• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 54
  • 50
  • 12
  • 10
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 342
  • 125
  • 66
  • 49
  • 33
  • 30
  • 28
  • 24
  • 23
  • 23
  • 22
  • 20
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Koblitz's Conjecture for the Drinfeld Module

Jain, Lalit Kumar January 2008 (has links)
Let $E$ be an elliptic curve over the rationals without complex multiplication such that any elliptic curve $\mathbb{Q}$-isogenous to $E$ has trivial $\mathbb{Q}$-torsion. Koblitz conjectured that the number of primes less than $x$ for which $|E(\mathbb{F}_p)|$ is prime is asymptotic to $$C_E\frac{x}{(\log{x})^2} $$ for $C_E$ some constant dependent on $E.$ Miri and Murty showed that for infinitely many $p,$ $|E(\mathbb{F}_p)|$ has at most 16 prime factors using the lower bound sieve and assuming the Generalized Riemann Hypothesis. This thesis generalizes Koblitz's conjectures to a function field setting through Drinfeld modules. Let $\phi$ be a Drinfeld module of rank 2, and $\mathbb{F}_q$ a finite field with every $\mathbb{F}_q[t]$-isogeny having no $\mathbb{F}_q[t]$-torsion points and with $\text{End}_{\overline{k}}(\phi)=\mathbb{F}_q[t].$ Furthermore assume that for each monic irreducible $l\in \mathbb{F}_q[t],$ the extension generated by adjoining the $l$-torsion points of $\phi$ to $\mathbb{F}_q(t)$ is geometric. Then there exists a positive constant $C_{\phi}$ depending on $\phi$ such that there are more than $$ C_{\phi}\frac{q^x}{x^2}$$ monic irreducible polynomials $P$ with degree less then $x$ such that $\chi_{\phi}(P)$ has at most 13 prime factors. To prove this result we develop the theory of Drinfeld modules and a translation of the lower bound sieve to function fields.
62

Artin's Primitive Root Conjecture and its Extension to Compositie Moduli

Camire, Patrice January 2008 (has links)
If we fix an integer a not equal to -1 and which is not a perfect square, we are interested in estimating the quantity N_{a}(x) representing the number of prime integers p up to x such that a is a generator of the cyclic group (Z/pZ)*. We will first show how to obtain an aymptotic formula for N_{a}(x) under the assumption of the generalized Riemann hypothesis. We then investigate the average behaviour of N_{a}(x) and we provide an unconditional result. Finally, we discuss how to generalize the problem over (Z/mZ)*, where m > 0 is not necessarily a prime integer. We present an average result in this setting and prove the existence of oscillation.
63

Koblitz's Conjecture for the Drinfeld Module

Jain, Lalit Kumar January 2008 (has links)
Let $E$ be an elliptic curve over the rationals without complex multiplication such that any elliptic curve $\mathbb{Q}$-isogenous to $E$ has trivial $\mathbb{Q}$-torsion. Koblitz conjectured that the number of primes less than $x$ for which $|E(\mathbb{F}_p)|$ is prime is asymptotic to $$C_E\frac{x}{(\log{x})^2} $$ for $C_E$ some constant dependent on $E.$ Miri and Murty showed that for infinitely many $p,$ $|E(\mathbb{F}_p)|$ has at most 16 prime factors using the lower bound sieve and assuming the Generalized Riemann Hypothesis. This thesis generalizes Koblitz's conjectures to a function field setting through Drinfeld modules. Let $\phi$ be a Drinfeld module of rank 2, and $\mathbb{F}_q$ a finite field with every $\mathbb{F}_q[t]$-isogeny having no $\mathbb{F}_q[t]$-torsion points and with $\text{End}_{\overline{k}}(\phi)=\mathbb{F}_q[t].$ Furthermore assume that for each monic irreducible $l\in \mathbb{F}_q[t],$ the extension generated by adjoining the $l$-torsion points of $\phi$ to $\mathbb{F}_q(t)$ is geometric. Then there exists a positive constant $C_{\phi}$ depending on $\phi$ such that there are more than $$ C_{\phi}\frac{q^x}{x^2}$$ monic irreducible polynomials $P$ with degree less then $x$ such that $\chi_{\phi}(P)$ has at most 13 prime factors. To prove this result we develop the theory of Drinfeld modules and a translation of the lower bound sieve to function fields.
64

