• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Studies of the <i>Arabidopsis thaliana</i> Ubc13-Uev Complex

Wen, Rui 20 September 2010
Ubiquitination is an important biochemical reaction found in all eukaryotic organisms and is involved in a wide range of cellular processes. Conventional ubiquitination requires the formation of polyubiquitin chains linked through Lys48 of the ubiquitin, which targets proteins for degradation, while the noncanonical Lys63-linked polyubiquitination of the proliferating cell nuclear antigen is required for error-free DNA damage tolerance (DDT or postreplication repair) in yeast. The ubiquitin-conjugating enzyme <i>Ubc13</i> and a cognate Ubc enzyme variant (Uev or Mms2) are involved in this process. Because there is less information available on either Lys63-linked ubiquitination or error-free DDT in plants, the goal of my research was to study the functions of <i>Ubc13</i> and Uev in plants using <i>Arabidopsis thaliana</i> as the model organism.<p> Four <i>UEV1</i> genes from <i>Arabidopsis thaliana</i> were isolated and characterized. All four <i>Uev1</i> proteins can form a stable complex with AtUbc13 and can promote <i>Ubc13</i> mediated Lys63 polyubiquitination. All four <i>UEV1</i> genes can replace yeast MMS2 in DDT function in vivo. Although these genes are ubiquitously expressed in most tissues, <i>UEV1D</i> appears to be expressed at a much higher level in germinating seeds and pollen. We obtained and characterized two <i>uev1d</i> null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Seeds that germinated grew slow and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage agent. These results indicate that <i>Ubc13-Uev</i> complex functions in DNA damage response in <i>Arabidopsis thaliana.</i> <i>Arabidopsis thaliana</i> contains two <i>UBC13</i> genes, AtUBC13A and AtUBC13B, that are highly conserved with respect to DNA sequence, protein sequence and genomic organization, suggesting that they are derived from a recent gene duplication event. Both <i>AtUbc13</i> proteins are able to physically interact with human and yeast Mms2, implying that plants also employ a Lys63-linked polyubiquitination reaction. Furthermore, Both <i>AtUBC13</i> genes were able to functionally complement the yeast ubc13 null mutants, suggesting the existence of an error-free DNA damage tolerance pathway in plants. The <i>AtUBC13</i> genes appear to be expressed ubiquitously and were not induced by various conditions tested.<p> The <i>ubc13a/b</i> double mutant lines were created and displayed strong phenotypic changes. The double mutant plants were delayed in seed germination as well as cotyledon and true leaf development. When seedlings were grown vertically on plates, the roots of the double mutant were shorter and grew in a zig-zag manner, compared to the straight growth of wild type roots. Root length and number of lateral roots on wild type and <i>ubc13a</i> and <i>ubc13b</i> single mutant plants were about 3 times longer than those of double mutant plants after 9 and 12 days of growth. When double mutant seeds were sown directly into soil, many did not germinate and those that germinated grew much slower than wild type. At 35 days, double mutant plants were smaller with thinner, flatter, and lighter coloured rosette leaves compared to wild type plants. These phenotypes indicate that <i>AtUbc13</i> not only plays a role in DDT to protect genome integrity but also is involved in plant development. Hence, this study set a cornerstone for future investigations into the roles of <i>Ubc13</i> and <i>Uev1</i> in plant development.
