21 |
A predictive model of concrete corrosion due to sulphuric acid using artificial neural networksMutunda, Andre 10 1900 (has links)
This dissertation investigates the level of acid‐resistance of concrete degradation.
Concrete specimens obtained from four mixtures (M1, M2, M3 and M4) were
prepared with calcareous, siliceous and a blend of calcareous and silica sand; and
then, tested in low (30 g/l) and highly (200 g/l) concentrated sulphuric acid solutions.
To this end, an architecture of artificial neural networks (ANNs) was implemented to
predict the performance of concrete specimens due to sulphuric acid solutions.
Neural networks were composed with one hidden layer for one input and output
layer. Nine input parameters were: cement composition, proportions of coarse and
fine aggregates, water content, and compressive strength, weight loss of concrete,
time impacting corrosion, acid concentration and sulphur concentration. Thickness
expansion and concrete conductivity are used as output targets to evaluate the
degree of deterioration.
In this study, the learning through ANNs from training data sets have been proved to
be better than measured data. Excellent results were found with a coefficient of
determination (R2
) of 0.9989, 0.9999, 0.9989 and 0.9998, respectively for the four
mixtures M1, M2, M3 and M4 using siliceous aggregate. Also, the results show that
two ANN models performed with both the thickness (expansion) and the electrical
conductivity can successfully learn the prediction of concrete corrosion. In both low
and highly concentrated sulphuric acid condition, the model thickness was more
accurate in predicting concrete corrosion compared to the model conductivity. The
lowest error in neural networks was provided by the mixture (M2) for the concrete
using siliceous aggregate. For this purpose, the root mean squared error (RMSE) and
the average absolute error (AAE) were of 0.0049 and 0.0048 % respectively. / College of Engineering, Science and Technology / M. Tech. (Chemical Engineering)
|
22 |
Evaluation of near surface material degradation in concrete using nonlinear Rayleigh surface wavesGross, Johann 27 August 2012 (has links)
Comparative studies of nondestructive evaluation methods have shown that nonlinear ultrasonic techniques are more sensitive than conventional linear methods to changes in material microstructure and the associated small-scale damage. Many of the material degradation processes such as carbonation in concrete, corrosion in metals, etc., begin at the surface. In such cases, ultrasonic Rayleigh surface waves are especially appropriate for detection and characterization of damage since their energy is concentrated in the top layer of the test object. For the civil engineering infrastructure, only a limited number of field applicable nonlinear ultrasonic techniques have been introduced. In this paper a nonlinear ultrasonic measurement technique based
on the use of Rayleigh waves is developed and used to characterize carbonation in concrete samples. Wedge transducer is used for the generation and an accelerometer for detection of the fundamental and modulated ultrasonic signal components. The measurements are made by varying the input voltage and along the propagation distance. The slope of the normalized modulated amplitudes is taken as the respective nonlinearity parameter. Concrete samples with two different levels of damage are
examined, and the difference of the two fundamental frequencies is used to quantify
damage state.
|
23 |
Shear performance of ASR/DEF damaged prestressed concrete trapezoidal box bridge girdersWang, Tz-Wei 09 November 2010 (has links)
Concrete bridges in Texas have developed large cracks in bent caps and pretensioned trapezoidal bridge girders. The bridges show premature concrete deterioration due to alkali-silica reaction (ASR) and delayed ettringite formation (DEF). There is concern that deterioration due to ASR/DEF may lead to a loss of structural capacity. However, there are no quantitative guidelines to relate the level of concrete deterioration due to ASR/DEF to structural performance. Using such guidelines, the need for rehabilitation of beams with ASR/DEF cracking can be assessed.
The goal of this research was to determine the shear capacity of pretensioned trapezoidal box girder specimens exhibiting varying degrees of ASR and/or DEF cracking and to use the shear testing results to evaluate the severity of the problem that may exist in Texas bridge structures. To achieve this goal, beams that were severely deteriorated due to ASR/DEF over a period of more than ten years were transported to the University of Texas for testing to failure. Both severely deteriorated and uncracked beams were tested in shear. The test results were used to evaluate the shear performance of trapezoidal box beams affected by ASR/DEF. In addition, three different types of forensic analyses were conducted on the beams to understand the nature of the ASR/DEF cracks and severity of the deterioration.
After testing, it is found that the shear capacity of the test specimens was not significantly reduced even with heavy ASR/DEF cracking. Assessment using current US design provisions for bridges or buildings (ACI 318-08 and AASHTO LRFD 2008) and the proposed provision from an earlier project (TxDOT Project 5253) yielded conservative estimates of strength. Results from forensic analyses provided a qualitative indication of ASR/DEF damage but did not correlate with the observed levels of ASR/DEF deterioration. / text
|
24 |
Mitigation of Microbially Induced Concrete Corrosion in Wastewater Infrastructure using Surface TreatmentsNasr, Mostafa M. 06 May 2021 (has links)
No description available.
|
25 |
Evaluation and Structural Behavior of Deteriorated Precast, Prestressed Concrete Box BeamsRyan T Whelchel (7874897) 22 November 2019 (has links)
Adjacent precast,
prestressed box beam bridges have a history of poor performance and have been
observed to exhibit common types of deterioration including longitudinal
cracking, concrete spalling, and deterioration of the concrete top flange. The nature of these types of deterioration
leads to uncertainty of the extent and effect of deterioration on structural
behavior. Due to limitations in previous
research and understanding of the strength of deteriorated box beam bridges,
conservative assumptions are being made for the assessment and load rating of
these bridges. Furthermore, the design
of new box beam bridges, which can offer an efficient and economical solution,
is often discouraged due to poor past performance. Therefore, the objective of this research is
to develop improved recommendations for the inspection, load rating, and design
of adjacent box beam bridges. Through a
series of bridge inspections, deteriorated box beams were identified and
acquired for experimental testing. The
extent of corrosion was determined through visual inspection, non-destructive
evaluation, and destructive evaluation.
Non-destructive tests (NDT) included the use of connectionless
electrical pulse response analysis (CEPRA), ground penetrating radar (GPR), and
half-cell potentials. The deteriorated
capacity was determined through structural testing, and an analysis procedure
was developed to estimate deteriorated behavior. A rehabilitation procedure was also developed
to restore load transfer of adjacent beams in cases where shear key failures
are suspected. Based on the
understanding of deterioration developed through study of deteriorated adjacent
box beam bridges, improved inspection and load rating procedure are provided along
with design recommendations for the next generation of box beam bridges.
|
Page generated in 0.1196 seconds