• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 111
  • 58
  • 36
  • 15
  • 8
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 621
  • 270
  • 155
  • 144
  • 109
  • 99
  • 79
  • 70
  • 50
  • 50
  • 46
  • 44
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of Conjugated Low-coordinate Organophosphorus Materials

WU, Shanshan 12 June 2014 (has links)
No description available.
82

Studies on the Effects of the Introduction of Heavy Group 14 and 15 Elements on Conjugated Systems / 高周期14および15族元素の導入における共役系に対する影響の研究

Jun-I, Yuta 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23725号 / 理博第4815号 / 新制||理||1689(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 時任 宣博, 教授 若宮 淳志, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
83

Latently-reactive conjugated polymer-coated single-walled carbon nanotubes

Fong, Darryl January 2019 (has links)
Latently-reactive conjugated polymer-coated single-walled carbon nanotubes / Single-walled carbon nanotubes (SWNTs) are intensely investigated nanomaterials that exhibit intriguing physical and optoelectronic properties. Although SWNTs are highly regarded in terms of their potential societal impact, commercialization of SWNT applications has been dampened by the difficulty in SWNT processability and purification. Current commercially viable carbon nanotube syntheses produce complex mixtures of metallic and semiconducting SWNTs, as well as amorphous carbon and metal catalyst particles. Furthermore, the ability to decorate carbon nanotube surfaces to modulate their properties is non-trivial, especially if concurrent preservation of optoelectronic properties is desired. To date, the issues of SWNT solubilization, sorting, and functionalization have been approached in a piecemeal fashion. Conjugated polymers, which are macromolecules that possess extended π-systems, have the potential to address all of these issues simultaneously. In my Thesis, I explore conjugated polymer structures to investigate (i) factors that influence dispersion selectivity, and (ii) the decoration of polymer-SWNT complexes by incorporating reactive moieties into the polymer structure. The work presented in this Thesis begins by examining the ability of conjugated polymers to sort SWNTs. To date, the selective dispersion of metallic SWNTs is unrealized. In Chapter 2, I examine the effect of the electronic nature of the conjugated backbone on the selective dispersion of SWNTs by preparing SWNT dispersions pre- and post-methylation of a pyridine-containing conjugated polymer. In doing so, I prepare a series of polymers with identical degrees of polymerization and dispersity (to minimize extraneous selectivity factors) and find that electron rich π-systems disperse only semiconducting SWNTs, while electron poor π-systems disperse relatively more metallic SWNTs. In Chapter 3, I challenge the conventional wisdom that complete backbone conjugation is required to selectively disperse semiconducting SWNTs by introducing non-conjugated linkers into the polymer backbone and demonstrating that nanotube sorting is still possible. I next examine conjugated polymers as tools that can simultaneously sort SWNTs and impart reactivity to the polymer-SWNT complex, while preserving SWNT optoelectronic properties. In Chapter 4, I incorporate azides into polyfluorene side chains and perform solution-phase Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC). I show that the polymer-SWNT complex can be rapidly decorated with strained cyclooctyne derivatives, and that only pre-clicked polymer enables for sorting of semiconducting SWNTs. The sorted SWNT population can then be made water soluble post-SPAAC, enabling for the study of SWNT emission in solvents with very different polarity. In Chapter 5, I examine the reactivity of azide-containing polymer-SWNT thin films and show that thin film properties can be drastically altered. Interfacial chemistry enables for the spatially-resolved patterning of a Janus polymer-SWNT thin film containing both hydrophilic and hydrophobic regions. In Chapter 6, I devise a system to perform aqueous solution-phase chemistry on the polymer-SWNT complex. The water soluble polymer-SWNT complex allows for functionalization of the hydrophobic SWNT scaffold with polar and charged molecules. Clicking an acidochromic switch onto the polymer-SWNT surface enables for control over the SWNT emission properties. Lastly, in Chapter 7 I develop a conjugated polymer whose backbone can be functionalized using visible light. The visible-light mediated photoclick coupling of a conjugated polymer backbone enables for rapid polymer modification and is the first example of spatially-resolved conjugated polymer backbone functionalization. / Thesis / Doctor of Philosophy (PhD) / Carbon nanotubes are cylindrical shells of carbon that possess fascinating physical, optical, and electrical properties. Commercial syntheses of carbon nanotubes produce complex mixtures of impure material, and raw carbon nanotube samples further suffer from insolubility. A grand challenge preventing commercialization of carbon nanotube applications is simultaneously solubilizing, sorting, and functionalizing carbon nanotube structures while avoiding damage to the nanotube properties. To date, these issues have been tackled in a piecemeal fashion. In my Thesis, I explore conjugated polymer coatings as a solution to address these problems all at once. I investigate how modifying conjugated polymer structure can (i) influence carbon nanotube purification and (ii) produce latently-reactive polymer-nanotube complexes that can be used to decorate carbon nanotubes without damaging nanotube properties.
84

