• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling energy and charge transports in pi-conjugated systems

Shin, Yongwoo January 2012 (has links)
Thesis (Ph.D.)--Boston University / Carbon based n-conjugated materials, such as conducting polymers, fullerene, carbon nanotubes, graphene. and conjugated dendrimers have attracted wide scientific attentions in the past three decades. This work presents the first unified model Hamiltonian that can accurately capture the low-energy excitations among all these pi-conjugated systems, even with the presence of defects and heterogeneous sites. Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter 1 scales the electronphonon coupling strength in aromatic rings and the other parameter e specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly- (p-phenylene), poly-(p-phenylene vinylene), polyacenes, fullerene, carbon nanotubes, graphene, and graphene nanoribbons with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches. The charge and energy transports along -conjugated backbones can be modeled on the adiabatic potential energy surface. The adiabatic minimum-energy path of a self-trapped topological soliton is computed for trans-polyacetylene. The frequently cited activation barrier via a ridge shift of the hyper-tangent order parameter overestimates its true value by 14 orders of magnitude. Self-trapped solitons migrate along the Goldstone mode direction with continuously adj usted amplitudes so that a small-width soliton expands and a large- width soliton shrinks when they move uphill. A soliton with the critical width may migrate without any amplitude modifications. In an open chain as solitons move from the chain center toward a chain edge, the minimum-energy path first follows a tilted washboard. Such a generic constrained Goldstone mode relaxation approach is applicable to the pinning dynamics due to the presence of structural defects and counter ions. The interchain 7r - 7r interactions are modeled using distance-dependent hopping integrals. Excellent agreements in their binding energetics and geometries with post-Hartree-Fock ab initio methods are found for the benzene dimer and the infinite 2D graphene cases. The computed photo-induced charge separated states and associated adsorption spectra agree perfectly with the experimental measurements.
2

Studies on the Effects of the Introduction of Heavy Group 14 and 15 Elements on Conjugated Systems / 高周期14および15族元素の導入における共役系に対する影響の研究

Jun-I, Yuta 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23725号 / 理博第4815号 / 新制||理||1689(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 時任 宣博, 教授 若宮 淳志, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Propriedades eletrônicas de sistemas conjugados: importância da troca exata / Electronic properties of conjugated systems role of exact exchange

