution in eye typing is different, with much more insertion errors due to specific sources, of noise such as the eye tracker device, particular user behaviors, and intrinsic chracteeristics of eye movements. Also, the lack of a large corpus of errors makes it hard to adopt probabilistic approaches based on information extracted from real world data. To address all these problems, we propose an effective recognition approach by combining estimates extracted from general error corpora with domain-specific knowledge about eye-based input. The technique is ablçe to calculate edit disyances effectively by using a Mor-Fraenkel index, searchable using a minimun prfect hashing. The method allows the early processing of most promising candidates, such that fast pruned searches present negligible loss in word ranking quality. We also propose a linear heuristic for estimating edit-based distances which take advantage of information already provided by the index. Finally, we extend our recognition model to include the variability of the eye movements as source of errors, provide a comprehensive study about the importance of the noise model when combined with a language model and determine how it affects the user behaviour while she is typing. As result, we obtain a method very effective on the task of recognizing words and fast enough to be use in real eye typing systems. In a transcription experiment with 8 users, they archived 17.46 words per minute using proposed model, a gain of 11.3% over a state-of-the-art eye-typing system. The method was particularly userful in more noisier situations, such as the first use sessions. Despite significant gains in typing speed and word recognition ability, we were not able to find statistically significant differences on the participants\' perception about their expeience with both methods. This indicates that an improved suggestion ranking may not be clearly perceptible by the users even when it enhances their performance. / Um problema importante em sistemas de digitação com os olhos é a correta identificação tanto de quando uma letra é selecionada como de qual letra foi selecionada pelo usuário. As soluções tradicionais para este problema são baseadas na verificação de quanto tempo o olho permanece retido em um alvo. Se ele fica por um certo limite de tempo, a seleção é reconhecida. Métodos em que usam esta ideia são conhecidos como baseados em tempo de retenção (dwell time). É comum que tais métodos, com intuito de melhorar a precisão, adotem tempos de retenção alto. Isso, por outro lado, leva à fadiga e tempos de resposta altos. Estes problemas motivaram a proposta de métodos não baseados em tempos de retenção reduzidos, que dependem de técnicas mais robustas de reconhecimento para inferir as ações dos usuários. Tais estratégias são particularmente mais importantes quando o usuário tem desabilidades que afetam o movimento dos olhos ou usam dispositivos de rastreamento ocular (eye-trackers) muito baratos e, portanto, imprecisos. Uma forma de lidar com o problema de reconhecimento das ações dos usuários é tratá-lo como correção ortográfica. Métodos comuns para correção ortográfica consistem em modelá-lo como a transmissão de uma palavra através de um canal de ruído, tal que é necessário determinar que palavra de um dicionário corresponde à string recebida. Para que a aplicação deste método seja viável, o conjunto de palavras candidatas é reduzido somente àquelas que podem ser transformadas na string de entrada pela aplicação de até k operações de edição de carácter. Esta ideia funciona bem em digitação tradicional porque o número de erros por palavra é pequeno. Contudo, este não é o caso de digitação com os olhos, onde há muito mais ruído. Em tal cenário, técnicas de correção de erros ortográficos não escalam pois seu custo cresce exponencialmente com k e o tamanho do dicionário. Além disso, a distribuição de erros neste cenário é diferente, com muito mais inserções incorretas devido a fontes específicas de ruído como o dispositivo de rastreamento ocular, certos comportamentos dos usuários e características intrínsecas dos movimentos dos olhos. O uso de técnicas probabilísticas baseadas na análise de logs de digitação também não é uma alternativa uma vez que não há corpora de dados grande o suficiente para tanto. Para lidar com todos estes problemas, propomos um método efetivo de reconhecimento que combina estimativas de corpus de erros gerais com conhecimento específico sobre fontes de erro encontradas em sistemas de digitação com os olhos. Nossa técnica é capaz de calcular distâncias de edição eficazmente usando um índice de Mor-Fraenkel em que buscas são feitas com auxílio de um hashing perfeito mínimo. O método possibilita o processamento ordenado de candidatos promissores, de forma que as operações de busca podem ser podadas sem que apresentem perda significativa na qualidade do ranking. Nós também propomos uma heurística linear para estimar distância de edição que tira proveito das informações já mantidas no índice, estendemos