Dual Spin-Cast Thermally Interdiffused Polymeric Photovoltaic Devices

Kaur, Manpreet 31 August 2011 (has links)
An in depth study of the performance of thermally interdiffused concentration gradient polymer photovoltaic devices is carried out with particular attention to the effect of the thickness and the thermal treatments on the power conversion efficiency, short circuit current, open circuit voltage and other key electrical properties. Bilayer films of sequentially spin-cast donor and acceptor materials are exposed to various heat treatments in order to induce the interdiffusion. The depth profiles show concentration gradients in the donor and acceptor as a result of interdiffusion and these devices show an order of magnitude increase in the device performance compared to the bilayer devices. Dual spin-cast poly (3-octylthiophene-2,5-diyl) (P3OT)- [6,6] phenyl C61 butyric acid methyl ester (PCBM) and poly (3-hexylthiophene-2,5-diyl) (P3HT)-PCBM interdiffused devices are studied in detail by varying the thickness of the donor and acceptor layers as well as the annealing conditions for initial polymer layer and the time and temperature of the interdiffusion process. Auger spectroscopy and X-ray photoelectron spectroscopy along with ion beam milling are used to investigate the concentration gradient formed as a result of the interdiffusion. The sulfur signal present in the P3OT and P3HT backbone is detected to identify the concentration profiles in the P3OT-PCBM and P3HT-PCBM devices. The interdiffusion conditions and thickness of the active layers have been optimized to obtain the highest power conversion efficiency. The best device performance of the P3OT-PCBM interdiffused devices is achieved when the interdiffusion is carried out at 150°C for 20 minutes and the P3OT thickness is maintained at 70 nm and the PCBM thickness at 40-50 nm. The highest efficiency achieved for P3OT-PCBM interdiffused devices is 1.0% under AM1.5G solar simulated spectrum. In order to further increase the efficiency, P3OT is replaced by (P3HT) which has higher hole mobility. P3HT- PCBM based concentration gradient devices show improved device performance over P3OT-PCBM devices. Power conversion efficiency of the order of ~3.0% is obtained for P3HT-PCBM interdiffused devices when the interdiffusion is carried out at 150°C for 20 minutes. For both P3OT:PCBM and P3HT:PCBM devices, the optimum performance occurs when the concentration gradient extends across the entire film and is correlated with an increase in the short circuit current density and fill factor as well as a decrease in the series resistance. The results demonstrate that an interdiffused bilayer fabrication approach is a novel and efficient approach for fabrication of polymer solar cell devices. In addition, porphyrin derivative 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine zinc (ZnTPP) is studied as a new donor material for organic solar cells. ZnTPP: PCBM blend devices are investigated in detail by varying the weight ratio of the donor and acceptor materials in blend devices. The devices with ZnTPP: PCBM in 1:9 ratios showed the best device performance and the efficiency of the order of 0.2% is achieved under AM1.5G solar simulated conditions. Trimetallic Nitride Tempelated (TNT) endohedral fullerenes are also examined in this thesis as the novel acceptor materials. Bulk heterojunction or blend devices are fabricated with P3HT as the donor material and several TNT endohedral fullerenes as the acceptor material. Y3N@C₈₀PCBH based devices which are annealed both before and after the electrode deposition show improvement in the device performance compared to devices that are only annealed before the electrode deposition. The highest power conversion efficiency achieved for TNT endohedral fullerene devices is only 0.06%, suggesting that substantial additional work must be done to optimize the compatibility of the donor and acceptor as well as the device fabrication parameters. / Ph. D.
85

