• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 12
  • 8
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 73
  • 73
  • 60
  • 43
  • 23
  • 21
  • 21
  • 17
  • 14
  • 13
  • 12
  • 10
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Exergoeconomic Analysis and Benchmark of a Solar Power Tower with Open Air Receiver Technology

Ertl, Felix January 2012 (has links)
No description available.
52

Solar Energy and its Potential in Rural Botswana : a solution-driven qualitative field study with supplementary secondary research

Törngren, Patryk, Khodaverdian, Mariam January 2022 (has links)
Solar energy is of huge interest due to the current situation with global warming. A number of solar technologies have been developed, such as photovoltaic, concentrated solar power, and solar water heating systems, to name a few. However, the technologies are being slowly implemented, and Botswana, with generous amounts of sun, is particularly suitable for solar energy. The opportunities were investigated due to the overwhelming and horrifying warnings echoed by many of the world's scientists regarding global warming. First, a handful of solar technologies were thoroughly investigated. A field study at Gakgatla village was then conducted, where the locals were interviewed. The interviews were analyzed, and solutions were suggested based on the identified needs of the locals. The biggest challenges identified were the lack of electricity in many of the households, parental figures not being supportive of the children's education, and theft. Additionally, many locals cooked with firewood. The most helpful solution but difficult to implement is photovoltaic panels. Solar water heating systems would also be helpful to the locals who predominantly had cold water. Additionally, solar cookers could help minimize exposure to hazardous smoke. Lastly, solar lamps could help students study during nighttime. Some locals also showed huge enthusiasm for what the future partnership with Botho University will bring. It is encouraged to develop a prototype of a solar cooker, particularly the parabolic solar cooker, in order to install solar cookers in Gakgatla village. Solar dryers would also greatly benefit the locals and are also suggested developments. Both of the mentioned solutions would help minimize the locals' exposure to the hazards of cooking with firewood. The solar dryers will also help eliminate bacteria by drying the food in a protected space inside a container.
53

Analysis of a hybrid PV-CSP plant integration in the electricity market

Maz Zapater, Juan Vicente January 2023 (has links)
One of the key challenges the world will need to face during the 21st century is global warming and the consequent climate change. Its presence is indisputable, and decarbonizing the gird emerges as one of the required pathways to achieve global sustainable objectives. Solar energy power plants have the potential to revert this situation and solve the problem. One way to harness this energy is through Concentrated Solar Power plants. The major advantage and potential of this technology is its ability to integrate cost-effective Thermal Energy Storage (TES), which is key with such an inherently intermittent resource. On the other hand, the drawback is the high current Levelized Cost of Energy (LCOE). The other main way to harness that highlighted solar energy is the use of Photovoltaic panels, which have recently achieved very competitive LCOE values. On the other hand, the storage integration is still a very pricey option, normally done with Battery Energy Storage Systems (BESS). As a conclusion, a hybrid power plant combining the LCOE of the PV and the TES of the CSP emerges as the key way of achieving a very competitive solution with a big potential. This master thesis aims at exploring the possibilities of a hybrid CSP and PV power plant with a sCO2 power cycle, integrated in the primary, secondary and tertiary electricity markets. To achieve this purpose, firstly, a Python-based Energy Dispatcher was developed to control the hybrid power plant. Indeed, the Dispatcher is the tool that decides when to produce, when to store… following an optimization problem. This can be formulated mathematically, and that was done and integrated into the Python code using Pyomo, a software for optimization problems. As a result, the Dispatcher achieved an effective control of the plant, showing intelligent decisions in detailed hourly analyses. The results were very promising and included optimization functions as maximizing the profitability of the plant or the total production, among others. To proceed with the Techno-economic assessment of the hybrid plant, the electricity markets were studied. The main source of income of any power plant is normally the revenue from selling electricity to the grid, but since there are several markets, there are also other possibilities. In this thesis, it was assessed from a Techno-Economic perspective how the performance and optimal design of the plants vary when providing different services extra to selling electricity to the grid. The conclusion was that even though the Net Present Value (NPV) achieved working on the spot market was already very high, the extra value added from participating in the secondary or tertiary markets was indisputable. Indeed, the profits attained in those markets were between two and four times higher than the ones of the spot market. This is a specific case, but a trend was identified: these hybrid power plants have a huge possibility and a bright future on the service markets. As a consequence, this thesis shows the huge potential of hybrid power plants integrated in the grid participating in several markets. It also lays the foundation for future studies in other locations, under different conditions and with different technologies, among others.
54

