• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 27
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 29
  • 24
  • 22
  • 21
  • 14
  • 12
  • 12
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evaluation of the performance of GFRP dowels in Jointed Plain Concrete Pavement (JPCP) for road/airport under the combined effect of dowel misalignment and cyclic wheel load

Al-Humeidawi, Basim Hassan Shnawa January 2013 (has links)
Dowel bars are provided at the transverse joints of the Jointed Plain Concrete Pavement (JPCP) to transfer the load between adjoining slabs and to allow for expansion and contraction of the pavement due to temperature and moisture changes. The current study involved evaluation of the performance of Glass Fibre Reinforced Polymer (GFRP) dowels in JPCP as an alternative to the conventional epoxy-coated steel dowel bars, especially in the presence of dowel misalignment. This research involved two main sets of experimental tests. The first set focused on the evaluation of load-deflection response of GFRP dowels using a scaled model of pavement slabs. The second set investigated the combined effect of dowel misalignment and cyclic wheel load on the performance of steel and GFRP dowels. The tested slabs (in the second set) were supported on a steel-beam base with stiffness such that the effects of the underlying layers of real pavements are incorporated. In both of these sets of experiment the GFRP dowels were compared with the steel dowels of similar flexural rigidity. The research also involved detailed numerical investigations using ABAQUS for all experimental tests in the current study. The validated numerical model was used to conduct three sets of parametric studies: to propose design considerations for the GFRP dowels; to simulate all important cases of dowel misalignment (111 cases) for steel and GFRP dowels and to give an insight into the damaged volume in the surrounding concrete pavement; and to investigate the effects of diameter, length and type of dowel bar, concrete grade, pavement thickness, and slab-base friction on the joint-opening behaviour. The results from the first set of experiments showed that the 38 mm GFRP dowels perform better in terms of deflection response compared to the 25 mm steel dowels. Also, it was observed that the relative deflection (RD) is more sensitive to the changes in the joint width rather than the concrete strength. The numerical results from the first set showed a good agreement with the experimental results and showed lower magnitude and better distribution of stress in the concrete underneath the GFRP dowels as compared with the steel dowels. Finally, on the basis of a detailed parametric study (70 different cases), design considerations for GFRP dowels in JPCP were suggested. The second set of experimental results showed that the GFRP dowels can withstand a cyclic traffic load and significantly reduce joint lockup and dowel looseness (DL) and can provide sufficient load transfer efficiency (LTE). It was also observed that the dowel misalignment affects DL significantly more than the repeated traffic load. Slab-base separation and the orientation of misaligned dowels have significant effects on the pull-out load required to open the joint. The numerical results from the second set indicated that the pull-out load was small for the vertical misalignment cases compared to the horizontal and combined misalignment cases. The results also indicated the occurrence of concrete spalling and deterioration at smaller joint openings for combined misalignment when compared to other misalignment types. The use of GFRP dowels significantly reduced the pull-out load and joint lockup when dowel misalignment exists. Consequently, the deterioration of the surrounding pavement substantially decreased. The long term performance of the JPCP fitted with GFRP dowels improves because of a reduction in the DL and the RD, and by maintaining a good LTE even for misaligned dowels. The numerical results also showed that the pull-out load increases significantly for an increase in the concrete compressive strength and the dowel bar diameter. Small increase in pull-out load was observed for higher embedded length of the dowel bar, whereas the increase was insignificant for an increase in the pavement thickness and slab-base friction. In general, the study showed the GFRP dowel can be a potential alternative for the conventional steel dowel bars in JPCP.
32

Estudo de via férrea lastreada sobre placa de concreto de cimento Portland / Study of ballasted track over concrete slab of Portland cement