Pinheiro Junior, José Maximiano Fernandes 02 June 2014 (has links)
Polímeros conjugados semicondutores tem atraído grande interesse nas últimas décadas devido às possíveis aplicações como componentes ativos em aplicações optoeletrônicas. A adequação destes semicondutores orgânicos para a fabricação de dispositivos depende do entendimento e controle de propriedades eletrônicas básicas: gap fundamental (Eg) e potencial de ionização (IP). Nesse contexto, estudos teóricos baseados em cálculos de primeiros princípios tem se mostrado muito úteis, uma vez que possibilitam a simulação de processos físicos em condições ideais, onde se pode analisar as propriedades eletrônicas de polímeros desconsiderando efeitos do ambiente ou desordem estrutural. A Teoria do Funcional da Densidade (DFT) tem se tornado o método mais comum para o cálculo da estrutura eletrônica do estado fundamental de uma ampla variedade de materiais orgânicos complexos. Embora cálculos DFT baseados na diferença de energias totais tem sido aplicados com sucesso para estimar IPs de moléculas pequenas, este método falha nas propriedades de sistemas conjugados longos. Realmente, a capacidade preditiva da DFT padrão com respeito as propriedades espectroscópicas é frequentemente limitada, entretanto o tratamento adequado das excitações eletrônicas através de abordagens de muitos corpos é ainda muito difícil para materiais orgânicos complexos. Funcionais híbridos que misturam uma fração () de troca exata (EX) não-local ao correspondente semi-local representam uma boa alternativa, embora a quantidade ideal de EX seja, em geral, dependente do sistema. Neste trabalho, adotamos um esquema não-empírico baseado na aproximação G0W0 para identificar o valor ótimo de para o funcional híbrido PBE no qual a correção de autoenergia para o orbital mais alto ocupado (HOMO) de Kohn-Sham generalisado é minimizado. Estudamos, com base nessa estratégia, a dependência com o comprimento das propriedades eletrônicas básicas em uma família de oligômeros conjugados 1D de trans-poliacetileno (TPA). Nossos cálculos mostram que a fração EX ótima (dependente do tamanho) incorporada ao PBEh reproduz com precisão os IPs experimentais determinados em fase gasosa, / Semiconducting conjugated polymers have attracted considerable interest over the past decades due to the promising applications as active components for optoelectronic applications. The suitability of such organic semiconductors for device fabrication relies on quantitative understanding and control of basic electronic properties: fundamental gap (Eg) and ionization potential (IP). In this context, theoretical studies based on first principles approaches have proven useful, through simulating physical processes in ideal conditions, in which one might analyse the electronic properties of polymers apart from the effects of the surrounding environment or structural disorder. Density Functional Theory (DFT) has become an usual choice for calculating the ground state electronic structure of a wide variety of complex organic materials. Although DFT calculations based on total energy differences have been successfully applied to estimate IPs of small molecules, they fail for properties of long conjugated systems. Indeed, the predictive ability of standard DFT with respect to spectroscopic properties is often limited, however a proper treatment of the electronic excitations through many-body approaches is still very difficult for complex organic materials. Hybrid functionals that mix a fraction (_) of nonlocal exact exchange (EX) with the semilocal counterpart represent a good alternative, although the ideal amount of EX is usually system dependent. In this work, we adopt a non-empirical scheme based on the G0W0 approximation to identify the optimum _ value for the PBE hybrid functional for which the self-energy correction to the generalized Kohn-Sham highest occupied molecular orbital (HOMO) is minimized. Based on this strategy we study the size dependence of the basic electronic properties in a family of 1D _-conjugated oligomers of trans-polyacetylene (TPA). Our calculations demonstrate that the size dependent optimal EX fraction incorporated in PBEh accurately reproduces IPs from experimental gas phase data, although no particular constraint has been imposed a priori. Furthermore, we note that the optimum _-value decreases exponen tially with chain length going from _ w0.85 for the smaller oligomer (ethylene, n=1) up to _ w0.75 extrapolated for an isolated TPA chain. The accuracy of our optimized PBEh in predicting IPs and Eg is superior to other conventional mean field approaches, as demonstrated for a selected set of conjugated molecules such as acenes and phenylenes. As a result, we can obtain good estimations for the energy barriers of electron transfer in organic/organic interfaces. On the other extreme, we analyse the influence of exact exchange on the electronic structure of the prototypical metal system gold (Au), commonly used as electrode in organic devices. In this case, we confirm the expected result that the insertion of even a small fraction of EX into PBE functional distorts the Au band structure, worsening the description of electronic properties compared to regular PBE. We then proceed to analyse the factibility of studying polymer/metal interface systems using pure DFT. Our calculations reveal that the result is too system-dependent: for the TPA/Au(111) interface, an artificial charge transfer takes place at interface due to an underestimation of the IPs of the conjugated system inherent to the underlying DFT approximation. Finally, our study emphasizes the importance of a physically motivated choice of EX fraction in hybrid functionals for accurately predicting both ionization potentials and fundamental gaps of organic semiconductors relevant for nanoelectronics.
4

Propriedades eletrônicas de sistemas conjugados: importância da troca exata / Electronic properties of conjugated systems role of exact exchange