THE STABILITY OF, AND CORROSION BY, EARTH-ABUNDANT MOLTEN CHLORIDES FOR USE IN HIGH-TEMPERATURE THERMAL ENERGY STORAGE

Adam Shama Caldwell (16327851) 14 June 2023
<p>  </p> <p>Concentrated solar power (CSP) is a technology that utilizes focused sunlight to heat a high-temperature medium (such as a molten salt). Heat from this medium can be transferred to a working fluid (such as supercritical CO2) that is then used to drive a turbine to generate electricity. Alternatively, the hot medium/fluid can be pumped into tanks for thermal energy storage (TES), for heat extraction later to generate dispatchable electricity and/or for electricity production at night or on cloudy days. By increasing the fluid temperature to <u>></u>750oC and utilizing TES, CSP can become more cost competitive with fossil-based electricity production. Current CSP systems utilize molten nitrate salts for heat transfer and TES that are known to thermally degrade at temperatures >600oC. To achieve temperatures <u>></u>750oC, molten chloride salts, such as ternary MgCl2-KCl-NaCl compositions, are being considered as heat transfer and thermal energy fluids for next generation CSP plants due to their higher temperature stability, low cost, and availability. </p> <p>In this work, it was demonstrated that MgCl2-containing molten salts are prone to oxidation in ambient air at 750oC, which can enhance corrosion of the containment materials and alter the thermophysical properties of the fluid. An alternative, low-cost, earth-abundant, MgCl2-free, oxidation-resistant molten salt, a eutectic CaCl2-NaCl composition, was developed, along with a corrosion mitigation strategy, to enable the slow growth of protective oxide layers on metals that are resistant to dissolution by such MgCl2-free molten chloride salts. </p> <p>This strategy was expanded to other low-cost, oxidation resistant compositions, such as eutectic BaCl2-CaCl2-KCl-NaCl with tailored chemical and thermophysical properties for CSP and TES. The melting temperature, heat capacity, oxidation resistance, and crystallization behavior were measured for eutectic a BaCl2-CaCl2-KCl-NaCl(17.5-47.8-3.3-31.4 mol%) (BCKN) salt and a MgCl2-KCl-NaCl (40-40-20 mol%) salt. BCKN salt was shown to have a similar melting temperature while having a higher heat capacity and far better oxidation resistance. </p> <p>The corrosion of the nickel-based superalloy Haynes 214 was studied in molten MgCl2-KCl-NaCl (40-40-20 mol%) salt at 750oC under inert atmosphere conditions using a custom-built rotating-disc corrosion testing apparatus that maintained laminar fluid flow on the sample. Non-protective external Cr-, Al-, and Mg- oxide layers were formed on Haynes 214 that were prone to spallation. Internal oxidation of Al was also observed along with Cr depletion zones within Haynes 214.  Corrosion kinetics were evaluated to quantify the role of fluid flow for application of this alloy for use in containment and transportation of this molten chloride salt. </p>
55

Techno-economic fesibility of a hybrid CSP (sCO2) - PV plant for hydrogen production