Watanabe, Juliana Silva, 1978- 24 August 2018 (has links)
Orientador: Cassio Eduardo Lima de Paiva / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-24T08:58:58Z (GMT). No. of bitstreams: 1 Watanabe_JulianaSilva_M.pdf: 2195811 bytes, checksum: 47a972a34bbdd51a602e9d71d473ff40 (MD5) Previous issue date: 2013 / Resumo: As ferrovias de carga pesada (heavy haul) têm como objetivo, trabalhar com grandes volumes de carga, mantendo uma velocidade que possibilite um tempo de percurso cada vez menor, mas esse deslocamento deve ser feito com segurança e para isso é necessário que a via permanente esteja sempre em condições aceitáveis de circulação. No Brasil, a estrutura atual desse tipo de via férrea atualmente está dimensionada para suportar aproximadamente até 32 toneladas por eixo, mas para favorecer o maior escoamento e tornar a ferrovia mais eficiente intenciona-se chegar a 40 toneladas por eixo. Baseado nessas informações, o objetivo deste trabalho foi analisar uma solução técnica de via férrea adequada para uma carga de 40 toneladas por eixo. Foram avaliadas duas situações: na primeira utilizou-se uma camada de lastro apoiada diretamente sobre a plataforma; e na segunda foi adotada uma placa de concreto de cimento Portland entre a camada de lastro e a plataforma da via. Para a primeira situação foram calculadas as tensões no trilho e na plataforma através dos modelos numéricos propostos por Eisenmann e Zimmermann, e na situação da placa de concreto, dimensionou-se uma estrutura baseada no método de dimensionamento de pisos industriais da Associação Brasileira de Cimento Portland. Para os dois casos, as tensões atuantes na via permanente foram verificadas através do programa computacional FERROVIA. As conclusões foram obtidas através de comparações entre os valores das tensões calculados pelos métodos teóricos e pelo método computacional / Abstract: The heavy haul lines objective is to carry elevated freight, maintaining speeds that assure a shorter travel time. It must be done safely and, for this, it is required good conditions for the track. This Brazilian railway structure is designed to support 32 tonnes per axle, however to promote a better flow and to become more efficient there is an intention of change this freight to 40 tonnes per axle. Based on that, the aim of this study was to analyze a suitable technical solution t for 40 t/ axle load. Two situations have been evaluated: in one of them it was used a ballast layer over the formation; and in the other one it was adopted a concrete slab between the ballast layer and the formation. For the first situation stresses on rail and formation were calculated based on the theoretical models (Zimmermann and Eisenmann methods), and for the second one, a structure similar to a concrete pavement has been designed (ABCP industrial floor method). For both cases, the tresses on the track have been verified by the computational program FERROVIA. The conclusions were based on comparisons between the stresses values calculated by the theoretical and computational methods / Mestrado / Transportes / Mestra em Engenharia Civil
33

Typical and Darkened Portland Cement Concrete Pavement: Temperature, Moisture, and Roughness Analyses

Waters, Tenli 01 June 2016 (has links)
The objectives of this research were to 1) investigate the effects of lower concrete albedo on the thermal behavior of concrete pavement by directly comparing temperatures and moisture contents of typical and darkened concrete pavements and 2) investigate changes in roughness of both typical and darkened concrete pavements as a result of changes in temperature and moisture gradients. The scope of the research included instrumentation, testing, and analysis of typical and darkened concrete pavements constructed in northern Utah.Procedures related to field testing included infrared thermography, thermocouple readings, sensor data collection, and roughness surveys. Elevation surveys and albedo measurements were also performed to further characterize the site. Procedures related to laboratory testing included elastic modulus, compressive strength, rapid chloride permeability, thermal conductivity, and Schmidt rebound hammer testing of cylinders prepared from typical and darkened concrete.When considered over the entire monitoring period, the average surface temperatures of the darkened pavement were higher than those of the typical pavement by 3.3°F, and the average subsurface temperatures of the darkened pavement were higher than those of the typical pavement by 3.1°F. A strong positive correlation exists between the air temperature and both the surface and the subsurface pavement temperatures. The difference between both the surface and subsurface temperatures of the darkened and typical pavements decreases as the air temperature decreases. The results of a simple linear regression suggest that, when the air temperature is 32°F, the surface temperature of the darkened concrete is just 0.2°F higher than that of the typical concrete and the subsurface temperature of the darkened concrete is 1.1°F higher than that of the typical concrete. The difference in surface temperature is expected to be 0°F when the air temperature is 30.5°F, while the difference in subsurface temperature is expected to be 0°F when the air temperature is 17.9°F. Therefore, the darkened pavement is unlikely to melt snow and ice faster than the typical pavement or provide significantly greater frost protection to subsurface layers and buried utilities during winter for conditions similar to those in this research. The roughness measurements for the typical pavement exhibit much more daily variability than seasonal variability. The roughness measurements for the darkened pavement also exhibit more daily variability than seasonal variability but less overall variability than that of the typical pavement. Neither pavement temperature gradient nor moisture gradient appears to be correlated to roughness for either the typical pavement or the darkened pavement.
34