José Maximiano Fernandes Pinheiro Junior 02 June 2014 (has links)
Polímeros conjugados semicondutores tem atraído grande interesse nas últimas décadas devido às possíveis aplicações como componentes ativos em aplicações optoeletrônicas. A adequação destes semicondutores orgânicos para a fabricação de dispositivos depende do entendimento e controle de propriedades eletrônicas básicas: gap fundamental (Eg) e potencial de ionização (IP). Nesse contexto, estudos teóricos baseados em cálculos de primeiros princípios tem se mostrado muito úteis, uma vez que possibilitam a simulação de processos físicos em condições ideais, onde se pode analisar as propriedades eletrônicas de polímeros desconsiderando efeitos do ambiente ou desordem estrutural. A Teoria do Funcional da Densidade (DFT) tem se tornado o método mais comum para o cálculo da estrutura eletrônica do estado fundamental de uma ampla variedade de materiais orgânicos complexos. Embora cálculos DFT baseados na diferença de energias totais tem sido aplicados com sucesso para estimar IPs de moléculas pequenas, este método falha nas propriedades de sistemas conjugados longos. Realmente, a capacidade preditiva da DFT padrão com respeito as propriedades espectroscópicas é frequentemente limitada, entretanto o tratamento adequado das excitações eletrônicas através de abordagens de muitos corpos é ainda muito difícil para materiais orgânicos complexos. Funcionais híbridos que misturam uma fração () de troca exata (EX) não-local ao correspondente semi-local representam uma boa alternativa, embora a quantidade ideal de EX seja, em geral, dependente do sistema. Neste trabalho, adotamos um esquema não-empírico baseado na aproximação G0W0 para identificar o valor ótimo de para o funcional híbrido PBE no qual a correção de autoenergia para o orbital mais alto ocupado (HOMO) de Kohn-Sham generalisado é minimizado. Estudamos, com base nessa estratégia, a dependência com o comprimento das propriedades eletrônicas básicas em uma família de oligômeros conjugados 1D de trans-poliacetileno (TPA). Nossos cálculos mostram que a fração EX ótima (dependente do tamanho) incorporada ao PBEh reproduz com precisão os IPs experimentais determinados em fase gasosa, / Semiconducting conjugated polymers have attracted considerable interest over the past decades due to the promising applications as active components for optoelectronic applications. The suitability of such organic semiconductors for device fabrication relies on quantitative understanding and control of basic electronic properties: fundamental gap (Eg) and ionization potential (IP). In this context, theoretical studies based on first principles approaches have proven useful, through simulating physical processes in ideal conditions, in which one might analyse the electronic properties of polymers apart from the effects of the surrounding environment or structural disorder. Density Functional Theory (DFT) has become an usual choice for calculating the ground state electronic structure of a wide variety of complex organic materials. Although DFT calculations based on total energy differences have been successfully applied to estimate IPs of small molecules, they fail for properties of long conjugated systems. Indeed, the predictive ability of standard DFT with respect to spectroscopic properties is often limited, however a proper treatment of the electronic excitations through many-body approaches is still very difficult for complex organic materials. Hybrid functionals that mix a fraction (_) of nonlocal exact exchange (EX) with the semilocal counterpart represent a good alternative, although the ideal amount of EX is usually system dependent. In this work, we adopt a non-empirical scheme based on the G0W0 approximation to identify the optimum _ value for the PBE hybrid functional for which the self-energy correction to the generalized Kohn-Sham highest occupied molecular orbital (HOMO) is minimized. Based on this strategy we study the size dependence of the basic electronic properties in a family of 1D _-conjugated oligomers of trans-polyacetylene (TPA). Our calculations demonstrate that the size dependent optimal EX fraction incorporated in PBEh accurately reproduces IPs from experimental gas phase data, although no particular constraint has been imposed a priori. Furthermore, we note that the optimum _-value decreases exponen tially with chain length going from _ w0.85 for the smaller oligomer (ethylene, n=1) up to _ w0.75 extrapolated for an isolated TPA chain. The accuracy of our optimized PBEh in predicting IPs and Eg is superior to other conventional mean field approaches, as demonstrated for a selected set of conjugated molecules such as acenes and phenylenes. As a result, we can obtain good estimations for the energy barriers of electron transfer in organic/organic interfaces. On the other extreme, we analyse the influence of exact exchange on the electronic structure of the prototypical metal system gold (Au), commonly used as electrode in organic devices. In this case, we confirm the expected result that the insertion of even a small fraction of EX into PBE functional distorts the Au band structure, worsening the description of electronic properties compared to regular PBE. We then proceed to analyse the factibility of studying polymer/metal interface systems using pure DFT. Our calculations reveal that the result is too system-dependent: for the TPA/Au(111) interface, an artificial charge transfer takes place at interface due to an underestimation of the IPs of the conjugated system inherent to the underlying DFT approximation. Finally, our study emphasizes the importance of a physically motivated choice of EX fraction in hybrid functionals for accurately predicting both ionization potentials and fundamental gaps of organic semiconductors relevant for nanoelectronics.
5

Modeling Electronic Properties Of Strongly Correlated Conjugated Molecular Systems