Design and synthesis of and π-stacked conjugated oligomers and polymers

Jagtap, Subodh Prakash 16 March 2012 (has links)
Interchain interactions between π-systems have a strong effect on the properties of conjugated organic materials that find application in devices such as light emitting diodes (OLEDs), organic photovoltaics (OPVs), and field effect transistors (FETs). We have prepared covalently-stacked oligo(1,4-phenylene ethynylene)s and oligo(1,4-phenylene vinylene)s to study the influence of chain-chain interactions on the electronic structure of closely packed conjugated units. These serve as models for segments of conjugated materials in thin film devices. Extension of this concept has allowed us to prepare multi-tiered systems that display the influence of pi-stacking. The stacked architectures were prepared by multi-step synthesis of the scaffolds, followed by metal-catalyzed cross coupling reactions (Sonogashira, Heck, Suzuki couplings) to incorporate the conjugated oligomers. The optical and electrochemical properties of these stacked compounds and polymers were compared to their unstacked linear counterparts. These studies provide a platform for the exploration of the nature of charge carriers and excitons in a broad class of materials that have significant potential in addressing challenges in power generation, lighting and electronics.
86

Spectroscopic and calorimetric studies of aggregated macromolecules

Kitts, Catherine Carter, 1979- 28 August 2008 (has links)
Different optical and calorimetric techniques were utilized to gain a better understanding of aggregated macromolecules. This research looked at two different macromolecules: poly(9,9'-dioctylfluorene), a conjugated polymer that forms aggregates in organic solvents; and bovine insulin, which forms amyloid fibrils. Conjugated polymers are of increasing interest due to their thermal stability and ease of solution processing for use in devices. A member of the polyfluorene family, poly(9,9'-dioctylfluorene) (PFO), has been studied due to its blue-emitting spectral properties. However, PFO has been found to form aggregates in solution, which is detected by the presence of a red-shifted absorption peak. This peak is caused when a section of the backbone planarizes forming the [beta]-phase. The [beta]-phase can be removed from the solution upon heating and will not return until the solution is cooled, making it a non-equilibrium process. The dissolution and reformation of the -phase were monitored using absorption spectroscopy and differential scanning calorimetry. Atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) were able to probe the aggregates in films. It is important to understand polymer properties in solution in order to understand film morphology. Amyloid fibrils contribute to over 20 different neurodegenerative diseases, in which cures have yet to be found. The fibrils form when a soluble protein misfolds and self-assembles to form insoluble protein aggregates, and the cause of the fibril formation in vivo has still yet to be determined. Spectroscopy studies have been made possible with the use of fluorescent dyes: thioflavin T (ThT), BTA-2, and Congo red (CR). These dyes bind to amyloid fibrils and exhibit changes in their spectral properties. However, the exact mechanism for the binding of these dyes has only recently been studied. Through the use of calorimetry, the forces involved with binding of ThT and CR to amyloid fibrils can be determined. Absorption and fluorescence spectroscopy techniques were employed to study the spectral properties of these dyes. Polarized NSOM was used to determine the ThT or BTA-2's orientation with an individual fibril. Understanding how these dyes bind to fibrils will enable researchers to use spectroscopy to study the early stages of fibril formation. / text
87

The fabrication and lithography of conjugated polymer distributed feedback lasers and development of their applications /

Richardson, Scott. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, November 2007.
88

Spectroscopic and calorimetric studies of aggregated macromolecules

Kitts, Catherine Carter, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
89

Azaphenalene-based π-Conjugated System / アザフェナレンを基盤とするπ共役系の構築

Watanabe, Hiroyuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22468号 / 工博第4729号 / 新制||工||1739(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 田中 一生, 教授 秋吉 一成, 教授 古賀 毅 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
90

Modeling Electronic Properties Of Strongly Correlated Conjugated Molecular Systems

