• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 958
  • 457
  • 169
  • 132
  • 108
  • 49
  • 25
  • 24
  • 19
  • 15
  • 15
  • 13
  • 12
  • 5
  • 4
  • Tagged with
  • 2528
  • 693
  • 445
  • 385
  • 358
  • 356
  • 261
  • 248
  • 203
  • 196
  • 186
  • 181
  • 179
  • 179
  • 143
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1371

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

Ismail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest. Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment. Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
1372

Preparation and Evaluation of New Nanoporous Silica Materials for Molecular Filtration and for Core Materials in Vacuum Insulation Panels

Twumasi Afriyie, Ebenezer January 2013 (has links)
Nanoporous materials for gas purification and thermal insulation have been studied and developed for application in many areas. It is known that a single adsorbent may not adequately control multiple contaminants. Further the utilization of nanoporous material as thermal insulator in building applications is limited due to high cost. Moreover, in view of the global environmental movement for clean air and reduction of heating energy consumption in built environment, the development of new and better nanoporous materials will not only facilitate major advances in gas adsorption and thermal insulation technology, but also meet the new challenges that cannot be met with the nanoporous materials that are currently available. This thesis presents a synthesis of new nanoporous silica based materials, and the characterization and application of these materials for molecular filtration and thermal insulation. Commercial nanoporous materials have been used for benchmarking for the pore properties, the applicability, and the performance of these new materials. First a double metal-silica adsorbent has been synthesized. The preparation procedure is based on the use of sodium silicate coagulated with various ratios of magnesium and calcium salts which yields micro-meso porous structures in the resulting material. The results show that molar ratios of Mg/Ca influence the pore parameters as well as the structure and morphology. The bimodal pore size can be tailored by controlling the Mg/Ca ratio. In the second synthesis, pure mesoporous silica, SNP has been prepared using glycerol as pore forming agent and monovalent salts as coagulant. This leads to material with large surface area and uniformed pore size centred at 43 or 47 nm.  The materials further exhibits a low bulk density in the range of 0.077 to 0.122 g/ml and possess a high porosity in the range of 95-97%. The influence of acid type (organic or inorganic) on the pore parameters and on the tapped density has also been investigated.   A synthesis method has also been developed for the preparation of carbon-silica composites. The method involves a number of routes, which can be summarised as addition of activated carbon particles to (I) the paste, (II) the salt solution, or (III) with the sodium silicate solution. In route II and III the activated carbon is present before coagulation. The routes presented here leads to carbon-silica composites possessing high micro porosity, meso porosity as well as large surface areas. The results further shows that pore size distribution may be tailored based on the route of addition of the carbon particles. Following route I and III a wide pore size (1-30 nm) was obtained whereas by route II a narrow pore size (1-4 nm) was observed.     MgCa-silica chemisorbents were also developed using either potassium hydroxide or potassium permanganate as impregnate chemicals. A direct or post-impregnation procedure was employed. The results revealed that the impregnate route and amount cause a reduction in both specific surface area and pore volume. Finally the thermal conductivity and dynamic adsorption of H2S, SO2 andtoluene were measured. Results show that at room temperature and atmospheric pressure, a thermal conductivity of 28.4 and 29.6 mW/m.K were obtained for the SNP mesoporous silicas. The dynamic adsorption behaviour of the chemisorbents and composites indicate their ability to absorbed H2S, SO2 andtoluene respectively. The highest H2S uptake corresponds to chemisorbents with 11.2-13.6 wt% KMnO4. The effect of impregnation route, amount of KMnO4 and its location in the pore system are likely the key factors in achieving a large H2S uptake. For SO2 adsorption, the highest uptake capacity was observed for MgCa-68/32-KOH. The results further suggest that the key to large SO2 uptake is as a result of the synergetic effect between large mesopore diameter and extensive mesopore volumes. Carbon-silica composites with carbon content 45 wt % exhibits high toluene adsorption with composite via route I having the highest toluene adsorption capacity (27.6 wt % relative to carbon content). The large uptake capacity of this composite was attributed to the presence of high microporosity volume and a wide (1-30 nm) bimodal pore system consisting of extensive mesopore channels (2-30 nm) as well as large surface area. These capacity values of carbon-silica composites are competitive to results obtained for commercial coconut based carbon (31 wt %), and better than commercial alumina-carbon composite (9.5 wt %). / <p>QC 20130408</p>
1373