2

Functional Studies of the <i>Arabidopsis thaliana</i> Ubc13-Uev Complex

Wen, Rui 20 September 2010 (has links)
Ubiquitination is an important biochemical reaction found in all eukaryotic organisms and is involved in a wide range of cellular processes. Conventional ubiquitination requires the formation of polyubiquitin chains linked through Lys48 of the ubiquitin, which targets proteins for degradation, while the noncanonical Lys63-linked polyubiquitination of the proliferating cell nuclear antigen is required for error-free DNA damage tolerance (DDT or postreplication repair) in yeast. The ubiquitin-conjugating enzyme <i>Ubc13</i> and a cognate Ubc enzyme variant (Uev or Mms2) are involved in this process. Because there is less information available on either Lys63-linked ubiquitination or error-free DDT in plants, the goal of my research was to study the functions of <i>Ubc13</i> and Uev in plants using <i>Arabidopsis thaliana</i> as the model organism.<p> Four <i>UEV1</i> genes from <i>Arabidopsis thaliana</i> were isolated and characterized. All four <i>Uev1</i> proteins can form a stable complex with AtUbc13 and can promote <i>Ubc13</i> mediated Lys63 polyubiquitination. All four <i>UEV1</i> genes can replace yeast MMS2 in DDT function in vivo. Although these genes are ubiquitously expressed in most tissues, <i>UEV1D</i> appears to be expressed at a much higher level in germinating seeds and pollen. We obtained and characterized two <i>uev1d</i> null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Seeds that germinated grew slow and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage agent. These results indicate that <i>Ubc13-Uev</i> complex functions in DNA damage response in <i>Arabidopsis thaliana.</i> <i>Arabidopsis thaliana</i> contains two <i>UBC13</i> genes, AtUBC13A and AtUBC13B, that are highly conserved with respect to DNA sequence, protein sequence and genomic organization, suggesting that they are derived from a recent gene duplication event. Both <i>AtUbc13</i> proteins are able to physically interact with human and yeast Mms2, implying that plants also employ a Lys63-linked polyubiquitination reaction. Furthermore, Both <i>AtUBC13</i> genes were able to functionally complement the yeast ubc13 null mutants, suggesting the existence of an error-free DNA damage tolerance pathway in plants. The <i>AtUBC13</i> genes appear to be expressed ubiquitously and were not induced by various conditions tested.<p> The <i>ubc13a/b</i> double mutant lines were created and displayed strong phenotypic changes. The double mutant plants were delayed in seed germination as well as cotyledon and true leaf development. When seedlings were grown vertically on plates, the roots of the double mutant were shorter and grew in a zig-zag manner, compared to the straight growth of wild type roots. Root length and number of lateral roots on wild type and <i>ubc13a</i> and <i>ubc13b</i> single mutant plants were about 3 times longer than those of double mutant plants after 9 and 12 days of growth. When double mutant seeds were sown directly into soil, many did not germinate and those that germinated grew much slower than wild type. At 35 days, double mutant plants were smaller with thinner, flatter, and lighter coloured rosette leaves compared to wild type plants. These phenotypes indicate that <i>AtUbc13</i> not only plays a role in DDT to protect genome integrity but also is involved in plant development. Hence, this study set a cornerstone for future investigations into the roles of <i>Ubc13</i> and <i>Uev1</i> in plant development.
3

O gene UBE2A (Ubiquitin conjugating enzyme 2 A) e a deficiência mental: triagem de mutações e estudos funcionais / UBE2A (Ubiquitin conjugating enzyme 2 A) gene and mental retardation: search for mutations and functional studies

Nascimento, Rafaella Maria Pessutti 06 August 2010 (has links)
Em trabalho anterior, identificamos a mutação c.382C8594;T no gene UBE2A, localizado em Xq24 e codificador de enzima conjugadora de ubiquitina, como causa de nova síndrome de deficiência mental (DM) de herança ligada ao cromossomo X. Foi a primeira descrição de mutação nesse gene e a primeira associação de mutação em gene que codifica conjugase de ubiquitina com patologia humana. Neste trabalho, focalizamos o gene UBE2A quanto a expressão dos transcritos alternativos, função das isoformas por eles codificadas e o efeito da mutação c.382C 8594; T como causa de deficiência mental (DM). No Capítulo I, revisamos os aspectos genéticos da DM, dando ênfase à herança ligada ao cromossomo X, principal causa de DM herdada e resumimos o estudo que levou à identificação da mutação em UBE2A como causa de quadro sindrômico de DM. Revisamos