Thomas, Simil 05 1900 (has links) (PDF)
Organic conjugated systems are attractive because of wide range of applications, which includes stimulated emission from -conjugated polymers, optical switches, organic solar cells and organic light emitting diodes, to name a few. They have the advantage of low cost, ease of processing and tunability of their linear and nonlinear optical properties by functionalization with donor or acceptor groups. In chapter 1, we provide an introduction to the π-conjugated systems and various interesting phenomena observed in these systems, This is followed by a brief description of the application of the above mentioned -conjugated systems for organic light emitting diodes, and organic photovoltaic cells. In the last section of this chapter, we give an introduction to magnetism due to π-electron systems. In chapter 2, we begin with energy band theory in one-dimension and its drawbacks. We introduce various model Hamiltonians which incorporate electron-electron inter-actions like Hubbard model, and Pariser-Parr-Pople (PPP) model. We present numerical techniques like valence-bond (VB) and constant MS techniques that are used to exactly solve the above model Hamiltonian. This is followed by an introduction to density matrix renormalization group method (DMRG) employed for the above model Hamiltonian for larger system in one-dimension and quasi-one-dimension. We give description of linear and nonlinear optical properties followed by the oriented gas model for ensemble of molecules. Various methods for computing polarizabilities and hyperpolarizibilities of molecules includes such as Finite-Field method, Sum-Over-State Method, and Correction Vector (CV) Methods are described in detail. In chapter 3, we look into fused azulene systems as a possible organic multiferroics. Azulene molecule with fused five and seven membered π-conjugated rings has a dipole moment, and the π-framework has geometric frustration. Hence in fused azulenes we can expect both ferroelectric and magnetic ground state. To explore this, we study low-lying correlated electronic states of fused azulenes using the long-range interacting PPP model and the finite DMRG method. The ground state is a singlet for oligomers up to 5 azulene units. For oligomers with more than 5 azulene units and up to 11 azulene units the oligomers have a triplet ground state. From the excitation gaps between the lowest MS = 0 state and the lowest states in MS=1, 2, and 3 sectors we predict that the ground-state spin of the fused azulene increases with the number of azulene units. In the thermodynamic limit, we expect the fused azulene to be a ferromagnet. Charge density calculations show that the ground state of the system has ferroelectric alignment of the dipoles of the monomeric units. Thus, a fused azulene system could be the first example of an organic molecule which is both ferromagnetic and ferroelectric, in the ground state. In chapter 4, we study the linear and nonlinear optical properties of diradical systems. We have studied linear and non-linear optical properties of π-conjugated diradicals because they are expected to exhibit large non-linear responses. The system studied are oligomers of dicyclopenta-fused acenes (DPA) and the s-indaceno[1,2,3-cd;5,6,7-c'd']diphenalene (IDPL) molecule. Spin-spin correlation functions within a correlated PPP model Hamiltonian, using exact diagonalization method, are used to characterize the diradical nature of DPA-2 and similar calculations on Anthracene have been performed to contrast this with a singlet character. The diradical character of DPA-2 is also manifest as low optical gap, low spin gap and large THG coefficients compared to Anthracene molecule. Larger DPA-k, k > 2, oligomers as well as the IDPL molecule have been studied within the DMRG technique. In the DPA-4, we nd a very small spin gap (0.04 eV), while in the oligomers with k > 4, we nd that the ground state is degenerate with the lowest triplet state. The energy of the second excited triplet state decreases with increasing size k and seems to saturate at ~0.36 eV in the thermodynamic limit. The lowest optical gap in DPA-4 is at 1.94 eV and has large transition dipoles, while for DPA-k, 4 < k ≥ 28, we have not been able to access states with large transition dipoles. The weak low-energy excitations seem to saturate at 0.5 eV and the two-photon gap also seems to be saturating at~ 0.3 eV in the thermodynamic limit. These polymers will not be IR uorescent by Kasha rule. The dominant component of the THG coefficient, γxxxx, is highest for DPA-4 which reduces almost by an order of magnitude in DPA-8; for k > 8 it increases up to the largest system with k=20 for which we have computed the coe cient. The variation of the charge gap of DPA oligomer with the increase in system size is small and in the polymer limit the