nosso modelo de reconhecimento para incluir erros vinculados à variabilidade decorrente dos movimentos oculares e fornecemos um estudo detalhado sobre a importância relativa dos modelos de ruído e de linguagem. Por fim, determinamos os efeitos do modelo no comportamento do usuário enquanto ele digita. Como resultado, obtivemos um método de reconhecimento muito eficaz e rápido o suficiente para ser usado em um sistema real. Em uma tarefa de transcrição com 8 usuários, eles alcançaram velocidade de 17.46 palavras por minuto usando o nosso modelo, o que corresponde a um ganho de 11,3% sobre um método do estado da arte. Nosso método se mostrou mais particularmente útil em situação onde há mais ruído, tal como a primeira sessão de uso. Apesar dos ganhos claros de velocidade de digitação, não encontramos diferenças estatisticamente significativas na percepção dos usuários sobre sua experiência com os dois métodos. Isto indica que uma melhoria no ranking de sugestões pode não ser claramente perceptível pelos usuários mesmo quanto ela afeta positivamente os seus desempenhos.
|
287 |
REAL-TIME CAPTURE AND RENDERING OF PHYSICAL SCENE WITH AN EFFICIENTLY CALIBRATED RGB-D CAMERA NETWORKSu, Po-Chang 01 January 2017 (has links)
From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. With the recent explosive growth of Augmented Reality (AR) and Virtual Reality (VR) platforms, utilizing camera RGB-D camera networks to capture and render dynamic physical space can enhance immersive experiences for users. To maximize coverage and minimize costs, practical applications often use a small number of RGB-D cameras and sparsely place them around the environment for data capturing. While sparse color camera networks have been studied for decades, the problems of extrinsic calibration of and rendering with sparse RGB-D camera networks are less well understood. Extrinsic calibration is difficult because of inappropriate RGB-D camera models and lack of shared scene features. Due to the significant camera noise and sparse coverage of the scene, the quality of rendering 3D point clouds is much lower compared with synthetic models. Adding virtual objects whose rendering depend on the physical environment such as those with reflective surfaces further complicate the rendering pipeline.
In this dissertation, I propose novel solutions to tackle these challenges faced by RGB-D camera systems. First, I propose a novel extrinsic calibration algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Second, I propose a novel rendering pipeline that can capture and render, in real-time, dynamic scenes in the presence of arbitrary-shaped reflective virtual objects. Third, I have demonstrated a teleportation application that uses the proposed system to merge two geographically separated 3D captured scenes into the same reconstructed environment.
To provide a fast and robust calibration for a sparse RGB-D camera network, first, the correspondences between different camera views are established by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic using rigid transformation that is optimal only for pinhole cameras, different view transformation functions including rigid transformation, polynomial transformation, and manifold regression are systematically tested to determine the most robust mapping that generalizes well to unseen data. Third, the celebrated bundle adjustment procedure is reformulated to minimize the global 3D projection error so as to fine-tune the initial estimates. To achieve a realistic mirror rendering, a robust eye detector is used to identify the viewer's 3D location and render the reflective scene accordingly. The limited field of view obtained from a single camera is overcome by our calibrated RGB-D camera network system that is scalable to capture an arbitrarily large environment. The rendering is accomplished by raytracing light rays from the viewpoint to the scene reflected by the virtual curved surface. To the best of our knowledge, the proposed system is the first to render reflective dynamic scenes from real 3D data in large environments. Our scalable client-server architecture is computationally efficient - the calibration of a camera network system, including data capture, can be done in minutes using only commodity PCs.
|
288 |
Assessing Ratio-Based Fatigue Indexes Using a Single Channel EEGCoffey, Lucas B 01 January 2018 (has links)
Driver fatigue is a state of reduced mental alertness which impairs the performance of a range of cognitive and psychomotor tasks, including driving. According to the National Highway Traffic Safety Administration, driver fatigue was responsible for 72,000 accidents that lead to more than 800 deaths in 2015. A reliable method of driver fatigue detection is needed to prevent such accidents. There has been a great deal of research into studying driver fatigue via electroencephalography (EEG) to analyze brain wave data. These research works have produced three competing EEG data-based ratios that have the potential to detect driver fatigue.