Effects of Coating Formulations on Thermal Properties of Coating Layers

Liang, Chong 15 February 2010 (has links)
The effects of coating formulation on thermal characteristics of coating layers were systematically studied for xerographic toner fusion on coated papers. Model coatings were formulated using three types of ground calcium carbonate and one kaolin pigments, each mixed with 6, 10, 18, and 25 pph of styrene butadiene latex binder. Porosity was found to be a key parameter for coating thermal conductivity adjustment, and was determined by the latex concentration. The particle size distribution and morphology of pigments also affect the overall thermal characteristics of coating layers. Print qualities on model coated papers were evaluated by print gloss measurement, toner adhesion test, and pair-wise visual ranking, and it was proved that print gloss is reduced with increasing bulk thermal conductivity of coating layers. The coating layer consisted of Covercarb HP pigment and 10 pph of latex was found to have the best performance in the three print quality evaluation tests.
1374

Effects of Coating Formulations on Thermal Properties of Coating Layers

Liang, Chong 15 February 2010 (has links)
The effects of coating formulation on thermal characteristics of coating layers were systematically studied for xerographic toner fusion on coated papers. Model coatings were formulated using three types of ground calcium carbonate and one kaolin pigments, each mixed with 6, 10, 18, and 25 pph of styrene butadiene latex binder. Porosity was found to be a key parameter for coating thermal conductivity adjustment, and was determined by the latex concentration. The particle size distribution and morphology of pigments also affect the overall thermal characteristics of coating layers. Print qualities on model coated papers were evaluated by print gloss measurement, toner adhesion test, and pair-wise visual ranking, and it was proved that print gloss is reduced with increasing bulk thermal conductivity of coating layers. The coating layer consisted of Covercarb HP pigment and 10 pph of latex was found to have the best performance in the three print quality evaluation tests.
1375

An Investigation of Linked Physical And Biogeochemical Processes In Heterogeneous Soils In The Vadose Zone

Hansen, David Joseph 2011 August 1900 (has links)
Chemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding contaminant fate and transport. This work explored the effects of soil structure (i.e. layers, lenses) on linked geochemical, hydrological, and microbiological processes under changing hydrologic conditions (e.g. rainfall, introduction of groundwater, and fluctuating water table heights). A homogenized medium-grained sand, homogenized organic-rich loam and a sand-over-loam layered column were constructed for the first series of experiments. The second series of experiments employed two soil columns with lenses that were packed identically with sterilized and untreated sediments. Each consisted of two lenses of organic-rich loam in a medium-grained sand matrix. Lenses were located at different vertical depths and were horizontally offset. In-situ collocated probes collected soil hydrologic and chemical data. In the layered column, enhanced biogeochemical cycling was observed over the texturally homogeneous soil columns. Enumerations of Fe(III) and SO42- reducing microorganisms also show 1-2 orders of magnitude greater community numbers in the layered column. The greatest concentrations of aqueous FeS clusters (FeSaq) were observed in close proximity to the soil interface. To our knowledge, this was the first documentation of FeSaq in partially saturated sediments. Mineral and soil aggregate composite layers were also most abundant near the soil layer interface; the presence of which, likely contributed to an order of magnitude decrease of hydraulic conductivity. In the live lens column, Fe-oxide bands formed at the fringes of the lenses that retarded water flow rates by an order of magnitude compared to the sterilized column. Microbial activity also produced insoluble gases and that led to the creation of a separate gas phase that reduced hydraulic conductivity. This limited the interaction between groundwater with soil-pore waters that led to the formation of geochemically distinct water masses in relatively close proximity to one another. No such changes were observed in the sterilized column. When compared to homogenous columns, the presence of soil heterogeneities altered biogeochemical and hydrologic processes considerably which highlights the need to consider soil heterogeneity in contaminant fate and transport models. These findings suggest that quantifying coupled hydrologic-biogeochemical processes occurring at small scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale.
1376