charge gap is 4:24 eV. For IDPL molecule spin gap is 0.20 eV and next excited triplet state is at 1.48 eV. Two lowest singlet states in B space are nearly degenerate and have large transition dipole moments. Optical gaps to the above states are 2.20 eV and 2.22 eV. Two-photon gap in this system is 1.29 eV, hence this system is also non- uorescent. We calculated the dispersion of the major component of the THG coefficient, γxxxx, over a wide frequency range for this molecule, and we observe resonances corresponding to the 21Ag and 11Bu states. Extrapolated value of γxxxx at zero frequency is 15:58 x 106 a.u which is very large and the system does not have any donor or acceptor substituent groups. In chapter 5, we study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs). We nd that in the 4n+2 EPs there are two prominent low-lying one-photon excitations while in 4n systems there is only one such excitation. The two-photon gaps in both these types of systems are at energies close to the one-photon excitations. The spin gap in 4n+2 EPs are very small although the spin-1/2 Heisenberg calculations show that a pure spin system in this geometry will not have vanishing spin-gap. The charge density rearrangement in the one-photon excited state is most at the aza nitrogen site and at the meso carbon sites. In the two-photon states also the charge density rearrangement occurs mostly at the aza-ring sites. The bond order changes in these states is much more striking. In the one-photon state, the C-C bond length in the aza rings show a tendency to become uniform. Similar qualitative trend is also observed for the two-photon state. In chapter 6, we study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail con gurations (HtT), at different stacking angles, exactly within the PPP model. Varying the stacking angle between polyenes, we nd that the optical gap varies slightly, but transition dipoles show large variation. The dominant component of first-order hyperpolarizability, βxxx for HtH and βyyy for HtT arrangement strongly depend on the distance between molecules. The βxxx for HtH configuration shows a maximum at a nonzero stacking angle, which varies with inter polyene distance. ZINDO study on two monomers, (4-hydroxy-40-nitro-azobenzene) connected by a conjugated bridge shows that βav is more than twice the monomer value and with a red-shift in the optical gap. In chapter 7, we have calculated the shifts in optical gaps and band edges as a function of the distance between two monomers within a correlated PPP model Hamiltonian for various stacking geometries. We have used as model monomers, both unsubstituted polyenes and push-pull substituted polyenes. We have carried out calculations with and without inter-chain hopping between sites on different molecules. We note that in the absence of inter-chain hopping, the energy level shifts are almost independent of the distances between the chains in all stacking geometries. It is also interesting to note that only electron-electron interactions yield a blue shift in the optical gaps for parallel stacking, but red shift in the gap for all other stacking geometries. We note that most of the shift in the gap is due to shifts in the excited state energy and the ground-state energy remains almost the same. With interchain transfer the shift in the optical gap increases with decrease in the interchain distance. We observe red-shifts in parallel stacking geometry when inter-chain electron hopping is turned on, at small interchain separations. In general interchain hopping increases significantly the red shift in the optical gaps for all geometries. Even for push-pull polyenes of | e| =2.0 eV, we observe the same trend in the shift in the optical gap for various stacking geometries. In this case the shift in optical gap is an order of magnitude higher when interchain hopping is turned on compared to that in the absence of interchain hopping. We find that the optical gap shifts are largest for the parallel stacking geometry, and it also shows stronger distance dependence. This is in close conformity with experimental observation of red-shift in absorption maxima when hydrostatic pressure is applied on the system. The shift in the HOMO (LUMO) level is small in the absence of t?, and the largest shift is in the case of parallel stacking compared to other stacking geometries. The distance dependence of the HOMO shifts is also rather weak. When t? is turned on, the level shifts become large by a factor of five or more. When we have push-pull groups electron-hole symmetry is broken and the shift is different for the HOMO and the LUMO level. Depending upon stacking geometry, the HOMO shifts vary from 0:1 ~ eV to 0.3 eV, which is larger than the shifts observed in unsubstituted polyenes. This large shift in the LUMO reduces the efficiency of exciton dissociation.
6

