• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 27
  • 10
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 172
  • 22
  • 21
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Scratch Behavior of Polystyrene

Varadi Jasline, Deepthi Das 23 December 2009 (has links)
No description available.
12

Mécanique et mécanisme de perforation des matériaux de protection / Mechanics and mechanism of puncture of protective materials

Nguyen, Chien Thang January 2009 (has links)
Puncture resistance is among the major mechanical properties often required for protective clothing, especially in the medical sector. However the intrinsic material parameters controlling puncture resistance of protective materials are still unknown. Therefore, the purpose of this work is to study the mechanism and mechanical behaviors of puncture resistance of protective clothing materials to various probe types. A better understanding of puncture mechanics will be helpful to develop suitable methods to evaluate the puncture resistance and to predict the failure of protective clothing materials. The thesis includes 4 articles which expose two major phases in this study. Article I and II studied the mechanics and mechanisms of puncture by conical and cylindrical probes used in the standard test methods (ASTM F1342 and ISO 13996). The results show that the punctures of rubber membranes by conical and cylindrical probes are controlled by a maximum local deformation (or puncture failure strain) that is independent of the probe geometry. The puncture strengths of elastomer membranes are much lower than their tensile and biaxial strengths. In addition, a simpler cylindrical probe can be used in the place of the costly conical probe required by the ASTM standard and still provides a quantitative characterization of puncture. Actually, since 2005, an alternative method B had been added to F1342 ASTM with 0.5 mm-diameter rounded-tip cylindrical probe. Furthermore, the puncture probes used in the ASTM F1342 are very different to the actual pointed objects (medical needle, pointed tip of knife... ) and cannot accurately characterize the puncture resistance to real objects. Therefore, in the second step, the mechanics and mechanisms of puncture by medical needles were studied. Article III shows that the puncture by sharp-pointed objects like medical needles is very different from the puncture by conical probes used in the ASTM standard test. For medical needles, the puncture resistance involves cutting and fracture energy of material. Using the fracture mechanics, based on the change in strain energy with the change in fracture surface, the fracture energy in puncture was estimated. This calculation assumes that there is no friction between the needle tip and fracture surface. However, even with the application of a lubricant on the needle surface, the effect of friction on the puncture process cannot be totally eliminated, preventing the determination of the material fracture energy. Therefore, Article IV has described a method, similar to that of Lake and Yeoh for cutting to access the precise value of fracture energy in puncture of rubbers by sharp-pointed objects. The method allows substantially eliminating the effects of friction on the evaluation of the fracture energy involved in the puncture process.
13

AN INNOVATIVE APPROACH TO A PERFORMANCE ENHANCEMENT MODIFICATION OF A TWO AXIS TELEMETRY TRACKING SYSTEM

Richard, Gaetan C., Gonzalez, Daniel G. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / The design of a telemetry tracking system is generally centered around its desired RF performance which is typically specified in terms of beamwidth, gain and/or G/T. These parameters determine the size of the reflector used in a given application and consequently dictate the required size and performance of the associated pedestal. Any subsequent improvement in the RF performance of such a system is primarily achieved by increasing the size of its reflector. The magnitude of the improvement realized is therefore limited by the load handling capability of the pedestal. In most instances, the substitution of a larger reflector with its increased inertia and wind loading causes a significant degradation in the dynamic performance of the tracking system. This paper describes how the figure of merit (G/T) of a specific dual axis telemetry tracking system can be improved by a minimum of 7.3 dB/K° without impacting its dynamic performance or increasing its weight. These impressive results are made feasible by the innovative pairing of a unique design planar reflector with a novel implementation of the conical scanner technology. The FLAPS™ reflector incorporates a newly developed concept which features lightweight construction and very low wind load coefficients [1, 2]. The conical scanner is a lightweight version of the DECS tracking feed system described in the referenced technical paper [3].
14

The Effect of Elliptic-Conical Lensed Fiber Parameters on the Coupling Efficiency

Lu, Han-wei 13 August 2007 (has links)
A simulation scheme is proposed to analyze the effects of elliptic-conical lensed fiber parameters on the coupling efficiency between a 980nm laser diode and single-mode fiber(SMF). The variation of fiber tip shapes with different melting zone volumes was investigated in this thesis. The heat-transfer finite element model in MARC package is employed to simulate the temperature distribution during the melting process. The free convection is considered in predicting the melting zone. Due to the surface tension, a round tip may be solidificated. In this study an elliptical tip lens is expected to improve the coupling efficiency. The microlens shapes with different radius of curvature is simulated with the software of Surface Evolver. The coupling efficiency of 980nm laser source and different elliptic-conical lensed fiber is calculated by utilizing the ZEMAX optical analysis software. The Taguchi method is employed to evaluate the effect of tip shape parameters on the coupling efficiency. The optimal elliptic-conical lensed fiber parameters has also been proposed. The efficiency loss introduced from the misalignments in laser module packaging has also been discussed in this study.
15

