• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conductance Fluctuations in GaAs Nanowires and Graphene Nanoribbons

January 2015 (has links)
abstract: In mesoscopic physics, conductance fluctuations are a quantum interference phenomenon that comes from the phase interference of electron wave functions scattered by the impurity disorder. During the past few decades, conductance fluctuations have been studied in various materials including metals, semiconductors and graphene. Since the patterns of conductance fluctuations is related to the distributions and configurations of the impurity scatterers, each sample has its unique pattern of fluctuations, which is considered as a sample fingerprint. Thus, research on conductance fluctuations attracts attention worldwide for its importance in both fundamental physics and potential technical applications. Since early experimental measurements of conductance fluctuations showed that the amplitudes of the fluctuations are on order of a universal value (e2/h), theorists proposed the hypothesis of ergodicity, e.g. the amplitudes of the conductance fluctuations by varying impurity configurations is the same as that from varying the Fermi energy or varying the magnetic field. They also proposed the principle of universality; e.g., that the observed fluctuations would appear the same in all materials. Recently, transport experiments in graphene reveal a deviation of fluctuation amplitudes from those expected from ergodicity. Thus, in my thesis work, I have carried out numerical research on the conductance fluctuations in GaAs nanowires and graphene nanoribbons in order to examine whether or not the theoretical principles of universality and ergodicity hold. Finite difference methods are employed to study the conductance fluctuations in GaAs nanowires, but an atomic basis tight-binding model is used in calculations of graphene nanoribbons. Both short-range disorder and long-range disorder are considered in the simulations of graphene. A stabilized recursive scattering matrix technique is used to calculate the conductance. In particular, the dependence of the observed fluctuations on the amplitude of the disorder has been investigated. Finally, the root-mean-square values of the amplitude of conductance fluctuations are calculated as a basis with which to draw the appropriate conclusions. The results for Fermi energy sweeps and magnetic field sweeps are compared and effects of magnetic fields on the conductance fluctuations of Fermi energy sweeps are discussed for both GaAs nanowires and graphene nanoribbons. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
2

Transport mésoscopique dans les nanostructures hybrides supraconducteur-graphène / Mesoscopic transport in superconductor-graphene hybrid nanostructures

Albert, Guillaume 10 October 2011 (has links)
Cette thèse présente une étude des propriétés de transport à basse température d'échantillons de graphène exfolié. Une première série de mesures menée à une température de 4 Kelvins sur des échantillons contactés par des électrodes constituées d'une bicouche titane/or révèle les phénomènes d'effet Hall quantique et de fluctuations universelles de conductance. L'effet Hall présente une quantification demi-entière propre au graphène. Le caractère universel des fluctuations de conductance est confirmé par les mesures, et une réduction de la longueur de cohérence de phase est observée au point de Dirac. Une autre série d'échantillons, connectés par des électrodes en titane/aluminium, permet l'étude de l'effet de proximité supraconducteur dans le graphène. Ces mesures sont réalisées à des températures comprises entre 100mK et 1K. Dans un premier échantillon, elles font apparaitre le phénomène de réflexions d'Andreev multiples et un précurseur de l'effet Josephson, ainsi qu'une amplification des fluctuations universelles de conductance lorsque les électrodes sont dans l'état supraconducteur. Dans un second échantillon, la présence de localisation forte tend à diminuer l'amplitude des fluctuations universelles de conductance, entrant ainsi en compétition avec l'effet de proximité. / This thesis presents a study of electronic transport in exfoliated graphene at low temperature. A first set of experiment at 4K on samples connected by titanium/gold electrodes exhibits Quantum Hall effect and universal conductance fluctuations. Quantum Hall effect shows a half-integer quantization specific of graphene. The universality of conductance fluctuations is checked experimentally and a decrease of electronic coherence length is observed near the Dirac point. A second series of samples connected by titanium/aluminium electrodes allows the study of superconducting proximity effect in graphene, at temperatures between 1K and 100mK. In a first sample, measurements exhibit multiple Andreev reflexions and indicate nearly established Josephson effect. An amplification of universal conductance fluctuations when electrodes are in the superconducting state is also observed. In a second sample, we observe strong localization, which tends to suppress conductance fluctuation, therefore entering in competition with proximity effect.
3