Artin's Primitive Root Conjecture and its Extension to Compositie Moduli

Camire, Patrice January 2008 (has links)
If we fix an integer a not equal to -1 and which is not a perfect square, we are interested in estimating the quantity N_{a}(x) representing the number of prime integers p up to x such that a is a generator of the cyclic group (Z/pZ)*. We will first show how to obtain an aymptotic formula for N_{a}(x) under the assumption of the generalized Riemann hypothesis. We then investigate the average behaviour of N_{a}(x) and we provide an unconditional result. Finally, we discuss how to generalize the problem over (Z/mZ)*, where m > 0 is not necessarily a prime integer. We present an average result in this setting and prove the existence of oscillation.
65

Conjecture n! et généralisations

Aval, Jean-Christophe 12 December 2001 (has links) (PDF)
Cette thèse est consacrée au problème de combinatoire algébrique appelée conjecture n!. <br /><br />Plus explicitement, on étudie la structure de certains espaces notés M_mu et indexés par les partitions mu de l'entier n. Chaque espace M_mu est le cône de dérivation d'un polynôme Delta_mu, généralisant en deux alphabets le déterminant de Vandermonde. Le coeur de ce travail, motivé par l'interprétation de certains polynômes de Macdonald en termes de multiplicité des représentations irréductibles du S_n-module M_mu, est la conjecture n!, énoncée en 1991 par A. Garsia et M. Haiman et récemment prouvée par ce dernier. <br /><br />On s'intéresse ici tout d'abord à l'explicitation de bases monomiales des espaces M_mu. Cette approche est très liée à l'étude de l'idéal annulateur de Delta_mu et nous conduit à introduire certains opérateurs de dérivation, dits opérateurs de sauts. On obtient une base monomiale explicite et une description de l'idéal annulateur pour les partitions en équerres, et pour le sous-espace en un alphabet M_mu(X) avec une partition mu quelconque. <br /><br />Les opérateurs de sauts se révèlent cruciaux pour l'introduction et l'étude de généralisations de la conjecture n!. Dans le cas des partitions trouées (approche récursive de la conjecture n!), l'obtention d'une base explicite du sous-espace en un alphabet permet de traiter une spécialisation de la fondamentale récurrence à quatre termes. Dans le cas des diagrammes à plusieurs trous, l'introduction de sommes de cônes de dérivation permet d'énoncer une conjecture généralisant la conjecture n!, supportée par l'obtention d'une borne supérieure et la structure du sous-espace en un alphabet.
66

L'anneau de cohomologie des résolutions crépantes de certaines singularités-quotient

Garino, Sébastien 25 June 2007 (has links) (PDF)
Le quotient géométrique d'une variété lisse par l'action d'un groupe fini préservant le volume est une variété singulière. La correspondance de McKay relie la géométrie des résolutions crépantes du quotient et la géométrie de l'action sur la variété lisse. Sous certaines hypothèses, le schéma de Hilbert équivariant de la variété lisse est une résolution crépante. Nous interprétons ce schéma en terme de grassmannienne d'algèbres équivariante, afin d'en déduire une description explicite. D'après la conjecture de Ruan, modulo une déformation quantique, l'anneau de cohomologie d'une résolution crépante est isomorphe à l'anneau de cohomologie orbifold du quotient. Pour le quotient d'une variété de dimension trois locale (espace vectoriel avec action linéaire) ou compacte, nous calculons l'anneau de cohomologie des résolutions crépantes. Dans le cas local, un exemple montre la nécessité de la déformation quantique dans la conjecture. Dans le cas compact, l'analogie entre les deux anneaux conforte la conjecture.
67

On the Existence of a Second Hamilton Cycle in Hamiltonian Graphs With Symmetry

Wagner, Andrew 05 December 2013 (has links)
In 1975, Sheehan conjectured that every simple 4-regular hamiltonian graph has a second Hamilton cycle. If Sheehan's Conjecture holds, then the result can be extended to all simple d-regular hamiltonian graphs with d at least 3. First, we survey some previous results which verify the existence of a second Hamilton cycle if d is large enough. We will then demonstrate some techniques for finding a second Hamilton cycle that will be used throughout this paper. Finally, we use these techniques and show that for certain 4-regular Hamiltonian graphs whose automorphism group is large enough, a second Hamilton cycle exists.
68