LOAD PREDICTION FOR A MOORED CONICAL DRILLSHIP IN LEVEL UNBROKEN ICE: A DISCRETE ELEMENT AND EXPERIMENTAL INVESTIGATION

Lawrence, Karl Patrick January 2009 (has links)
This thesis is composed of theoretical, experimental, and numerical studies. In Part I, it discusses fundamental challenges of the discrete element method, provides a set of algorithms for addressing them, and presents performance gains of an improved algorithm on a target computer platform. A new contact detection and force resolution algorithm based upon (i) the fast common-plane (FCP) algorithm, (ii) using axisaligned bounding boxes (AABBs) to perform a proximity search, (iii) estimating the time of collision, and (iv) accurate resolution of contact points is presented. Benchmark simulations indicate an order of magnitude increase in performance is achievable for a relatively small number of elements. A new parallel discrete element algorithm is presented which combines the domain decomposition, object-oriented, and perfectly parallel strategies of parallelism to eliminate the drawbacks of parallel discrete element algorithms put forth by past studies. A significant speed-up is observed in comparison to past studies in trials conducted on a NUMA-based SMP computer. In Part II, various applications of the discrete element method are reviewed, with an emphasis on ice-structure interaction. The conical design of the Kulluk drillship is of particular interest due to its success in operating in the Beaufort Sea from 1975- 1993 and its subsequent purchase and recommission by Shell in 2006. Three previous experimental studies and a unique set of full-scale data measurements form the basis for comparison of a concurrent experimental and numerical investigation. The results of a model scale experiment at the NRC-IOT are analyzed and presented, followed by results of the numerical simulations. A 1:40 scale replica of the Kulluk platform in level ice produces results which are consistent with past experiments and confirm expected trends as well as different regimes of results dependent on the ductile/brittle behavior of ice. The numerical setup models the full-scale platform in three dimensions with a 24-sided rigid conical structure, ice as an elastic brittle material with plate-bending elements, and platform mooring through the implementation of a spread mooring algorithm. Numerical results are in agreement with past results for ice thickness of less than 1.2m, confirming that the initial design goal of the Kulluk was achieved while still overestimating the loads in comparison to the full-scale data set. Two explanations are presented for the non-conformity of the experimental and numerical predictions to the full-scale data results.
16

LOAD PREDICTION FOR A MOORED CONICAL DRILLSHIP IN LEVEL UNBROKEN ICE: A DISCRETE ELEMENT AND EXPERIMENTAL INVESTIGATION

Lawrence, Karl Patrick January 2009 (has links)
This thesis is composed of theoretical, experimental, and numerical studies. In Part I, it discusses fundamental challenges of the discrete element method, provides a set of algorithms for addressing them, and presents performance gains of an improved algorithm on a target computer platform. A new contact detection and force resolution algorithm based upon (i) the fast common-plane (FCP) algorithm, (ii) using axisaligned bounding boxes (AABBs) to perform a proximity search, (iii) estimating the time of collision, and (iv) accurate resolution of contact points is presented. Benchmark simulations indicate an order of magnitude increase in performance is achievable for a relatively small number of elements. A new parallel discrete element algorithm is presented which combines the domain decomposition, object-oriented, and perfectly parallel strategies of parallelism to eliminate the drawbacks of parallel discrete element algorithms put forth by past studies. A significant speed-up is observed in comparison to past studies in trials conducted on a NUMA-based SMP computer. In Part II, various applications of the discrete element method are reviewed, with an emphasis on ice-structure interaction. The conical design of the Kulluk drillship is of particular interest due to its success in operating in the Beaufort Sea from 1975- 1993 and its subsequent purchase and recommission by Shell in 2006. Three previous experimental studies and a unique set of full-scale data measurements form the basis for comparison of a concurrent experimental and numerical investigation. The results of a model scale experiment at the NRC-IOT are analyzed and presented, followed by results of the numerical simulations. A 1:40 scale replica of the Kulluk platform in level ice produces results which are consistent with past experiments and confirm expected trends as well as different regimes of results dependent on the ductile/brittle behavior of ice. The numerical setup models the full-scale platform in three dimensions with a 24-sided rigid conical structure, ice as an elastic brittle material with plate-bending elements, and platform mooring through the implementation of a spread mooring algorithm. Numerical results are in agreement with past results for ice thickness of less than 1.2m, confirming that the initial design goal of the Kulluk was achieved while still overestimating the loads in comparison to the full-scale data set. Two explanations are presented for the non-conformity of the experimental and numerical predictions to the full-scale data results.
17