o papel da via de ubiquitinação de proteínas e das enzimas que participam do processo, em especial as conjugases de ubiquitina. Levantamos evidências na literatura que não deixam dúvida sobre a importância da via de ubiquitinação no sistema nervoso, tanto em processos de neurodesenvolvimento como neurodegeneração. No Capítulo II, avaliamos a contribuição de mutações em UBE2A como causa de DM. Apresentamos os resultados do sequenciamento direto da região codificadora do gene UBE2A em afetados de 23 famílias em que a DM segrega ligada à segmento que inclui Xq24, onde está localizado o gene UBE2A. Uma dessas famílias foi averiguada no Serviço de Aconselhamento Genético do Laboratório de Genética Humana do Departamento de Genética e Biologia Evolutiva, Instituto de Biociência, USP (LGH-IB/USP), coordenado pelo Dr. Paulo A. Otto e pela Dra. Angela Vianna Morgante. As demais 22 famílias pertencem ao banco de amostras do Consórcio Europeu de Deficiência Mental (European Mental Retardation Consortium EURO-MRX). A triagem foi também realizada em um indivíduo afetado por DM sindrômica que compartilha características clínicas com nossos pacientes. Como acontece com a maioria dos genes do cromossomo X, o gene UBE2A não parece ser responsável por parcela significativa dos casos de DM, já que novas mutações em UBE2A não foram detectadas nessa triagem. Avaliamos o efeito da mutação c.382C 8594; T nos níveis da transcrição e da tradução em homem afetado e em mulher portadora. A presença da mutação que leva a um códon de parada prematura não resultou na degradação do RNA, que detectamos nas células do afetado. Já na mulher portadora, apenas o transcrito normal foi detectado, de acordo com nossos dados anteriores que mostraram desvio completo no padrão de inativação do cromossomo X nas portadoras da mutação, tendo um mesmo cromossomo X ativo nas células do sangue. A vantagem proliferativa das células em que o cromossomo X com alelo mutado estava inativo deve ter levado a esse padrão de inativação desviado do casual, evidenciando o efeito deletério da mutação. Entretanto, o mecanismo pelo qual a mutação afeta a via de UBE2A permanece interrogado. A proteína UBE2A alterada foi encontrada em baixa quantidade nas células do paciente, o que pode ser o resultado de síntese prejudicada ou de degradação pós-traducão. Independente do mecanismo responsável, o fato de apenas uma pequena quantidade da proteína mutada ter sido encontrada, nos permite afirmar que, nas células desses indivíduos, há perda de função de UBE2A. Devemos, contudo, considerar que a proteína mutada é sintetizada e que, no caso de a menor quantidade dever-se à degradação pós-tradução, esse processo pode prejudicar a homeostase celular e contribuir para o quadro clínico. O capítulo II focaliza os transcritos alternativos de UBE2A. Diversos bancos de dados apontam para a existência de três transcritos alternativos do gene UBE2A humano, mas não há trabalho científico que caracterize os tecidos em que os transcritos são expressos ou a função das proteínas por eles codificadas. A mutação c.382C 8594; T localiza-se no éxon 6 do gene, comum a todos os transcritos, de forma que, no caso de eles codificarem proteínas funcionais, a mutação comprometeria três proteínas, e não apenas uma. Demonstramos que os três transcritos de UBE2A são xpressos em leucócitos, pré-adipócitos, placenta, córtex cerebral e hipocampo humanos. Detectamos também os três transcritos nas células de sangue e pré-adipócitos de um de nossos pacientes portador da mutação c.382C 8594; T. Embora os bancos de dados apontem para a existência de apenas um transcrito de UBE2A em camundongos, identificamos um transcrito alternativo correspondente ao transcrito alternativo 3 humano. Este foi detectado inclusive em camundongos nocaute quanto ao gene UBE2A o processo de geração do animal nocaute foi realizado por recombinação homóloga em que o cassete de neomicina foi inserido no éxon 1 do gene, de maneira que não eliminou a existência do transcrito correspondente ao transcrito 3 humano, que utiliza uma 5 UTR alternativa localizada no íntron 3. Entretanto, as proteínas codificadas pelos transcritos alternativos não foram detectadas nos extratos protéicos analisados humanos e de camundongo. Esse resultado poderia ser explicado pela falta de especificidade do anticorpo utilizado ou por essas isoformas representarem pequena parcela do pool de proteínas da célula. Os anticorpos comerciais anti-RAD6 e anti-HR6A/HR6B foram produzidos após imunização de coelhos com a porção N-terminal da isoforma 1. Seria, portanto, possível que não fossem capazes de detectar as isoformas 2 e 3, em que o segmento utilizado para a produção dos anticorpos está total ou