Thomas, Simil 05 1900 (has links) (PDF)
Organic conjugated systems are attractive because of wide range of applications, which includes stimulated emission from -conjugated polymers, optical switches, organic solar cells and organic light emitting diodes, to name a few. They have the advantage of low cost, ease of processing and tunability of their linear and nonlinear optical properties by functionalization with donor or acceptor groups. In chapter 1, we provide an introduction to the π-conjugated systems and various interesting phenomena observed in these systems, This is followed by a brief description of the application of the above mentioned -conjugated systems for organic light emitting diodes, and organic photovoltaic cells. In the last section of this chapter, we give an introduction to magnetism due to π-electron systems. In chapter 2, we begin with energy band theory in one-dimension and its drawbacks. We introduce various model Hamiltonians which incorporate electron-electron inter-actions like Hubbard model, and Pariser-Parr-Pople (PPP) model. We present numerical techniques like valence-bond (VB) and constant MS techniques that are used to exactly solve the above model Hamiltonian. This is followed by an introduction to density matrix renormalization group method (DMRG) employed for the above model Hamiltonian for larger system in one-dimension and quasi-one-dimension. We give description of linear and nonlinear optical properties followed by the oriented gas model for ensemble of molecules. Various methods for computing polarizabilities and hyperpolarizibilities of molecules includes such as Finite-Field method, Sum-Over-State Method, and Correction Vector (CV) Methods are described in detail. In chapter 3, we look into fused azulene systems as a possible organic multiferroics. Azulene molecule with fused five and seven membered π-conjugated rings has a dipole moment, and the π-framework has geometric frustration. Hence in fused azulenes we can expect both ferroelectric and magnetic ground state. To explore this, we study low-lying correlated electronic states of fused azulenes using the long-range interacting PPP model and the finite DMRG method. The ground state is a singlet for oligomers up to 5 azulene units. For oligomers with more than 5 azulene units and up to 11 azulene units the oligomers have a triplet ground state. From the excitation gaps between the lowest MS = 0 state and the lowest states in MS=1, 2, and 3 sectors we predict that the ground-state spin of the fused azulene increases with the number of azulene units. In the thermodynamic limit, we expect the fused azulene to be a ferromagnet. Charge density calculations show that the ground state of the system has ferroelectric alignment of the dipoles of the monomeric units. Thus, a fused azulene system could be the first example of an organic molecule which is both ferromagnetic and ferroelectric, in the ground state. In chapter 4, we study the linear and nonlinear optical properties of diradical systems. We have studied linear and non-linear optical properties of π-conjugated diradicals because they are expected to exhibit large non-linear responses. The system studied are oligomers of dicyclopenta-fused acenes (DPA) and the s-indaceno[1,2,3-cd;5,6,7-c'd']diphenalene (IDPL) molecule. Spin-spin correlation functions within a correlated PPP model Hamiltonian, using exact diagonalization method, are used to characterize the diradical nature of DPA-2 and similar calculations on Anthracene have been performed to contrast this with a singlet character. The diradical character of DPA-2 is also manifest as low optical gap, low spin gap and large THG coefficients compared to Anthracene molecule. Larger DPA-k, k > 2, oligomers as well as the IDPL molecule have been studied within the DMRG technique. In the DPA-4, we nd a very small spin gap (0.04 eV), while in the oligomers with k > 4, we nd that the ground state is degenerate with the lowest triplet state. The energy of the second excited triplet state decreases with increasing size k and seems to saturate at ~0.36 eV in the thermodynamic limit. The lowest optical gap in DPA-4 is at 1.94 eV and has large transition dipoles, while for DPA-k, 4 < k ≥ 28, we have not been able to access states with large transition dipoles. The weak low-energy excitations seem to saturate at 0.5 eV and the two-photon gap also seems to be saturating at~ 0.3 eV in the thermodynamic limit. These polymers will not be IR uorescent by Kasha rule. The dominant component of the THG coefficient, γxxxx, is highest for DPA-4 which reduces almost by an order of magnitude in DPA-8; for k > 8 it increases up to the largest system with k=20 for which we have computed the coe cient. The variation of the charge gap of DPA oligomer with the increase in system size is small and in the polymer limit the charge gap is 4:24 