Perez De La Calle, Patricia January 2023 (has links)
The global need to eliminate CO2 emissions and its consequent reduction in the use of fossil fuels drives the ongoing energy transition that highly involves the research achievements of the scientific community to reach the goals of this purpose. Renewable sources like photovoltaic and wind energy, are central to this endeavor, however, the intermittency of natural resources makes it non-dispatchable and energy storage is fundamental. According to the European Roadmap [1] just a 60% of the CO2 emissions reduction goal can be achieved with available technologies and existing energy. However, the production, use and specially storage opportunities that hydrogen offers can drive non-dispatchable renewable sources to achieve its full potential by clearing up the intermittency problem as well as covering the remained 40% gap. This master's thesis aims to investigate the techno-economic feasibility of integrating a Solid Oxide Electrolyzer Cell (SOEC) into a hybrid PV-CSP(sCO2) plant. The study focuses on assessing various indicators related to electricity, energy, and hydrogen production prices. To achieve this, three different integration strategies within the hybrid PV-CSP(sCO2) plant were selected for analysis: Soec using heat from the particles coming from the receiver, soec using heat coming from the particles available in the thermal energy storage (TES) and soec recovering heat from the sCO2 power block. A sensitivity analysis was conducted on different PV sizes (MWp), battery capacities (MWh), and SOEC installed capacities (MWh) to investigate the technology's potential in the plant and determine optimal sizing of subsystems. However, the individual optimization of economic indicators presented technical and economic challenges. Scenarios allowing individual optimization of hydrogen production prices (€/kg H2) resulted in 10.9, 11.7, and 14.6 €/kg h2 for receiver, TES, and sCO2 integration strategy, respectively. These scenarios, however, require high SOEC installed capacities, leading to elevated electricity and energy production prices. On the other hand, the individual optimization of electricity and energy production prices led to better and lower results when no hydrogen production presence within the plant. However, this analysis also showed that soec capacities below 5MWh together with no installation of batteries and a new definition for calculating hydrogen production prices (LCOH) allows feasible integration of hydrogen production within the plant. LCOH(€/kg h2) results were 10.2€/kg h2, 7.6€/kg h2, and 9.4€/kg h2 for receiver, TES, and sCO2, respectively, for a soec installed capacity of 0.5MWh (119m2 size) along with energy production values not exceeding 101€/MWh. While the results present a favorable outlook for SOEC installations based on literature review data [2] [3] [4] they still face challenges when competing with the cost-efficient PEM technology, which offers 4.5-5.5€/kg H2 [5] without storage. Nonetheless, this research contributes valuable insights into the integration of SOEC technology within hybrid renewable energy systems and provides a comprehensive analysis of the techno-economic aspects related to hydrogen production following different integration strategies. The findings may inform decision-making processes and promote further advancements in sustainable energy solutions. / Det globala behovet av att eliminera CO2utsläpp och därmed minska användningen av fossila bränslen driver pågående energiomställning, som starkt involverar forskningsresultaten från vetenskapssamhället för att nå syftet med detta mål. Förnybara källor som solceller och vindkraft är centrala i detta arbete, men intermittensen hos naturliga resurser gör dem icke disponibla och energilagring är grundläggande. Enligt den europeiska vägkartan [1] kan endast 60% av målet att minska CO2-utsläppen uppnås med tillgängliga teknologier och befintlig energi. Produktionen, användningen och särskilt lagringsmöjligheterna som väte erbjuder kan emellertid driva icke-disponibla förnybara källor att nå sin fulla potential genom att lösa intermitt ensproblemet och täcka den återstående 40% klyftan. Detta examensarbete syftar till att undersöka den tekniskekonomiska genomförbarheten av att integrera en fastoxid elektrolysör (SOEC) i en hybrid PV CSP(sCO2)-anläggning. Studien fokuserar på att utvärde ra olika indikatorer relaterade till el-, energi- och vätgasproduktionspriser. För att uppnå detta har tre olika integrationsstrategier inom hybrid PV CSP(sCO2) anläggningen valts för analys: SOEC med hjälp av värme från partiklar som kommer från mottagaren, SOEC med hjälp av värme från partiklar som finns i termisk energilagring (TES) och SOEC som återvinner värme från sCO2-kraftblocket. En känslighetsanalys har genomförts för olika PVstorlekar (MWp), batterikapaciteter (MWh) och SOEC installerade kapacit eter (MWh) för att undersöka teknologins potential i anläggningen och bestämma optimal dimensionering av delsystem. Resultaten från individuell optimering av ekonomiska indikatorer ledde dock till flera tekniska och ekonomiska utmaningar. Scenarier som tillåter individuell optimering av vätgasproduktionspriser (€/kg H2) resulterade i 10, 9, 11, 7 respektive 14,6 €/kg H2 för mottagare, TES och sCO2 integrationsstrategi. Dessa scenarier kräver dock höga SOEC installerade kapaciteter, vilket leder till höga el och energipriser. Å andra sidan ledde individuell optimering av el och energiproduktionspriser till bättre och lägre resultat när ingen vätgasproduktion fanns i anläggningen. Denna analys visade också att SOEC kapaciteter under 5MWh tillsammans med ingen installation av batterier och en ny definition för beräkning av vätgasproduktionspriser (LCOH) möjliggör genomförbar integration av vätgasproduktion i anläggningen. LCOH (€/kg H2) resultaten var 10,2 €/kg h2 , 7 ,6 €/kg h2 respektive 9,4 €/kg h2 för mottagare, TES och sCO2, för en SOEC installerad kapacitet på 0,5 MWh (storlek 119m2) tillsammans med energiproduktionsvärden som inte överstiger 101 €/MWh. Medan resultaten visar en gynnsam utsikt för SOECinstallationer baserat på data från litteraturöversikter [2] [3] [4], står de ändå inför utmaningar när de konkurrerar med den kostnadseffektiva PEM teknologin, som erbjuder 4,5-5,5 €/kg H2 [5] utan lagring. Trots detta bidrar forskningen med värdefulla insikter i integrationen av SOEC teknologi i hybrid förnybara energisystem och ger en omfattande an alys av de teknisk-ekonomiska aspekterna relaterade till vätgasproduktion enligt olika integrationsstrategier. Resultaten kan informera beslutsprocesser och främja ytterligare framsteg inom hållbara energilösningar.
56