parcialmente ausente. No caso de as proteínas estarem pouco representadas na célula, experimentos de co-imunoprecipitação auxiliariam na identificação dessas isoformas nos extratos protéicos. Entretanto, para a detecção de todas as isoformas de UBE2A seria necessário anticorpo que reconhecesse a porção C-terminal de UBE2A. Em 2009, duas novas mutações em UBE2A foram descritas em estudo colaborativo realizado no Welcome Trust Sanger Institute, Hinxton, Cambridge, Reino Unido, após sequenciamento em larga escala de aproximadamente 700 genes do cromossomo X de cerca de 200 indivíduos com DM de herança ligada ao X. Ambas as mutações c.215C 8594; T e c.328C 8594; G eram do tipo missense. Não foram fornecidas informações quanto ao quadro clínico dos portadores dessas mutações e também não foi esclarecido porque apenas a alteração c.215C 8594; T que resulta na troca do resíduo de fenilalanina da posição 72 por um resíduo de serina (F72S) foi considerada pelos autores como possivelmente patogênica. Nossos estudos in vitro, apresentados no Capítulo III, sugerem que ambas as alterações afetam a função de UBE2A. Em 2010, foram publicados dois trabalhos associando novas alterações em UBE2A a quadro de DM. Honda e col. (2010) descreveram uma microdeleção em Xq24 que inclui UBE2A e outros oito genes, em um menino com DM e características também presentes em nossos pacientes. Budny e col. (2010) descreveram mutações missense em UBE2A em duas famílias em que segregava quadro de DM sindrômica semelhante ao de nossos pacientes. Por comunicação pessoal de Arjan de Brouwer (Departamento de Genética Humana da Universidade Radboud, Nijmegen, Holanda), soubemos da existência de três outras microdeleções de segmentos do cromossomo X que incluem UBE2A, em pacientes do sexo masculino, não aparentados. Comparamos as características clínicas de nossos pacientes com as dos portadores das microdeleções em Xq24 e com aquelas dos portadores de mutações missense em UBE2A. A DM grave e o comprometimento significativo ou ausência de fala são comuns a todos. Outras características como baixa estatura, sinófris, boca grande e lábios finos com comissuras voltadas para baixo, pescoço curto e largo, implantação baixa de cabelos na nuca, mamilos espaçados, pênis pequeno, hirsutismo generalizado e a ocorrência de convulsões parecem predominar. Entretanto, enquanto a microcefalia aparece em dois dos três portadores de microdeleções avaliados, a macrocefalia parece predominar no grupo em que ocorrem as mutações de ponto. No Capítulo III, abordamos estudos funcionais in vivo e in vitro para avaliar se as isoformas alternativas de UBE2A compartilham suas funções de conjugase de ubiquitina e compreender o efeito da mutação c.382C8594;T na função de UBE2A. Buscamos estabelecer modelo celular para avaliar o efeito da mutação na formação de neuritos. Trabalho previamente publicado havia demonstrado que a diferenciação neuronal de células PC12 concomitantemente com a inibição parcial do mRNA de UBE2B (parálogo de UBE2A) resultava na redução de 20-30% do comprimento de neuritos. Entretanto, nossos ensaios de diferenciação de pré-adipócitos não responderam nossas questões sobre o efeito da mutação na formação de neuritos, pois não conseguimos obter, nas células do controle ou nas do paciente, a densidade de neuritos descrita anteriormente na diferenciação de pré-adipócitos. Diferentemente das células PC12, de origem ectodérmica, os pré-adipócitos tem origem mesodérmica, o que dificulta sua diferenciação em linhagem derivada de outro folheto germinativo. A elevada conservação entre as proteínas ortólogas UBE2A e UBE2B humanas e RAD6 de levedura e a observação de que ambas as parálogas humanas são capazes de complementar os fenótipos apresentados pela linhagem 916;rad6 de Saccharomyces cerevisiae nos levou a considerar a linhagem de levedura 916;rad6 como modelo para nossos estudos funcionais. Também, avaliamos a capacidade das isoformas 2 e 3 e da isoforma Q128X de UBE2A para ubiquitinar histonas H2A in vitro, conforme previamente descrito para a isoforma UBE2A/1. Os resultados dos ensaios in vivo indicam que apenas a expressão do transcito 1 de UBE2A é capaz de complementar os fenótipos apresentados pela linhagem 916;rad6 de S. cerevisiae. A expressão dos transcritos 2 ou 3 não resulta na restituição do fenótipo de sensibilidade à UV - a expressão gera certa toxicidade, agravada quando as células são cultivadas a 37o C. Entretanto, as isoformas por eles codificadas não parecem ser estáveis na levedura: assim como nos tecidos humanos testados, não conseguimos detectá-las nos extratos protéicos das leveduras que expressavam esses transcritos. A expressão do transcrito 1 contendo a mutação