Methoden zur Berechnung der Versagenswahrscheinlichkeit von Straßenplatten aus Beton

Riwe, Axel 24 August 2015 (has links)
Die Dimensionierung einer Betonfahrbahn zielt darauf ab, den Anteil der im Nutzungszeitraum versagenden Platten auf ein akzeptables Maß zu begrenzen. Der Anteil ausgefallener Platten entspricht der Versagenswahrscheinlichkeit der einzelnen Platte. Damit ergibt sich die Notwendigkeit, die Versagenswahrscheinlichkeit zu berechnen. Innerhalb der vorliegenden Arbeit werden grundlegende Methoden und Verfahrensweisen zur Lösung dieser Aufgabe entwickelt. Es wird gezeigt, wie die für die Quantifizierung der Versagenswahrscheinlichkeit entscheidenden Streuungen der Einflussgrößen mathematisch beschrieben und im Dimensionierungsverfahren berücksichtigt werden können. Dabei wird regelmäßig Bezug genommen auf das in Deutschland eingeführte Dimensionierungsmodell der RDO Beton [2]. Die Grundlage für die Berechnung der Versagenswahrscheinlichkeit liefern die Methoden der Statistik und Wahrscheinlichkeitsrechnung, sowie der Zuverlässigkeitstheorie. Es wird gezeigt, dass sowohl die mathematisch exakte Lösung, wie auch verschiedene Näherungsverfahren für die Problematik der Betonfahrbahnen anwendbar sind. Näher untersucht werden die Zuverlässigkeitstheorie 1. Ordnung (FORM) sowie die Monte-Carlo-Methode. Die jeweiligen Vor- und Nachteile werden analysiert. Es zeigt sich, dass für die Anwendung des FORM-Algorithmus das Berechnungsmodell der RDO Beton modifiziert werden muss. Der zeitliche Bezug der Berechnung kann über die Benutzung von Extremwertverteilungen, die Modellierung stochastischer Prozesse oder die Einführung einer Schadensakkumulationshypothese hergestellt werden. Besondere praktische Bedeutung hat die Berechnung der Versagenswahrscheinlichkeit für den Nutzungszeitraum mit zeitlich varianten Bedingungen. Für diesen Fall werden vier verschiedene Lösungsansätze aufgezeigt. Um die teilweise sehr hohen Rechenzeiten zu minimieren, werden Näherungslösungen entwickelt. Die praktische Eignung wird mit beispielhaften Berechnungen demonstriert. Es zeigt sich, dass die Berechnungsergebnisse stark davon abhängen, wie sich die Werte einzelner Parameter über den Nutzungszeitraum entwickeln. Die betreffenden zeitlichen Verlaufsfunktionen sind gegenwärtig nur unzureichend bekannt. Um eine hinreichend verlässliche Prognose zu berechnen, sind alle Berechnungsverfahren möglichst objektbezogen zu kalibrieren. / The dimensioning of a concrete pavements aims to limit the percentage of failing slabs to an acceptable level. The proportion of failed slabs corresponds to the probability of failure of each slab. This results in the need to calculate the probability of failure. Within the present work, basic methods and procedures for solving this problem are being developed. It is shown how the variations of parameters can be mathematically described and considered in the dimensioning process. Reference is frequently made to the model of RDO Beton [2]. The methods of statistics and probability theory, and reliability theory provide the basis for calculating the probability of failure. It is shown that both the mathematically exact solution and various approximation methods as well are applicable to the problem of concrete pavements. Be examined more closely the reliability theory 1st order (FORM) and Monte Carlo method. The respective advantages and disadvantages are analyzed. It turns out that the calculation model of the RDO concrete has to be modified for the use of FORM algorithm. The temporal relation of the calculation can be made on the use of extreme value distributions, modeling of a stochastic process or the introduction of a damage accumulation hypothesis. Particular practical significance has to calculate the probability of failure for the period of use with time-variant conditions. In this case, four different approaches are discussed. Approximate solutions to minimize the sometimes very high computation times has been developed. The practical suitability is demonstrated by exemplary calculations. It turns out that the calculation results depend strongly on how to develop the values of individual parameters over the period of use. These time course functions are insufficiently known at present. To calculate a sufficiently reliable forecast, all calculation methods are possible to calibrate object-related.
35