Study of mechanical, optical and electrical properties of based functional structure of flexible electronics

Liang, Pei-hong 23 August 2011 (has links)
The deformation between interface, adhesion mechanism and the transparency of multi-layer flexible electronics composite were discussed. First, ITO (Indium Tin Oxide), Al (Aluminum) and ZnO (Zinc Oxide) were sputtered on a PET (Poly Ethylene Terephthalate) substrate by PVD (Physical Vapor Deposition) sequentially, to form ZnO/ITO/PET and ZnO/Al/PET which is the essential multi-layer structure in the transducer of flexible electronics. ITO/PET structure was widely applied to the touch panel. PET substrate possesses a good optical penetrability, low thermal expansion coefficient and lower price. However, the heat-resisting and chemical stability are poor. In this study, we explore the feasibility of the PDMS (Polydimethylsiloxane) substrate. It not only possesses good optical penetrability, but also exhibits higher PH selectivity than PET. In the analysis, the periodic external force was pressed on the flexible composite films to realize the difference between before and after experiment. Then the composite films were examined by nanoindentation and nanoscratch system (Berkovich and Conical probe with the radius of curvature of 20nm and 10um), four-point probe and spectrometer to measure the mechanical, electrical and optical properties, respectively. To investigate the effect of external force on these composite films, the interaction of films was discussed through external force testing by nanoscratch test.
18

Adhesive Contact of a Conical Frustum Punch with a Transversely Isotropic or an Orthotropic Elastic Half Space

Mao, Chunliu 2010 December 1900 (has links)
The adhesive contact problems of a conical frustum punch indenting a transversely isotropic elastic half space and an orthotropic elastic half space are analytically studied in this thesis work. To solve the problem involving a transversely isotropic half space, the harmonic potential function method and the Hankel transform are employed, which lead to a general closed-form solution for the adhesive contact problem. For the case with an orthotropic half space, the problem of a point load applied on the half space is first solved by using the double Fourier transform method. The solution for the adhesive contact problem is then obtained through integrating the former solutions over the punch surface.
19

Optimized upper bound analysis of polymer coated metal rod extrusion through conical die

Shah, Ritesh Lalit 17 September 2007 (has links)
Extrusion is a metal forming process used extensively in industry to produce different structural, mechanical, electrical, architectural, automotive and aerospace application parts. Currently after extrusion, the rod is subjected to environmental wear due to long storage time and hence requires an additional cleaning process before further use. This cleaning process can be eliminated by extruding a polymer coated metal rod workpiece such that the polymer coating is sustained on the final product after the extrusion process. In the present research study a new upper bound analytical model is developed to predict the forces required to conduct extrusion of a polymer coated metal rod successfully. The search for the lower upper bound power functional is modeled as a non linear optimization problem. Optimizing the functional also determines the set of constraints defining the shape of rigid plastic deformation boundaries and the final coating thickness. Also an upper bound analytical model was developed to predict forces for failure of the polymer coating during the extrusion. Both the analytical models for successful and failed extrusion are compared to obtain critical die angle which can provide tooling and process design guidelines. Finite element analysis simulations were modeled using commercially available software package, ABAQUS. Predictions of FEA simulations were in good agreement with published results and with the predictions of analytical model developed in this study.
20

MODELING AND TESTING ULTRA-LIGHTWEIGHT THERMOFORM-STIFFENED PANELS

Navalpakkam, Prathik 01 January 2005 (has links)
Ultra-lightweight thermoformed stiffened structures are emerging as a viable option for spacecraft applications due to their advantage over inflatable structures. Although pressurization may be used for deployment, constant pressure is not required to maintain stiffness. However, thermoformed stiffening features are often locally nonlinear in their behavior under loading. This thesis has three aspects: 1) to understand stiffness properties of a thermoformed stiffened ultra-lightweight panel, 2) to develop finite element models using a phased-verification approach and 3) to verify panel response to dynamic loading. This thesis demonstrates that conventional static and dynamic testing principles can be applied to test ultra-lightweight thermoformed stiffened structures. Another contribution of this thesis is by evaluating the stiffness properties of different stiffener configurations. Finally, the procedure used in this thesis could be adapted in the study of similar ultra-lightweight thermoformed stiffened spacecraft structures.

Page generated in 0.067 seconds