Molécules conjuguées pour le photovoltaïque organique : impact de la rigidification sur les propriétés des matériaux / Conjugated molecules for organic photovoltaics : Effect of the rigidification on material properties

Baert, François 02 October 2015 (has links)
Le développement du photovoltaïque organique(OPV), passe à la fois par des progrès technologiques et par l’élaboration de nouveaux matériaux photoactifs. Au sein des dispositifs se trouvent en général deux types de semi-conducteurs organiques, l’un accepteur d’électrons,l’autre donneur.Au cours de ce travail, différentes stratégies de rigidification par pontage covalent ont été appliquées à trois familles de donneurs moléculaires afin d’en étudier l’impact sur leurs propriétés électroniques. Dans un premier temps, deux séries de dérivés pontés du quaterthiophène substitué en positions terminales par des groupements dicyanovinyles ont été synthétisées. La présence d’un pont méthylène au niveau du bithiophène central induit un décalage du spectre d’absorption vers les faibles énergies en élevant le niveau HOMO de la molécule. Leur potentiel comme matériaux donneurs a, par la suite, été évalué au sein de dispositifs solaires. Ainsi, selon la longueur des chaînes alkyles introduites sur le pont, des rendements de photoconversion de 2% à 3,4% sont atteints en cellules bicouches. Puis, dans un second temps, l’utilisation de l’hétérocycle rigide thiéno[2,3-b]indole a permis de concevoir la plus petite molécule push-pull à atteindre 1%d’efficacité. Un rendement de 3,1% est obtenu lorsque le système conjugué est étendu d’une unité thiophène. Enfin, un donneur moléculaire construit autour d’un dithién-2-yldicyanoéthylène ponté, fonctionnalisé en périphérie par des unités triphénylamine, conduit à des cellules moins performantes (0,3%) que son homologue non ponté (1,1%). / The development of the so-called organic photovoltaics (OPVs) still requires technological as well as chemical advances through the elaboration of new photoactive materials. Active layer of devices is typically composed of two organic semiconductors, one electron-acceptor and one electron-donor respectively. During this work, rigidification by covalent bridging was applied to three different kinds of molecular donors to assess its impact on the materials electronic properties. First, two series of covalently bridged dicyanovinyl(DCV) end-capped quaterthiophene derivatives have been synthesized. A methylene bridge on the central bithiophene unit leads to a significant bathochromic shift of the absorption spectrum associated with a raising of the HOMO level. Their potential as donor material has been evaluated in solar cells. Power conversion efficiencies ranging from 2% to 3.4% can be achieved in bilayers structures according to the length of the alkyl chains introduced on the bridged bithiophene moiety. Then, the use of a rigid thieno[2,3-b]indoleheterocycle allowed us to design, synthesize and characterize the smallest push-pull molecule able to reach 1% efficiency. It is worth noting that extending the conjugation length of this molecule by adding one thiophene unit leads to an increase of the efficiency up to 3.1%. Finally, a molecular donor built from a bridged dithienyldicyanoethylene core functionalized at both sides by a triphenylamine unit was studied and led to less efficient OPV cells (0.3%) than its unbridged counterpart (1.1%).
7

Phosphole and phosphepine-based π-systems : synthesis, reactivity and physical properties / Systèmes π-conjugués contenant des cycles phospholes et phosphépines : synthèse, réactivité et propriétés physiques