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

Ismail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest. Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment. Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
1377

Highly conductive stretchable electrically conductive composites for electronic and radio frequency devices

Agar, Joshua Carl 05 July 2011 (has links)
The electronics industry is shifting its emphasis from reducing transistor size and operational frequency to increasing device integration, reducing form factor and increasing the interface of electronics with their surroundings. This new emphasis has created increased demands on the electronic package. To accomplish the goals to increase device integration and interfaces will undoubtedly require new materials with increased functionality both electrically and mechanically. This thesis focuses on developing new interconnect and printable conductive materials capable of providing power, ground and signal transmission with enhanced electrical performance and mechanical flexibility and robustness. More specifically, we develop: 1.) A new understanding of the conduction mechanism in electrically conductive composites (ECC). 2.) Develop highly conductive stretchable silicone ECC (S-ECC) via in-situ nanoparticle formation and sintering. 3.) Fabricate and test stretchable radio frequency devices based on S-ECC. 4.) Develop techniques and processes necessary to fabricate a stretchable package for stretchable electronic and radio frequency devices. In this thesis we provide convincing evidence that conduction in ECC occurs predominantly through secondary charge transport mechanism (tunneling, hopping). Furthermore, we develop a stretchable silicone-based ECC which, through the incorporation of a special additive, can form and sinter nanoparticles on the surface of the metallic conductive fillers. This sintering process decreases the contact resistance and enhances conductivity of the composite. The conductive composite developed has the best reported conductivity, stretchability and reliability. Using this S-ECC we fabricate a stretchable microstrip line with good performance up to 6 GHz and a stretchable antenna with good return loss and bandwidth. The work presented provides a foundation to create high performance stretchable electronic packages and radio frequency devices for curvilinear spaces. Future development of these technologies will enable the fabrication of ultra-low stress large area interconnects, reconfigurable antennas and other electronic and RF devices where the ability to flex and stretch provides additional functionality impossible using conventional rigid electronics.
1378

Electronic Transport in Strained Materials

Dziekan, Thomas January 2008 (has links)
In this thesis the conductivity of strained materials has been investigated using density functional theory and a semiclassical transport theory based on the Boltzmann equation. In transition metals trends are reproduced without adjustable parameters. The introduction of one temperature dependent cross section allowed the reproduction of resistivity trends between 10 and 1000K. The effect of strain on transition metals in bcc and fcc structure was studied deforming the unit cell along the tetragonal deformation path. The anisotropy of the conductivity varied on wide range of the c/a-ratio. The orbitals at the Fermi level determined the principal behavior. Pairs of elements with permutated number of electrons and holes in the 4d band showed similar behavior. The concept of the tetragonal deformation was also applied on semiconductors. The deformation of Vanadium in X/V superlattices (X=Cr,~Fe,~Mo) due to Hydrogen loading depends on the properties of X. It was found that counteracting effects due to the presence of Hydrogen influence the conductivity. It is shown that a small magnetic moment of the V host reduces the hydrogen solubility. Depending on the magnitude of the tetragonal distortion of V, the hydrogen dissolution becomes favored for larger moments. Finally, extra charge filling of the bandstructure of Cr and Mo decreases the Fermi velocity and increases the density of states at the Fermi energy.
1379

Proton Conduction in In^3 +  -Doped SnP2O7 at Intermediate Temperatures

Sano, Mitsuru, Hibino, Takashi, Tomita, Atsuko, Heo, Pilwon, Kamiya, Toshio, Nagao, Masahiro January 2006 (has links)
No description available.
1380

Surface Modification of a Doped BaCeO3 to Function as an Electrolyte and as an Anode for SOFCs

Sano, Mitsuru, Hibino, Takashi, Tomita, Atsuko January 2005 (has links)
No description available.

Page generated in 0.052 seconds