c.382CT revelou que a isoforma UBE2A/Q128X, por sua vez, é estável na linhagem 916;rad6, porém, além de não restituir o fenótipo de sensibilidade à UV, foi, dentre as isoformas de UBE2A, a mais tóxica. Os fenótipos de toxicidade não foram observados após expressão em linhagem selvagem de S. cerevisiae. Esses resultados indicam que as isoformas 2 e 3 de UBE2A não apresentam atividade de conjugase de ubiquitina e que são, aparentemente, degradadas imediatamente após sua expressão em levedura. O fato de o fenótipo de toxicidade ser agravado, em condições de choque térmico, apóia a hipótese de degradação dessas isoformas, em levedura. A degradação pode ser resultado da ausência de parceiro que permita sua estabilidade, mas a ausência das isoformas também em extratos protéicos de tecidos humanos sugere que o mesmo processo de degradação ocorra em mamíferos. Segundo a classificação das E2, as diversas conjugases de ubiquitina têm em comum o domínio UBC altamente conservado e as variações observadas consistem em inserções ou extensões C-terminais, mas nunca deleções, como ocorre nas isoformas 2 e 3 de UBE2A. Os transcritos alternativos teriam, assim, função regulatória. Os ensaios in vitro confirmaram a capacidade de UBE2A/1 ubiquitinar histonas H2A. Os ensaios com UBE2A/2 e UBE2A/3 não foram conclusivos, uma vez que a incapacidade de ubiquitinação de histonas que observamos pode ter consequência da renaturação in vitro, que pode ter ocorrido prejudicando sua função. Entretanto a obtenção das isoformas puras nos permitiu verificar que, caso a isoforma 2 estivesse presente nos extratos de levedura, ela seria reconhecida pelo anticorpo anti-RAD6. Verificamos que a proteína mutada UBE2A/Q128X é capaz de interagir com a E1, da qual recebe a molécula de ubiquitina, mas não é capaz de transferi-la para a histona. O segmento C-terminal ausente nessa isoforma é, portanto, importante nesse processo. Os ensaios in vitro despertaram nossa atenção para o fenômeno de autoubiquitinação de UBE2A, possível mecanismo de autorregulação previamente considerado na literatura. O fato de alguns trabalhos sugerirem que as E2 atuem também como dímeros in vivo e in vitro e a elevada conservação entre as parálogas humanas UBE2A e UBE2B nos levaram a considerar a possibilidade de mecanismo de regulação recíproca. Dessa maneira, a degradação de UBE2A/Q128X nas células do paciente poderia ser dependente de UBE2B. A reduzida capacidade de autoubiquitinação da isoforma mutada dificultaria sua degradação e tornaria necessária a atividade da paráloga. Isso explicaria porque ela é estável quando expressa na linhagem de levedura 916;rad6, mas não nas células do paciente. A presença de RAD6 estaria diretamente relacionada à ausência de toxicidade após a expressão de UBE2A/Q128X em linhagem selvagem a degradação da isoforma mutada está ocorrendo nessas células. A não viabilidade de camundongo duplo-nocaute quanto as parálogas UBE2A e UBE2B não permite testar a estabilidade da isoforma mutada em células de mamíferos. Observamos, de fato, que a inibição do proteassoma nas células do paciente leva ao acúmulo dessa proteína. A presença da mutação c.382C8594;T nas células do paciente parece resultar no fenótipo de DM devido à perda de função de UBE2A: a isoforma mutada não restitui o fenótipo de sensibilidade à UV de S. cerevisiae e não foi capaz de ubiquitinar histonas H2A in vitro. Além disso, indivíduos com microdeleções de UBE2A apresentam fenótipo semelhante ao de nossos pacientes. Por outro lado, a presença da proteína mutada que necessitaria de UBE2B para ser degradada pode caracterizar um ganho tóxico de função - comprometeria a função de ambas as parálogas. É possível que os dois mecanismos contribuam para o quadro clínico. Os dados dos ensaios in vivo e in vitro abrem caminhos de investigação do processo de regulação de UBE2A e UBE2B no nível da proteína, sugerindo a autoubiquitinação e a ubiquitinaão recíproca como possíveis mecanismos reguladores, que podem explicar a conservação das duas parálogas de RAD6 em mamíferos. / We have previously described a nonsense mutation (c.382C8594;T) in the UBE2A gene, at Xq24, which encodes a ubiquitin conjugating enzyme (E2), as the cause of a new X-linked mental retardation syndrome. The predicted protein lacks the 25 C-terminal amino acid residues conserved in vertebrates and in Drosophila. This was the first description of a mutation in a ubiquitin conjugating enzyme gene causative of a human disease. In the present work, we focused on the UBE2A gene, its alternative transcripts and isoforms, and the effect of the c.382C8594;T mutation. We screened for UBE2A mutations 23 males presenting X-linked mental retardation (XLMR), previously mapped