Solar - Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

Abeywardana, Asela Janaka January 2016 (has links)
This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. Linear Fresnel type of solar concentrator is selected considering the requirement of the application and the simplicity of fabrication and installation compared to other technologies. Subsequently, a wood-fired boiler is deployed as the steam generator as well as the balancing power source to recover the effects due to the seasonal variations in solar energy. Bioenergy, so far being the largest primary energy supply in the country, has a good potential for further growth in industrial applications like small hotels.  When a hotel with about 200-guests capacity and annual average occupancy of 65% is considered, the total annual CO2 saving is accounted as 207 tons compared with an entirely fossil fuel (diesel) fired boiler system. The annual operational cost saving is around $ 40,000 and the simple payback period is within 3-4 years. The proposed hybrid system can generate additional 26 employment opportunities in the proximity of the site location area.   This solar-biomass hybrid concept mitigates the weaknesses associated with these renewable technologies when employed separately. The system has been designed in such a way that the total heat demand of hot water and process steam supply is managed by renewable energy alone. It is thus a self-sustainable, non-conventional, renewable energy system. This concept can be stretched to other critical medium temperature applications like for example absorption refrigeration. The system is applicable to many other industries in the country where space requirement is available, solar irradiance is rich and a solid biomass supply is assured.
57

Conception de récepteurs solaires à lit fluidisé sous flux radiatif concentré / Design of fluidized bed solar receivers under concentrated radiative flux

Baud, Germain 08 November 2011 (has links)
L'objectif de ce travail est d’évaluer le positionnement et le potentiel des récepteurs à lit fluidisé à changement de section par rapport aux autres méthodes de chauffage de gaz à haute température par voie solaire. A cette fin, une connaissance approfondie des phénomènes thermiques et hydrodynamiques du récepteur est nécessaire. Pour acquérir cette connaissance, nous avons modélisé les transferts thermiques dans le récepteur en portant une attention particulière sur les transferts radiatifs en prenant en compte les diffusions multiples de la lumière dans le milieu particulaire, les effets de parois sur les transferts radiatifs et la directionnalité du rayonnement solaire concentré. La détermination précise de la distribution de particules dans le ciel du lit fluidisé s'est avérée un paramètre critique pour le calcul des transferts thermiques. Ces modèles, plus tard affinés par une confrontation avec des références expérimentales, nous ont permis d'explorer l'effet de la géométrie sur les transferts thermiques dans le récepteur. Il ont permis entre autres de mettre en évidence l'intérêt d'utiliser une colonne de fluidisation à changement de section et l'importance de l'optimisation du couple concentrateur solaire / récepteur afin d'éviter d'éventuelles surchauffes au niveau des parois du récepteur. De même, il semble que l'homogénéisation de la température dans le lit fluidisé contenu dans le récepteur soit favorable à son rendement. / The aim of this work is to evaluate the position and the potential of solar fluidized bed receivers compared to other methods for the solar heating of gases at high temperature. To this end, a thorough knowledge of the heat transfer and hydrodynamic of the receiver is necessary. To acquire this knowledge, we modeled the heat transfer in the receiver with a focus on the radiative transfer by taking into account the multiple scattering of light in the particle medium, the effect of walls on radiative heat transfer and the directionality of the concentrated solar radiation. The accurate determination of the distribution of particles within the fluidized bed has been a critical parameter for the calculation of heat transfer. With these models, later refined by a confrontation with experimental references, we have studied the effect of geometry on heat transfer in the receiver. This study highlighted the necessity to use a switching section fluidization column and the importance to optimize the pair : solar concentrator / receiver to avoid any overheating at the walls of the receiver. Moreover, it appears that the homogenization of the temperature in the fluidized bed of the receiver increase its performance.
58