Mocanu, Olivia 20 December 2017 (has links)
Ce manuscrit décrit la synthèse et les caractérisations physico-chimiques de nouveaux systèmes hétérocycliques π-conjugués contenant un atome de phosphore. Le chapitre d'introduction présente les différentes voies de synthèse du cycle phospholes pouvant être incorporé dans des systèmes π-conjugués. Le chapitre I décrit la synthèse et les propriétés physico-chimiques de dérivés du pyrène contenant soit un phosphole, soit un silole. La synthèse de ces nouvelles structures a été réalisée à l'aide de réactions métallo-catalysées. Deux types de régioisomères ont ainsi été synthétisés afin de déterminer l'impact de la nature de l'hétéroatome (P ou Si) sur leurs propriétés optiques et électrochimiques et sur l'organisation des molécules à l'état solide. Le chapitre II décrit la synthèse et les propriétés physico-chimiques de nouveaux complexes d'Ir(III) ortho-métallés contenant un ligand phosphole. La présence de deux centres stéréogènes induit la formation de diastéréoisomères, dont la formation peut être contrôlée par les conditions réactionnelles. De plus, les propriétés électroniques du ligand phosphole permettent de moduler à façon les propriétés redox et optiques du complexe. Le chapitre III se focalise sur l'utilisation de la phosphépine comme sous-unité pour la construction de nouveaux systèmes π-conjugués. Deux systèmes π-conjugués ont été synthétisés : un squelette de PAH contenant la phosphépine et les dithieno-phosphépines. Les propriétés optiques et redox de ces dérivés ont été étudiées et discutées dans le manuscrit. / This manuscript describes the synthesis and characterisation of new heterocyclic π-conjugated systems built around the phosphorus atom. Firstly, an introduction to the phosphole chemistry (synthesis methods and integration into π-conjugated systems) is presented. The chapter I describes the synthesis and physico-chemical properties of pyrene functionalised either by a phosphole or silole ring. The synthesis of these new structures was achieved by using a transition-metal catalysis. Two types of regioisomers were synthesised in order to study the effect of the heteroatom (P or Si) on the optical and electrochemical properties together with the impact on the solid-state organisation. The chapter II describes the synthesis and the physical properties of the first phosphole-based Ir(III) ortho-metallated complexes. The presence of two stereogenic centres in the complex induced diastereoselectivity issues that could be solved by carefully choosing the reaction conditions. Furthermore, it was demonstrated that the nature of the ligands can tune the optical and the redox properties. The chapter III describes the use of P-containing seven-membered rings (phosphepines) for the development of new π-conjugated systems. Two original π-systems have been synthesised and studied: (i) phosphepine based PAH and (ii) dithieno-phosphepines. The optical and redox properties have been investigated and discussed in the manuscript.
8

Incorporation des principes de la chimie verte dans la synthèse de semi-conducteurs organiques / Incorporation of the green chemistry principles in the synthesis of organic semiconductors

Faurie, Alexandre 06 November 2015 (has links)
Les travaux réalisés aux cours de cette thèse ont pour but de proposer une alternative verte à la synthèse de nouveaux systèmes conjugués linéaires pour des applications en électronique plastique. La première partie sera consacrée à l’élaboration de systèmes conjugués de type D-A par une combinaison de réactions vertes : substitution nucléophile aromatique et condensation de Knoevenagel réalisées,respectivement, dans l’eau et l’éthanol. De plus, une nouvelle méthodologie sera explorée pour rendre le couplage de Stille plus éco-compatible : l’utilisation de réactifs stannylés supportés sur liquide ionique ou billes de polymère. Par cette nouvelle approche, de nouvelles structures moléculaires ont été synthétisées et ont aussi montré leur efficacité comme matériau donneur pour cellules solaires organiques.La deuxième partie s’intéressera aux relations entre structure, organisation à l’état solide et luminescence des distyrylfuranes, lorsque les substituants aromatiques latéraux varient. Le coeur furane est produit à partir de la biomasse, et les substituants sont insérés par condensation de Knoevenagel. Une étude similaire sera mise en place pour deux dérivés de benzodifurane,qui seront en plus testés en tant que matériau donneur. / This work stands for an alternative and green synthesis of new linear conjugated systems that will serve for applications in organic electronics.The first part is devoted to the design and synthesis of D-A-type conjugated systems by a combination of green reactions: nucleophilic aromatic substitution and Knoevenagel condensation, which are performed in water and ethanol, respectively. Also, a green methodology will be applied to the Stille cross-coupling by using ionic liquid, or polymer,-supported reagents. By this new approach, efficient donor materials for solar cells have been produced.The second part will focus on the relationships between the structure, the solid state organization and the luminescence of distyrylfurans with the variation of thearomatic substituants. The center of the molecule, a furan, is produced from biomass, and the aromatic substituants are incorporated by Knoevenagel condensation. A similar study will be performed on two benzodifuran derivatives, which will be also tested for solar cell applications.
9

Theoretical Studies Of Electronic And Optical Properties Of Some Heteroconjugated Systems

Jha, Prakash Chandra 08 1900 (has links) (PDF)
No description available.
10

Development of Functional Organic Materials with an Intramolecular B-N Coordination Bond as a Key Scaffold / 分子内B-N配位結合を鍵骨格にもつ機能性有機材料の開発

Shimogawa, Hiroyuki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20394号 / 工博第4331号 / 新制||工||1671(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 村田 靖次郎, 教授 辻 康之, 教授 中村 正治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0567 seconds