A FORENSIC INVESTIGATION OF PAVEMENT PERFORMANCE ON INTERSTATE 86 IN OLEAN, NEW YORK

Swart, Charles Scott 10 October 2006 (has links)
No description available.
36

Effects of slab Shape and load transfer Mechanisms on Portland cement concrete pavement

Morrison, Jill A. January 2005 (has links)
No description available.
37

Evaluation of PCC Pavements with Cement-treated Permeable Bases and Dense-graded Aggregate Bases

Hatton, Drew C. 26 July 2011 (has links)
No description available.
38

Evaluation of Precast Portland Cement Concrete Panels for Airfield Pavement Repairs

Priddy, Lucy Phillips 23 April 2014 (has links)
Both the identification and validation of expedient portland cement concrete (PCC) repair technologies have been the focus of the pavements research community for decades due to ever decreasing construction timelines. Precast concrete panel technology offers a potential repair alternative to conventional cast-in-place PCC because the panel is fully cured and has gained full strength prior to its use. This repaired surface may be trafficked immediately, thus eliminating the need for long curing durations required for conventional PCC. The literature reveals a number of precast PCC panel investigations in the past 50 years; however precast technology has only recently gained acceptance and increased use in the US for highway pavements. Furthermore, only limited information regarding performance of airfield applications is available. Following a review of the available technologies, an existing panel prototype was redesigned to allow for both single- and multiple-panel repairs. A series of various sized repairs were conducted in a full-scale airfield PCC test section. Results of accelerated testing indicated that precast panels were suitable for airfield repairs, withstanding between 5,000 and 10,000 passes of C-17 aircraft traffic prior to failure. Failure was due to spalling of the transverse doweled joints. The load transfer characteristics of the transverse joint were studied to determine if the joint load test could be used to predict failure. Results showed that the load transfer efficiency calculations from the joint load test data were not useful for predicting failure; however differential deflections could possibly be applied. Additionally, the practice of filling the joints with rapid-setting grout may have resulted in higher measurements of load transfer efficiency. To determine the stresses generated in the doweled joint, three-dimensional finite element analyses were conducted. Results indicated that the dowel diameter should be increased to reduce stresses and to improve repair performance. Finally, the precast repair technology was compared to other expedient repair techniques in terms of repair speed, performance, and cost. Compared to other methods, the precast panel repair alternative provided similar return-to-service timelines and traffic performance at a slightly higher cost. Costs can be minimized through modification to the panel design and by fabricating panels in a precast facility. Modifications to the system design and placement procedures are also recommended to improve the field performance of the panels. / Ph. D.
39

Short continuously reinforced concrete pavement design recommendations based on non-destructive ultrasonic data and stress simulation. / Recomendações de projeto baseadas em dados ultrassônicos não destrutivos e simulação de tensões para pavimento de concreto continuamente armado de curta extensão.