Evaluation d’une filière technologique de cellules photovoltaïques multi-jonctions à base de matériaux antimoniures (III-V)-Sb pour applications aux très fortes concentrations solaires / Evaluation of a technological process of photovoltaic cells multi-junction based antimonide materials (III-V)-Sb for use under highly concentrated solar flux

Giudicelli, Emmanuel 20 June 2016 (has links)
La conversion photovoltaïque (PV) de l’énergie solaire repose sur la capacité qu’ont certains matériaux à convertir l’énergie des photons en courant électrique. Le développement des systèmes de conversion PV ces trente dernières années a permis des améliorations considérables en terme de coût et de performances dans le domaine des énergies renouvelables.Une cellule multi-jonctions (MJ), à base de matériaux semi-conducteurs III-V, est un empilement de sous-cellules aux gaps décroissants qui permet notamment une plus large utilisation du spectre solaire. Soumettre ces cellules PV à un flux solaire concentré permet d’augmenter significativement la puissance électrique créée par celles-ci, et ainsi d’abaisser substantiellement le coût de l’électricité produite.Le record du monde est actuellement détenu par le partenariat Soitec / Fraunhofer ISE avec un rendement de 46,0 % mesuré sur une cellule quadruple-jonctions en GaInP/GaAs//InGaAsP/InGaAs pour un taux de concentration de 508 X (où 1 X =1 soleil = 1 kW/m²).L’objectif du travail réalisé dans le cadre de cette thèse est de proposer une alternative aux cellules existantes plus simple à mettre en œuvre avec des cellules MJ monolithiques accordées sur substrat de GaSb pour des concentrations solaire de 1 000, soit une irradiance directe de 1 MW/m². Ce type de cellules, du fait de la très bonne complémentarité des gaps des matériaux et ses alignements de bandes favorables, constitue une alternative crédible et originale aux cellules existantes pour une utilisation sous flux solaire fortement concentré.Afin de mieux comprendre la cellule multijonctions III-Sb optimale, les travaux réalisés ont porté sur la fabrication et la caractérisation des trois sous-cellules fabriquées indépendamment. Ces trois échantillons épitaxiés sont l’Al0,9Ga0,1As0,07Sb0,93 (cellule Top), l’Al0,35Ga0,65As0,03Sb0,97 (cellule Middle) et le GaSb (cellule Bottom) ayant comme gaps respectifs 1,6 eV, 1,22 eV et 0,726 eV à 300 K.Le travail présenté dans cette thèse porte sur :- La réalisation et la mise au point de toutes les étapes technologiques nécessaires à la fabrication des cellules (dépôts métalliques, gravure humide et sèche par plasma …).- La caractérisation des métallisations par structure TLM (Transmission Line Method) dont le meilleur résultat obtenu concerne une métallisation tri-couche Cr/Pd/Au (30/30/30 nm) sur substrat GaSb type P.- La caractérisation sous obscurité courant-tension des paramètres électriques des cellules PV à température ambiante et en fonction de la température.- La caractérisation thermique par mesure de la conductivité thermique des matériaux et une cartographie de température de surface en fonction du flux solaire concentré en conditions réelles.- La caractérisation électro-optique par réponse spectrale, à partir de laquelle nous avons calculé le rendement quantique externe qui représente le rapport entre la quantité d’électrons créés et la quantité de photons incidente.- La caractérisation sous illumination à 1 soleil (1 000 W/m²) sous simulateur solaire et en conditions solaire dont nous avons comparé les paramètres électriques.