eV. For IDPL molecule spin gap is 0.20 eV and next excited triplet state is at 1.48 eV. Two lowest singlet states in B space are nearly degenerate and have large transition dipole moments. Optical gaps to the above states are 2.20 eV and 2.22 eV. Two-photon gap in this system is 1.29 eV, hence this system is also non- uorescent. We calculated the dispersion of the major component of the THG coefficient, γxxxx, over a wide frequency range for this molecule, and we observe resonances corresponding to the 21Ag and 11Bu states. Extrapolated value of γxxxx at zero frequency is 15:58 x 106 a.u which is very large and the system does not have any donor or acceptor substituent groups. In chapter 5, we study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs). We nd that in the 4n+2 EPs there are two prominent low-lying one-photon excitations while in 4n systems there is only one such excitation. The two-photon gaps in both these types of systems are at energies close to the one-photon excitations. The spin gap in 4n+2 EPs are very small although the spin-1/2 Heisenberg calculations show that a pure spin system in this geometry will not have vanishing spin-gap. The charge density rearrangement in the one-photon excited state is most at the aza nitrogen site and at the meso carbon sites. In the two-photon states also the charge density rearrangement occurs mostly at the aza-ring sites. The bond order changes in these states is much more striking. In the one-photon state, the C-C bond length in the aza rings show a tendency to become uniform. Similar qualitative trend is also observed for the two-photon state. In chapter 6, we study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail con gurations (HtT), at different stacking angles, exactly within the PPP model. Varying the stacking angle between polyenes, we nd that the optical gap varies slightly, but transition dipoles show large variation. The dominant component of first-order hyperpolarizability, βxxx for HtH and βyyy for HtT arrangement strongly depend on the distance between molecules. The βxxx for HtH configuration shows a maximum at a nonzero stacking angle, which varies with inter polyene distance. ZINDO study on two monomers, (4-hydroxy-40-nitro-azobenzene) connected by a conjugated bridge shows that βav is more than twice the monomer value and with a red-shift in the optical gap. In chapter 7, we have calculated the shifts in optical gaps and band edges as a function of the distance between two monomers within a correlated PPP model Hamiltonian for various stacking geometries. We have used as model monomers, both unsubstituted polyenes and push-pull substituted polyenes. We have carried out calculations with and without inter-chain hopping between sites on different molecules. We note that in the absence of inter-chain hopping, the energy level shifts are almost independent of the distances between the chains in all stacking geometries. It is also interesting to note that only electron-electron interactions yield a blue shift in the optical gaps for parallel stacking, but red shift in the gap for all other stacking geometries. We note that most of the shift in the gap is due to shifts in the excited state energy and the ground-state energy remains almost the same. With interchain transfer the shift in the optical gap increases with decrease in the interchain distance. We observe red-shifts in parallel stacking geometry when inter-chain electron hopping is turned on, at small interchain separations. In general interchain hopping increases significantly the red shift in the optical gaps for all geometries. Even for push-pull polyenes of | e| =2.0 eV, we observe the same trend in the shift in the optical gap for various stacking geometries. In this case the shift in optical gap is an order of magnitude higher when interchain hopping is turned on compared to that in the absence of interchain hopping. We find that the optical gap shifts are largest for the parallel stacking geometry, and it also shows stronger distance dependence. This is in close conformity with experimental observation of red-shift in absorption maxima when hydrostatic pressure is applied on the system. The shift in the HOMO (LUMO) level is small in the absence of t?, and the largest shift is in the case of parallel stacking compared to other stacking geometries. The distance dependence of the HOMO shifts is also rather weak. When t? is turned on, the level shifts become large by a factor of five or more. When we have push-pull groups electron-hole symmetry is broken and the shift is different for the HOMO and the LUMO level. Depending upon stacking geometry, the HOMO shifts vary from 0:1 ~ eV to 0.3 eV, which is larger than the shifts observed in unsubstituted polyenes. This large shift in the LUMO reduces the efficiency of exciton dissociation.

Page generated in 0.0669 seconds