Salles, Lucio Salles de 19 May 2017 (has links)
Four sections of continuously reinforced concrete pavement (CRCP) were constructed at the University of São Paulo campus in order to introduce this kind of pavement structure to Brazil\'s technical transportation community. Sections were designed as 50 m long concrete slab, short in comparison to traditional CRCP, in order to simulate bus stops and terminals - locations of critical interest for public infrastructure. The thesis presented herein concludes this research project initiated in 2010. As the initial goal of this study was the development of coherent, reliable and intuitive design recommendations for the use of CRCP technology in Brazil, a profound understating of its structural and performance peculiarities was needed. For that, the cracking process of the experimental CRCP sections was recorded over a span of seven years. Due to the sections\' short length and lack of anchorage, the experimental \"short\" CRCP presented a cracking behavior quite different than traditional CRCP. There were much less visible cracks than expected. To address this issue, a novel technology in ultrasonic non-destructive testing of concrete structures was applied. Through ultrasonic signal interpretation it was possible to discover several incipient non-visible cracks within the slabs - many of these became apparent on the slab surface in later crack surveys - and to characterize visible and non-visible cracks regarding crack depth. The updated crack map with non-visible cracks showed similarities with traditional CRCP. Additionally, the ultrasonic data analysis provided important information on thickness variation, reinforcement location and concrete condition that were applied in theoretical simulations (finite element software) of the short CRCP. Simulations were attempted considering different slab geometries, firstly with transverse cracks as joints with high load transfer efficiency (LTE) and secondly with a continuous slab without cracks or joints. The latter simulation was more accurate reaching a shift factor between field and simulated stresses in the order of 0.7 to 1.0. Deflection data and LTE analysis from cracks and panels in between cracks further attested the slab continuous behavior, which contradicts current CRCP design models and performance predictors. Furthermore, critical traffic and environmental loading conditions concerning Brazil\'s climate and bus traffic characteristics were investigated and related using a selected fatigue model resulting in design recommendations in a chart format for the short CRCP aimed at long-term projects for over 20 years of operation. The design chart was successfully applied to investigate three failures presented by the experimental short CRCP due to thickness deficiencies pointed out by the ultrasonic testing. / Quatro seções de pavimento de concreto continuamente armado (PCCA) foram construídas no campus da Universidade de São Paulo, com o objetivo de introduzir esta estrutura, de reconhecido sucesso internacional, à comunidade técnica de engenharia de transportes brasileira. As seções foram projetadas com uma placa de concreto de 50 m de extensão, curta em comparação ao PCCA tradicional, com a finalidade de simular paradas e terminais de ônibus - locais de grande interesse para a infraestrutura pública. A tese aqui apresentada conclui este projeto de pesquisa iniciado em 2010. Como o objetivo inicial deste estudo foi o desenvolvimento de recomendações de projeto coerentes, confiáveis e intuitivas para a utilização do PCCA no Brasil, foi necessário um profundo entendimento de suas peculiaridades estruturais e de desempenho. Para isso, o processo de fissuração das secções experimentais foi acompanhado durante sete anos. Devido à curta extensão e falta de ancoragem das seções, o PCCA \"curto\" apresentou um padrão de fissuração diferente do PCCA tradicional com muito menos fissuras visíveis na superfície do que o esperado. Para abordar esta questão, uma nova tecnologia ultrassônica para ensaios não destrutivos de estruturas de concreto foi aplicada. Pela interpretação do sinal de ultrassom, foi possível descobrir várias fissuras incipientes (não visíveis) dentro das placas - muitas dessas foram observadas na superfície da placa em levantamentos de fissuras posteriores - e caracterizar fissuras visíveis e não-visíveis quanto à profundidade da fissura. O mapa de fissuração atualizado com fissuras não visíveis mostrou semelhanças com PCCA tradicional. Além disso, a análise dos dados de ultrassom forneceu informações importantes sobre a variação da espessura, localização da armadura longitudinal e condição do concreto, que foram aplicados em simulações teóricas (software de elementos finitos) do PCCA curto. Simulações foram propostas considerando diferentes geometrias, primeiramente com fissuras transversais como juntas com alta eficiência de transferência de carga (LTE) e posteriormente com uma placa contínua, sem fissuras ou juntas. Esta última simulação foi mais precisa alcançando um fator de conversão entre tensões de campo e simuladas na ordem de 0,7 a 1,0. Dados de deflexão e análise de LTE em fissuras e placas entre fissuras atestaram novamente o comportamento contínuo das placas, o que vai em contradição com os modelos atuais de dimensionamento e de previsão de desempenho para o PCCA. Ademais, o tráfego crítico e condições de carga ambiental correspondentes ao clima e tráfego de ônibus típicos brasileiros foram investigados e relacionados usando um modelo de fadiga resultando em recomendações de projeto para o PCCA de curta extensão sendo direcionado para projetos de longo prazo para mais de 20 anos de operação. O gráfico de projeto foi aplicado com sucesso para investigar três falhas apresentadas pelo PCCA curto experimental devido a deficiências de espessura apontadas pelo teste ultrassônico.
40

Análise do comportamento de pavimento experimental de concreto continuamente armado de curta extensão. / Performance analysis of short experimental continuously reinforced concrete pavement.