Transport quantique dans les verres de spin / Quantum transport in spin glasses

Capron, Thibaut 30 March 2011 (has links)
Le verre de spin est une phase de la matière dans laquelle le désordre magnétique est gelé. Étant considéré comme un système modèle des verres en général, il a fait l'objet de nombreux travaux théoriques et expérimentaux. Les recherches ont convergé vers deux principales descriptions de l'état fondamental du système diamétralement opposées. D'une part, la solution « champ-moyen » nécessite une brisure de symétrie non triviale, et l'état fondamental est composé de multiples états organisés en une structure hiérarchique. D'autre part, une approche de « gouttelettes », fondée sur la dynamique hors-équilibre d'un état fondamental unique. La validation expérimentale d'une de ces deux théories nécessite une observation détaillée de l'échantillon au niveau microscopique. La physique mésoscopique, basée sur les effets d'interférences électroniques, propose un outil unique pour accéder à cette configuration microscopique des impuretés: les fluctuations universelles de conductance. En effet, ces fluctuations représentent une empreinte unique du désordre dans l'échantillon. Ce travail présente la mise en œuvre de mesures de fluctuations de conductance universelles dans les verres de spin. Les effets d'interférences électroniques étant sensibles aux processus de décohérence du verre de spin, ils donnent accès expérimentalement à de nouvelles quantités concernant les excitations du système. La mesure des corrélations entre les empreintes du désordre permet quant à elle d'explorer sous un angle nouveau l'ordre non conventionnel de cet état vitreux. / The spin glass is a state of matter in which the magnetic disorder is quenched. Being considered as a model system for glasses in general, it has been extensively studied, both theoretically and experimentally. The research have converged towards two main descriptions of the fundamental state of the system that are clearly antagonist. On the one hand, the “mean-field” solution has a non trivial broken symmetry, and the ground state is composed of multiple valleys in a hierarchical structure. On the other hand, a magnetic “droplet” model, based on the off-equilibrium dynamics of a unique ground state. The experimental validation of one of these two theories requires a detailed observation of the sample at the microscopic level. Mesoscopic physics, which deals with interference effects of the electrons, proposes a unique tool to access to this microscopic configuration of the impurities: the universal conductance fluctuations. Indeed, these fluctuations represent a unique fingerprint of the sample disorder. This work presents the implementation of universal conductance fluctuations measurements in spin glasses. The electron interference effects being sensitive to the decoherence processes of the spin glass, they give access experimentally to new quantities related to the excitations of the system. The measurement of correlations between the disorder fingerprints allow to explore under a new perspective the non conventional order of this glassy state.
4

Transport in Hamilton-Systemen: Von der Klassik zur Quantenmechanik / Tranport in Hamiltonian Systems: From Classics to Quantum Mechanics

Hufnagel, Lars 22 October 2001 (has links)
No description available.
5

Electronic transport in spin-glasses and mesoscopic wires : correlations of universal conductance fluctuations in disordered conductors / Transport électronique dans des verres de spins et fils mésoscopiques : corrélations de fluctuations universelles de conductance dans des conducteurs désordonnés