- La caractérisation des cellules sous flux solaire (fortement) concentré au laboratoire PROMES. Les meilleurs rendements obtenus pour les cellules PV Bottom, Middle et Top respectifs de 4,6 % à 40 X (proche de l’état de l’art), 8,2 % à 96 X et 5,4 % à 185 X (première mondiale pour ces matériaux quaternaires).Ce travail a été cofinancé par le Ministère de l’Education et de la Recherche (Allocation ED) et le Labex SOLSTICE.Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies. / Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies.A multi-junction (MJ) cell, based on III-V semiconductor materials, is a stack of sub-cells with decreasing gaps which notably allows wider use of the solar spectrum. Exposing these PV cells to a concentrated solar flux can significantly increase the electrical power generated, and therefore substantially lower the cost of electricity yielded.The world record is currently held by the partnership Soitec / Fraunhofer ISE with an efficiency of 46.0 % measured on a four-junction cell GaInP/GaAs//InGaAsP/InGaAs for a concentration ratio of 508 X (where 1 X = 1 sun = 1 kW/m²).The objective of the work in this thesis is to propose an alternative to existing cells, easier to implement with monolithic MJ cells grown on a GaSb substrate for solar concentrations of 1 000, which corresponds to a direct irradiance of 1 MW/m². This type of cell, due to the good complementary of the material gaps and its favorable band alignments, is a realistic and original alternative to existing cells for use under highly concentrated solar flux.To better understand the optimal multijunction III-Sb cell, the work carried out consisted on the manufacturing and characterization of the three sub-cells independently.These three epitaxial samples are Al0,9Ga0,1As0,07Sb0,93 (Top cell), the Al0,35Ga0,65As0,03Sb0,97 (Middle cell) and GaSb (Bottom cell) having as respective gaps 1.6 eV, 1.22 eV and 0.726 eV at 300 K.The work presented in this thesis is:- The establishment of all the technological steps required to manufacture the cells (metal deposition, wet and dry plasma etching ...).- The characterization of metallization by TLM structure (Transmission Line Method) with the best result being a three-layer metallization Cr/Pd/Au (30/30/30 nm) on a GaSb P-type substrate.- The characterization under dark of current-voltage electrical parameters of PV cells at room temperature and in function of the temperature.- The thermal characterization by measuring the thermal conductivity of the materials and a surface temperature mapping in function of the concentrated solar flux in realistic conditions.- The electro-optical characterization by spectral response, from which we calculated the external quantum efficiency which is the ratio between the amount of electrons created and the amount of incident photons.- The characterization under 1 sun illumination (1 000 W/m²) in a solar simulator and in realistic conditions of which we compared the electrical parameters.- The characterization of solar cells under (highly) concentrated solar flux in the PROMES laboratory.The best efficiencies for Bottom, Middle and Top PV cells respectively are 4.6 % for 40 X (close to the state of the art), 8.2 % for 96 X and 5.4 % for 185 X (world first for these quaternary materials).This work was cofounded by the Ministry of Education and Research (ED Research grant) and Labex SOLSTICE.
59

A Design Concept of a Volumetric Solar Receiver for Supercritical CO2 Brayton Cycle