Salles, Lucio Salles de 18 February 2014 (has links)
O pavimento de concreto continuamente armado (PCCA) é caracterizado pela presença de uma alta taxa de armadura longitudinal localizada acima do meio da placa; essa armadura possibilita ao pavimento uma placa de concreto sem juntas. Diferentemente do pavimento de concreto simples, no PCCA não há uma indução da fissuração; as fissuras ocorrem de maneira aleatória, porém são mantidas fortemente apertadas pela armadura longitudinal proporcionando uma estrutura de alta durabilidade exigindo o mínimo de manutenção. Perante tais benefícios, decidiu-se construir quatro seções experimentais deste pavimento no campus da Universidade de São Paulo. A maior diferença entre o PCCA experimental e aqueles encontrados na literatura técnica é a extensão; com o intuito de simular uma parada de ônibus, cada seção possui 50 metros de comprimento, curtas em comparação com os até 400 metros de comprimento encontrados em PCCA tradicionais. Para analisar o comportamento do pavimento foram esquematizados três estudos de desempenho: levantamentos de fissuras; testes de deformação com provas de carga dinâmicas (PCD) com um caminhão carregado; e testes de deflexões com o Falling Weight Deflectometer (FWD). A análise da fissuração mostra um comportamento bastante distinto daquele encontrado em PCCA tradicionais; a curta extensão, aliada à falta de ancoragem da placa, resultou em uma fissuração bastante tardia e em um elevado espaçamento entre fissuras. A seção 1, não apresenta, até esta data (dezembro de 2013), nenhuma fissura. A pouca fissuração sugeriu a hipótese de que as fissuras estariam invisíveis a olho nu em função do forte efeito de amarração das barras longitudinais. Entretanto, apesar de tais diferenças, o estudo das tensões através das deformações obtidas pelos strain gauges nas PCD apontam um desempenho estrutural adequado do pavimento; as tensões de tração na flexão resultaram em valores bastante inferiores à resistência do concreto, assegurando a qualidade da placa. Além destas afirmações, as PCD possibilitaram uma série de análises de tensões com configurações de carregamento diferentes. O estudo de deflexões mostrou que nas proximidades da borda longitudinal do pavimento, as deflexões são maiores devido à falta de ancoragem do sistema; no centro as deflexões foram típicas de pavimentos de concreto. A retroanálise das bacias de deflexão resultou em valores de módulo de elasticidade e módulo de reação do subleito baixos próximos à borda, reforçando o impacto da falta de ancoragem. A análise da eficiência de transferência de carga entre fissuras mostrou um desempenho altamente satisfatório de todas as fissuras, inclusive aquelas mais próximas das bordas, o que, novamente, certifica a integridade estrutural da placa. / The continuously reinforced concrete pavement (CRCP) is characterized by the presence of a high longitudinal reinforcement percentage located above the slabs middle; this steel allows a concrete slab without joints. Unlike jointed plain concrete pavements, the CRCP has no cracking induction; the cracks occur randomly, but are held strongly tight by the longitudinal steel, thus, providing a highly durable structure that requires minimal maintenance. Given these benefits, it was decided to build four experimental sections of this pavement on the University of São Paulo\'s campus. The biggest difference between the experimental CRCP and those found in the technical literature is the length; in order to simulate a bus stop, each section is 50 meters long, short compared to traditional PCCA up to 400 meters long. To analyze the behavior of the pavement, three performance studies were carried out: cracks surveys; strain tests with dynamic load tests (DLT) with a loaded truck; and Falling Weight Deflectometer (FWD) deflection testing. The analysis shows that the cracking pattern is quite distinct from that found in traditional PCCA, the short extension, coupled with the slabs lack of anchorage, resulted in a late cracking development and in large crack spacing. Section 1, has yet to develop any cracks. The low cracking suggested the hypothesis that the cracks were invisible to the naked eye due to the longitudinal bars strong binding effect. However, despite these differences, the stress study through strains obtained by strain gauges in DLT indicate an appropriate structural performance of the pavement, the flexural tensile stresses resulted in values well below the concretes strength, ensuring the slabs quality. Also, the DLT enable a series of stresses analysis with different load configurations. The deflection study showed that in the longitudinal edges vicinity, deflections are higher due to lack of any anchorage system; the center deflections are typical concrete pavement ones. The deflection basins backcalculation resulted in values of elasticity modulus of concrete and modulus of subgrade reaction lower near the edge, reinforcing the impact of the lack of anchorage. The analysis of the load transfer efficiency across cracks showed highly satisfactory performance of all cracks, including those nearest to the edge, which certifies the structural integrity of the slab.

Page generated in 0.1082 seconds