Solana, Mathias 29 June 2018 (has links)
Le travail expérimental développé pendant cette thèse se situe à l'interface de deux champs en physique de la matière condensée, à savoir les verres de spins et la physique mésoscopique. Les verres de spins ont été largement étudié et font partie des problèmes les plus débattus au cours des années tant d'un point de vue expérimental que théorique. Cet état est caractérisé par des propriétés très particulières qui se font jour lors d'une transition de phase magnétique à très basses températures qui est elle-même inhabituelle. En effet, cette transition est due à un mélange de frustration et de désordre dans la structure magnétique du système. Ce faisant, c'est un système modèle pour les verres et les systèmes frustrés en général. Après bien des efforts, des travaux théoriques ont réussi à décrire l'état fondamental du système au moyen de deux approches différentes et apparemment incompatibles. Cependant, la question de la vraie nature de la phase verre de spin reste grandement débattue.La physique mésoscopique, de son côté, traite du transport électronique dans les échantillons pour lesquels les électrons gardent leur cohérence de phase. Si les électrons restent cohérents, il est possible de voir des effets d'interférences qui sont des signes quantiques de ce qu'il se passe au niveau atomique. Dans cette thèse, il est utilisé pour sonder le désordre aussi bien magnétique que statique dans un verre de spins.Nous montrons que, contrairement à ce qui est cru, de forts changements se déroulent dans le désordre microscopique même à basses températures. Nous prétendons également que ces changements sont purement structuraux et viennent du fait de systèmes dont la distribution en énergie est très large. / The experimental work developed during this PhD is situated at the interface of two fields of condensed matter physics, namely spin glasses and mesoscopic physics. Spin glasses have been widely studied and are one of the problem that has been the most discussed over the years, both on a theoretical and experimental point of view. This state is characterized by very peculiar properties that come to light as it exhibits a magnetic phase transition at low temperatures that is already unusual. Indeed, this transition is due to a mix of frustration and disorder in the magnetic structure of the system, making it an exceptional model system for glasses and frustrated systems in general. After many efforts, theoreticians managed to described the fundamental state of the system by the mean of two different and apparently incompatible approaches. The first one, called RSB theory, is based on a mean-field approximation and predicts a complex phase space with an unconventional hierarchical organization. The second is based on more phenomenological approach and is named Droplet theory. It points towards a unique ground state and explain all the observation by slow relaxation processes. However, the question of the true nature of the spin glass phase is still heavily debated. Mesoscopic physics, for its part, addresses the question of electronic transport for samples in which the electrons keep their phase coherence. If the electrons remains coherent, it is possible to see interference effects that are quantum signs of what happens at the atomic level. In this work, it is used to probe the magnetic and static disorder in spin glasses. Indeed, it is possible to interpret the change in those interferences as changes in the microscopic disorder configuration and to know exactly how the spin glass state evolves. Some work have already tried to use coherent transport in spin glasses but this remains an open field. This work has then be dedicated to the implementation of transport measurement in spin glasses and mesocopic conductors. The first part will be focused on a the experimental setup that was used to perform very precise transport measurements and on the processing of the data taken out of them. In a second part, we will present some general physical characteristics of our samples such as their resistance dependence to the temperature or magnetic field, before extracting the quantum signature in magnetoresistance measurements. Finally, we will discuss the results obtained. We show that strong changes in the microscopic disorder happen even at low temperatures, in opposition to what is believed. We argue that those observed changes are purely structural and come from systems that are widely distributed in energy.
6

Chaotic electron transport in semiconductor devices

Scannell, William Christian, 1970- 06 1900 (has links)
xix, 171 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / The field of quantum chaos investigates the quantum mechanical behavior of classically chaotic systems. This dissertation begins by describing an experiment conducted on an apparatus constructed to represent a three dimensional analog of a classically chaotic system. Patterns of reflected light are shown to produce fractals, and the behavior of the fractal dimension D F is shown to depend on the light's ability to escape the apparatus. The classically chaotic system is then used to investigate the conductance properties of semiconductor heterostructures engineered to produce a conducting plane relatively free of impurities and defects. Introducing walls that inhibit conduction to partition off sections considerably smaller than the mean distance between impurities defines devices called 'billiards'. Cooling to low temperatures enables the electrons traveling through the billiard to maintain quantum mechanical phase. Exposure to a changing electric or magnetic field alters the electron's phase, leading to fluctuations in the conductance through the billiard. Magnetoconductance fluctuations in billiards have previously been shown to be fractal. This behavior has been charted using an empirical parameter, Q , that is a measure of the resolution of the energy levels within the billiard. The relationship with Q is shown to extend beyond the ballistic regime into the 'quasi-ballistic' and 'diffusive' regimes, characterized by having defects within the conduction plane. A model analogous to the classically chaotic system is proposed as the origin of the fractal conductance fluctuations. This model is shown to be consistent with experiment and to account for changes of fine scale features in MCF known to occur when a billiard is brought to room temperature between low temperature measurements. An experiment is conducted in which fractal conductance fluctuations (FCF) are produced by exposing a billiard to a changing electric field. Comparison of D F values of FCF produced by electric fields is made to FCF produced by magnetic fields. FCF with high D F values are shown to de-correlate at smaller increments of field than the FCF with lower D F values. This indicates that FCF may be used as a novel sensor of external fields, so the response of FCF to high bias voltages is investigated. / Adviser: Stephen Kevan, Chairperson, Physics; Richard Taylor, Advisor, Physics; Robert Zimmerman, Member, Physics; Stephen Gregory, Member, Physics; David Johnson, Outside Member, Chemistry
7