to the interval encompassing this gene, and one isolated case, who shared clinical features with our previously described patients. No mutations were detected in this selected series of patients suggesting that mutations in UBE2A is not a common cause of XLMR, similarly to the majority of the XLMR genes hereto described. Very recently four Xq24 microdeletions encompassing UBE2A and three missence mutations were found by other groups in mentally retarded males that shared several clinical features with our patients. Comparing these and our patients, a clinical picture emerges of mental retardation associated with severe speech impairment, present in all of them. Short stature, large mouth with downturned corners and thin lips, short and broad neck, low posterior hairline, widely spaced nipples, marked generalized hirsutism and seizures are common features. However, microcephaly was observed only in patients carrying UBE2A deletions, while carriers of missense or nonsense mutations showed macrocephaly. We evaluated the effect of the UBE2A c.382C8594;T mutation on transcription and translation. This mutation affects the last UBE2A exon and, as expected, does not lead to nonsense mediated RNA decay, demonstrated by the presence of UBE2A mRNA in leucocytes of an affected male. However, only a small amount of the mutated protein was detected in the patients cells, suggesting the loss of UBE2A function as the cause of the syndrome. The posttranslational degradation of the mutated protein could also disturb the cellular homeostasis, a gain of function that remained a possibility. The detrimental effect of the c.382C8594;T mutation was further supported by the presence of only the normal transcript in leucocytes of a heterozygous woman, who had completely skewed X inactivation, thus pointing to the selective advantage of lymphocytes carrying the normal allele on the active X chromosome. Our search in DNA and protein sequence databases suggested that the UBE2A gene produces three alternative transcripts all classified as protein coding. These three tanscripts contain the mutation site (c.382C8594;T). We showed that all three UBE2A transcripts are expressed in human leucocytes, adipocytes, placenta, cerebral cortex and hippocampus. We also detected an alternative transcript in murine, which corresponds to the human transcript 3. This alternative transcript was present in all murine tissues analyzed, including samples from a UBE2A knockout mouse. However, we failed to detect the proteins encoded by the alternative transcripts. This could result from low affinity of the used commercial antibody to the isoforms. Alternatively, a small amount of these proteins in the pool of cellular proteins, might have not been detected by Western blotting. We performed in vivo and in vitro assays to address the role of the alternative UBE2A isoforms, and to evaluate the effect of c.382C-T mutation on UBE2A function. Taking into account the high amino acid conservation between the human UBE2A and the Saccharomyces cerevisiae ortholog RAD6, we used a 916;rad6 yeast strain to verify whether UBE2A alternative and mutated isoforms were able to complement its UV-sensitivity phenotype, as previously demosntrated for UBE2A isoform 1. We also performed in vitro assays to evaluate their ubiquitination activity towards histone H2A, a known in vitro substrate of RAD6 and UBE2A. Only UBE2A isoform 1 could rescue the UV sensitivity phenotype of the knockout yeast strain. The expression of the alternative isoforms 2 and 3 was partially toxic to this yeast strain, and toxicity increased under heat shock conditions. However, these two isoforms do not seem to be stable in yeast cells: as in human tissues, we failed to detect UBE2A isoforms 2 and 3 in yeast cells expressing the corresponding transcripts. The mutant isoform was stable in yeast, but was unable to rescue the UV-sensitivity phenotype, its expression resulting in severe toxicity to the 916;rad6 strain. On the other hand, toxicity was not observed when the mutant UBE2A isoform was expressed in wild type yeast. These findings suggest that isoforms 2 and 3 do not have ubiquitin conjugating activity and, apparently, are degraded immediately after translation. The fact that toxicity is enhanced when these isoforms are expressed under heat shock conditions supports Degradation hypothesis. The degradation could also be due to the absence of a functional partner, in yeast, that could contribute to their stability. Since the alternative isoforms were not detected in the human tissues analyzed, the degradation might occur in human cells as well. E2 enzymes share a catalytic domain and variations among them consist of insertions or terminal