Research has shown these three ratios trend downward as fatigue increases. However, no empirical research has been conducted to determine whether drivers begin to feel fatigue at a certain Percent Change from an alert state to a fatigue state in one or more of these ratios. If a Percent Change could be identified for which drivers begin to feel fatigue, then it could be used as a method of fatigue detection in real-time system. This research focuses on answering this question by collecting brain wave data via an EEG device over a 60-minute driving session for 10 University of North Florida (UNF) students. A frequency distribution and cluster analysis was done to identify a common Percent Change for the participants who experienced fatigue. The results of the analysis were compared to a subset of users who did not experience fatigue to validate the findings. The project was approved by the UNF IRB on Nov. 1, 2016 (reference number 475514-4).
|
289 |
Functional Reactive Musical PerformersPhillips, Justin M 01 December 2010 (has links)
Computers have been assisting in recording, sound synthesis and other fields of music production for quite some time. The actual performance of music continues to be an area in which human players are chosen over computer performers. Musical performance is an area in which personalization is more important than consistency. Human players play with each other, reacting to phrases and ideas created by the players that they are playing with. Computer performers lack the ability to react to the changes in the performance that humans perceive naturally, giving the human players an advantage over the computer performers.
This thesis creates a framework for describing unique musical performers that can play along in realtime with human players. FrTime, a reactive programming language, is used to constantly create new musical phrases. Musical phrases are constructed by unique user programmed performers and by chord changes that the framework provides. The reactive language creates multiple musical phrases for each point in time. A simple module which chooses musical phrases to be performed at the time of performance is created.
|
290 |
Hardware/Software Interface Assurance with Conformance CheckingLei, Li 02 June 2015 (has links)
Hardware/Software (HW/SW) interfaces are pervasive in modern computer systems. Most of HW/SW interfaces are implemented by devices and their device drivers. Unfortunately, HW/SW interfaces are unreliable and insecure due to their intrinsic complexity and error-prone nature. Moreover, assuring HW/SW interface reliability and security is challenging. First, at the post-silicon validation stage, HW/SW integration validation is largely an ad-hoc and time-consuming process. Second, at the system deployment stage, transient hardware failures and malicious attacks make HW/SW interfaces vulnerable even after intensive testing and validation. In this dissertation, we present a comprehensive solution for HW/SW interface assurance over the system life cycle. This solution is composited of two major parts. First, our solution provides a systematic HW/SW co-validation framework which validates hardware and software together; Second, based on the co-validation framework, we design two schemes for assuring HW/SW interfaces over the system life cycle: (1) post-silicon HW/SW co-validation at the post-silicon validation stage; (2) HW/SW co-monitoring at the system deployment stage. Our HW/SW co-validation framework employs a key technique, conformance checking which checks the interface conformance between the device and its reference model. Furthermore, property checking is carried out to verify system properties over the interactions between the reference model and the driver. Based on the conformance between the reference model and the device, properties hold on the reference model/driver interface also hold on the device/driver interface. Conformance checking discovers inconsistencies between the device and its reference model thereby validating device interface implementations of both sides. Property checking detects both device and driver violations of HW/SW interface protocols. By detecting device and driver errors, our co-validation approach provides a systematic and ecient way to validate HW/SW interfaces. We developed two software tools which implement the two assurance schemes: DCC (Device Conformance Checker), a co-validation framework for post-silicon HW/SW integration validation; and CoMon (HW/SW Co-monitoring), a runtime verication framework for detecting bugs and malicious attacks across HW/SW interfaces. The two software tools lead to discovery of 42 bugs from four industry hardware devices, the device drivers, and their reference models. The results have demonstrated the signicance of our approach in HW/SW interface assurance of industry applications.
|
Page generated in 0.1122 seconds