Impact of Disorder, Magnetism and Proximity-Induced Superconductivity on Conductance Fluctuations in Graphene

Kochat, Vidya January 2014 (has links) (PDF)
The experimental discovery of graphene in 2004 has opened up a new research field in the direction of atomically thin two-dimensional layered materials for exploration of many fundamental research problems and technological applications. The charge carriers in graphene are massless Dirac fermions due to which they exhibit absence of localization, thereby giving rise to huge intrinsic mobilities and ballistic transport even at room temperatures. But it was observed that the extrinsic disorder and intrinsic structural disorder can significantly influence the transport in graphene films. This thesis focuses on three different aspects of graphene -disorder, magnetism and proximity-induced superconductivity. We have reported conductance fluctuations-based transport studies to investigate these aspects as they provide more detailed information than what can be obtained from the standard transport measurements. Even though these conductivity fluctuations pose a serious bottleneck for various applications, they can also yield useful insights into the various scattering mechanisms and the symmetry properties of graphene. In the first half of the thesis, we describe the measurement of low frequency 1/f noise in large area polycrystalline graphene films to understand the role of grain boundaries in charge carrier transmission in graphene. TEM studies on the low and high angled GBs formed in these graphene samples showed that they form distinct disordered regions of varying widths depending on the tilt angle of the GBs. At low temperatures, the 1/f noise measurements indicated spontaneous breaking of time reversal symmetry across graphene grain boundaries which suggests the magnetic nature of these grain boundaries. In the second half of the thesis, we will concentrate on the universal conductance fluctuations (UCF) in graphene which is the manifestation of quantum interference phenomena at low temperatures. We find that the absolute magnitude of the UCF is directly related to various symmetry-breaking disorder present in graphene. We also discuss how the UCF can be used to study the nature of proximity-induced superconducting correlations in graphene. In the end, we have proposed new device schemes for the integration of ferromagnetic and superconducting materials with graphene.
8

Transport électronique et Verres de Spins

Paulin, Guillaume 22 June 2010 (has links) (PDF)
The results reported in this thesis contribute to the understanding of disordered systems, to mesoscopic physics on the one hand, and to the physics of spin glasses on the other hand. The first part of this thesis studies numerically coherent electronic transport in a non magnetic metal accurately doped with frozen magnetic impurities (a low temperature spin glass). Thanks to a recursive code that calculates the two terminal conductance of the system, we study in detail the metallic regime of conduction (large conductance) as well as the insulating regime (small conductance). In both regimes, we highlight a universal behavior of the system. Moreover, a study of correlations between the conductance of different spin configurations of impurities allows us to link these correlations with correlations between spin configurations. This study opens the route for the first experimental determination of the overlap via transport measurements. A second part of this thesis deals with the study of the mean field Sherrington-Kirkpatrick model, which describes the low temperature phase of an Ising spin glass. We are interested here in the generalization of this model to quantum spins (i.e including the possibility to flip by quantum tunneling) of this classical model that was well studied during the past thirty years. We deduce analytically motion equations at the semi-classical level, for which the influence of quantum tunneling is weak, and we compare them with the classical case. We finally solve numerically these equations using a pseudo-spectral method.
9