A Variant of Lehmer's Conjecture in the CM Case

Laptyeva, Nataliya 08 August 2013 (has links)
Lehmer's conjecture asserts that $\tau(p) \neq 0$, where $\tau$ is the Ramanujan $\tau$-function. This is equivalent to the assertion that $\tau(n) \neq 0$ for any $n$. A related problem is to find the distribution of primes $p$ for which $\tau(p) \equiv 0 \text{ } (\text{mod } p)$. These are open problems. However, the variant of estimating the number of integers $n$ for which $n$ and $\tau(n)$ do not have a non-trivial common factor is more amenable to study. More generally, let $f$ be a normalized eigenform for the Hecke operators of weight $k \geq 2$ and having rational integer Fourier coefficients $\{a(n)\}$. It is interesting to study the quantity $(n,a(n))$. It was proved by S. Gun and V. K. Murty (2009) that for Hecke eigenforms $f$ of weight $2$ with CM and integer coefficients $a(n)$ \begin{equation} \{ n \leq x \text { } | \text{ } (n,a(n))=1\} = \displaystyle\frac{(1+o(1)) U_f x}{\sqrt{\log x \log \log \log x}} \end{equation} for some constant $U_f$. We extend this result to higher weight forms. \\ We also show that \begin{equation} \{ n \leq x \ | (n,a(n)) \text{ \emph{is a prime}}\} \ll \displaystyle\frac{ x \log \log \log \log x}{\sqrt{\log x \log \log \log x}}. \end{equation}
69

A Variant of Lehmer's Conjecture in the CM Case

Laptyeva, Nataliya 08 August 2013 (has links)
Lehmer's conjecture asserts that $\tau(p) \neq 0$, where $\tau$ is the Ramanujan $\tau$-function. This is equivalent to the assertion that $\tau(n) \neq 0$ for any $n$. A related problem is to find the distribution of primes $p$ for which $\tau(p) \equiv 0 \text{ } (\text{mod } p)$. These are open problems. However, the variant of estimating the number of integers $n$ for which $n$ and $\tau(n)$ do not have a non-trivial common factor is more amenable to study. More generally, let $f$ be a normalized eigenform for the Hecke operators of weight $k \geq 2$ and having rational integer Fourier coefficients $\{a(n)\}$. It is interesting to study the quantity $(n,a(n))$. It was proved by S. Gun and V. K. Murty (2009) that for Hecke eigenforms $f$ of weight $2$ with CM and integer coefficients $a(n)$ \begin{equation} \{ n \leq x \text { } | \text{ } (n,a(n))=1\} = \displaystyle\frac{(1+o(1)) U_f x}{\sqrt{\log x \log \log \log x}} \end{equation} for some constant $U_f$. We extend this result to higher weight forms. \\ We also show that \begin{equation} \{ n \leq x \ | (n,a(n)) \text{ \emph{is a prime}}\} \ll \displaystyle\frac{ x \log \log \log \log x}{\sqrt{\log x \log \log \log x}}. \end{equation}
70

Interactions entre les Cliques et les Stables dans un Graphe / Interactions between Cliques and Stable Sets in a Graph

Lagoutte, Aurélie 23 September 2015 (has links)
Cette thèse s'intéresse à différents types d'interactions entre les cliques et les stables, deux objets très importants en théorie des graphes, ainsi qu'aux relations entre ces différentes interactions. En premier lieu, nous nous intéressons au problème classique de coloration de graphes, qui peut s'exprimer comme une partition des sommets du graphe en stables. Nous présentons un résultat de coloration pour les graphes sans triangles ni cycles pairs de longueur au moins 6. Dans un deuxième temps, nous prouvons la propriété d'Erdös-Hajnal, qui affirme que la taille maximale d'une clique ou d'un stable devient polynomiale (contre logarithmique dans les graphes aléatoires) dans le cas des graphes sans chemin induit à k sommets ni son complémentaire, quel que soit k.Enfin, un problème moins connu est la Clique-Stable séparation, où l'on cherche un ensemble de coupes permettant de séparer toute clique de tout stable. Cette notion a été introduite par Yannakakis lors de l’étude des formulations étendues du polytope des stables dans un graphe parfait. Il prouve qu’il existe toujours un séparateur Clique-Stable de taille quasi-polynomiale, et se demande si l'on peut se limiter à une taille polynomiale. Göös a récemment fourni une réponse négative, mais la question se pose encore pour des classes de graphes restreintes, en particulier pour les graphes parfaits. Nous prouvons une borne polynomiale pour la Clique-Stable séparation dans les graphes aléatoires et dans plusieurs classes héréditaires, en utilisant notamment des outils communs à l'étude de la conjecture d'Erdös-Hajnal. Nous décrivons également une équivalence entre la Clique-Stable séparation et deux autres problèmes  : la conjecture d'Alon-Saks-Seymour généralisée et le Problème Têtu, un problème de Satisfaction de Contraintes. / This thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem.

Page generated in 0.0652 seconds