Khivsara, Sagar D January 2014 (has links) (PDF)
Recently, the supercritical carbon dioxide (s-CO2) Brayton cycle has been identified as a promising candidate for solar-thermal energy conversion due to its potentially high thermal efficiency (50%, for turbine inlet temperatures of ~ 1000 K). Realization of such a system requires development of solar receivers which can raise the temperature of s-CO2 by over 200 K, to a receiver outlet temperature of 1000 K. Volumetric receivers are an attractive alternative to tubular receivers due to their geometry, functionality and reduced thermal losses. A concept of a ceramic pressurized volumetric receiver for s-CO2 has been developed in this work. Computational Fluid Dynamics (CFD) analysis along with a Discrete Ordinate method (DOM) radiation heat transfer model has been carried out, and the results for temperature distribution in the receiver and the resulting thermal efficiency are presented. Issues regarding material selection for the absorber structure, window, coating, receiver body and insulation are also addressed. A modular small scale prototype with 0.5 kWth solar heat input has been designed. The design of a small scale s-CO2 loop for testing this receiver module is also presented in this work. There is a lot of ongoing investigation for design and simulation of different configurations of heat exchangers and solar receivers using s-CO2 as the working fluid, in which wall temperatures up to 1000 K are encountered. While CO2 is considered to be transparent as far as solar radiation spectrum is concerned, there may be considerable absorption of radiation in the longer wavelength range associated with radiation emission from the heated cavity walls and tubes inside the receivers. An attempt has been made, in this study, to include radiation modelling to capture the effect of absorption bands of s-CO2 and the radiative heat transfer among the equipment surfaces. As a case study, a numerical study has been performed to evaluate the contribution of radiative heat transfer as compared to convection and conduction, for s-CO2 flow through a circular pipe. The intent is to provide a guideline for future research to determine the conditions for which radiation heat transfer modelling inside the pipe can be significant, and what errors can be expected otherwise. The effect of parameters such as Reynolds number, pipe diameter, length to diameter ratio, wall emissivity and total wall heat flux has been studied. The effect of radiation modelling on wall temperatures attained for certain amount of heat flux to be transferred to s-CO2 is also studied. The resulting temperature distribution, in turn, affects the estimation of heat loss to the environment
60

Etude du comportement thermique et thermomécanique des récepteurs solaires sous haut flux radiatif / Study of the thermomechanical behavior of a ceramic solar absorber submitted to high solar flux

Leray, Cedric 21 February 2017 (has links)
Dans le contexte énergétique qui se profile, la production d’électricité par voie solaire thermodynamique s’avère une solution prometteuse, que ce soit pour des considérations économiques, d’échelle de production ou environnementales. Une voie d’amélioration du rendement des centrales solaires à tour consiste à utiliser des cycles thermodynamiques à haut rendement type cycles combinés. Cela nécessite de pouvoir fournir un fluide de travail pressurisé à très haute température (10bar et 1000°C minimum). Ce manuscrit présente les travaux menés afin de développer et de viabiliser un concept d’absorbeur solaire surfacique modulaire en céramique (carbure de silicium) capable de répondre à ces exigences. Le choix du carbure de silicium s’est imposé pour sa résistance aux hautes températures et aux problèmes d’oxydation. Cependant, l’utilisation d’une céramique comme matériau implique un risque de casse des modules. Les céramiques sont en effet fragiles lorsqu’elles sont soumises à des contraintes de traction. C’est la connaissance et la maitrise de ce risque qui fait l’objet de cette étude. L’approche adoptée combine le développement d’outils numériques et d’études expérimentales réalisées sur le site de la centrale solaire Thémis (Targassonne, 66, France). La méthodologie desimulation développée permet de prédire le comportement thermique et le comportement mécanique de l’absorbeur. Ceci permet de réduire les risques encourus par l’absorbeur et d’en connaitre les performances. Cette méthodologie a été éprouvée à l’aide des résultats expérimentaux. / For the future, using thermodynamical solar power plant seems to be a good solution to ensure electrical production. Solar tower plants are able to produce electricity in significant amount, are environmentally friendly and economically competitive. One way to increase the yield of these plants is using high efficiency thermodynamical cycles, like combined cycle. That requires to providing a working fluid at high temperature and high pressure (10bar and 1000°C at least). This PHD thesis presents the works performed to develop and enhance a concept of modular plate solar ceramic absorber that can ensure the required air production. We chose the silicon carbide as material due to its resistance to high temperatures and oxidation problems. The drawback is ceramic modules are weak to traction stresses. The study focuses on the knowledge and the control of this phenomenon. This work combines the developments of numerical tools and experimental studies performed at Thémis power plant (Targassonne, 66, FRANCE). The numerical method permits simulations to predict the thermal behavior and the mechanical behavior of a solar module absorber. It allows the reduction of the mechanical stresses undergone by solar receiver and the prediction of its performances. This methodology was tested using experimental results.

Page generated in 0.113 seconds