Physics Of Conductivity Noise In Graphene

Pal, Atindra Nath 01 1900 (has links) (PDF)
This thesis describes the conductivity fluctuations or noise measurements in graphenebased field effect transistors. The main motivation was to study the effect of disorder on the electronic transport in graphene. In chapter 4, we report the noise measurements in graphene field effect (GraFET) transistors with varying layer numbers. We found that the density dependence of noise behaves oppositely for single and multilayer graphene. An analytical model has been proposed to understand the microscopic mechanism of noise in GraFETs, which reveals that noise is intimately connected to the band structure of graphene. Our results outline a simple portable method to separate the single layer devices from multi layered ones. Chapter 5 discusses the noise measurements in two systems with a bandgap: biased bilayer graphene and graphene nanoribbon. We show that noise is sensitive to the presence of a bandgap and becomes minimum when the bandgap is zero. At low temperature, mesoscopic graphene devices exhibit universal conductance fluctuations (UCF) arising due to quantum interference effect. In chapter 6, we have studied UCF in single layer graphene and show that it can be sensitive to the presence of various physical symmetries. We report that time reversal symmetry exists in graphene at low temperature and, for the first time, we observed enhanced UCF at lower carrier density where the scattering is dominated by the long-range Coulomb scattering. Chapter 7 presents the transport and noise measurements in single layer graphene in the quantum Hall regime. At ultra-low temperature several broken symmetry states appear in the lowest Landau level, which originate possibly due to strong electron-electron interactions. Our preliminary noise measurements in the quantum Hall regime reveal that the noise is sensitive to the bulk to edge transport and can be a powerful tool to investigate these new quantum states.
10

Propriétés de transport électronique des isolants topologiques / Electronic transport properties of topological insulators

Adroguer, Pierre 15 February 2013 (has links)
Les travaux présentés dans cette thèse ont pour objectif d’apporter à la physique mésoscopique un éclairage concernant la compréhension des propriétés de transport électroniques d’une classe de matériaux récemment découverts : les isolants topologiques.La première partie de ce manuscrit est une introduction aux isolants topologiques, mettant en partie l’accent sur leurs spécificités par rapport aux isolants "triviaux" : des états de bords hélicaux (dans le cas de l’effet Hall quantique de spin en 2 dimensions) ou de surface relativistes (pour les isolants topologiques tridimensionnels) robustes vis-à-vis du désordre.La deuxième partie propose une sonde de l’hélicité des états de bords de l’effet Hall quantique de spin en étudiant les propriétés remarquables de l’injection de paires de Cooper dans cette phase topologique.La troisième partie étudie la diffusion des états de surface des isolants topologiques tridimensionnels dans le régime cohérent de phase. L’étude de la diffusion, de la correction quantique à la conductance (antilocalisation faible) et de l’amplitude des fluctuations universelles de conductance de fermions de Dirac sans masse est présentée. Cette étude est aussi menée dans la cas d’états de surface dont la surface de Fermi présente la déformation hexagonale observée expérimentalement. / The works presented in this thesis intend to contribute to condensed matter physics in the understanding of the electronic properties of a recently discovered class of materials : the topological insulators.The first part of this memoir is an introduction to topological insulators, focusing on their specifities compared to "trivial" insulators : helical edge states (in the two dimensional quantum spin Hall effect) or relativistic surface states (for three dimensional topological insulators) both robust agiant disorder.The second part proposes a new way to probe the unique properties of the helical edge states of quantum spin Hall effect via the injection of Cooper pair from a superconductor.The third part deals with the diffusion of the three dimensional topological insulator surface states, in the phase coherent regime. The diffusion, the quantum correction to conductivity, and the amplitude of the universal conductance fluctuations are studied. This study is also led in the experimentally relevant case where the Fermi surface presents a hexagonal deformation.

Page generated in 0.109 seconds