extensions, never deletions. Both isoforms 2 and 3 would have deletions of the catalytic domain, suggesting that they are not functional. A regulatory role for these transcripts is a possibility. Our in vitro assays confirmed that UBE2A isoform 1 is capable of histone H2A ubiquitination. The assays for isoforms 2 and 3 were inconclusive, since their lack of ubiquitin conjugating activity could be caused by incorrect in vitro refolding, required because the proteins were obtained from bacterial inclusion bodies after heterologous expression. The mutated protein, however, was able to interact with the ubiquitin molecule, but failed to transfer it to histones, thus pointing to the importance of the C-terminal segment in this process. Our in vitro assays stongly suggested that UBE2A autoubiquitination occur, an activity previously considered a possible E2 regulatory mechanism. Since there is evidence that some E2s form functional dimers, we hypothesized that, due to their high amino acid conservation, UBE2A and its paralog UBE2B might form heterodimers in vivo, as a mutual regulating mechanism. Under this hypothesis, the degradation of the mutated protein could be UBE2B dependent. The reduced autoubiquitination capacity of the mutated isoform could impair its degradation, and require the participation or the paralog. This would explain why the mutated protein was stable in the 916;rad6 yeast strain, but not in the patient´s cells with a functional UBE2B. Following the same reasoning, in wild type yeast, the presence of RAD6 would explain the absence of the mutated protein and toxicity. The non-viability of the double (UBE2A and UBE2B) knockout cells prevented testing whether the mutated protein was stable in the absence of its paralog. However, proteasome inhibition in cultured cells from one of our patients resulted in accumulation of the mutated protein, confirming its degradion via the ubiquitin-proteasome pathway. In conclusion, the UBE2A c.382C8594;T mutation seems to lead to mental retardation in our patients due to loss of UBE2A function: the mutated isoform is unable to rescue the UV-sensitivity phenotype of 916;rad6 yeast or to ubiquitinate histones in vitro. In addition, patients carrying UBE2A deletions share clinical manifestations with our patients. On the other hand, the possibility remains of a clinical effect of the requirement of UBE2B for degrading the mutated UBE2A. Our data suggest reciprocal ubiquitination in addition to autoubiquitination as UBE2A and UBE2B regulatory mechanism that would explain the conservation of the two paralog genes in mammals.
4

O gene UBE2A (Ubiquitin conjugating enzyme 2 A) e a deficiência mental: triagem de mutações e estudos funcionais / UBE2A (Ubiquitin conjugating enzyme 2 A) gene and mental retardation: search for mutations and functional studies

Rafaella Maria Pessutti Nascimento 06 August 2010 (has links)
Em trabalho anterior, identificamos a mutação c.382C8594;T no gene UBE2A, localizado em Xq24 e codificador de enzima conjugadora de ubiquitina, como causa de nova síndrome de deficiência mental (DM) de herança ligada ao cromossomo X. Foi a primeira descrição de mutação nesse gene e a primeira associação de mutação em gene que codifica conjugase de ubiquitina com patologia humana. Neste trabalho, focalizamos o gene UBE2A quanto a expressão dos transcritos alternativos, função das isoformas por eles codificadas e o efeito da mutação c.382C 8594; T como causa de deficiência mental (DM). No Capítulo I, revisamos os aspectos genéticos da DM, dando ênfase à herança ligada ao cromossomo X, principal causa de DM herdada e resumimos o estudo que levou à identificação da mutação em UBE2A como causa de quadro sindrômico de DM. Revisamos o papel da via de ubiquitinação de proteínas e das enzimas que participam do processo, em especial as conjugases de ubiquitina. Levantamos evidências na literatura que não deixam dúvida sobre a importância da via de ubiquitinação no sistema nervoso, tanto em processos de neurodesenvolvimento como neurodegeneração. No Capítulo II, avaliamos a contribuição de mutações em UBE2A como causa de DM. Apresentamos os resultados do sequenciamento direto da região codificadora do gene UBE2A em afetados de 23 famílias em que a DM segrega ligada à segmento que inclui Xq24, onde está localizado o gene UBE2A. Uma dessas famílias foi averiguada no Serviço de Aconselhamento Genético do Laboratório de Genética Humana do Departamento de Genética e Biologia Evolutiva, Instituto de Biociência, USP (LGH-IB/USP), coordenado pelo Dr. Paulo A. Otto e pela Dra. Angela Vianna Morgante. As demais 22 famílias pertencem ao banco de amostras do Consórcio Europeu de Deficiência Mental (European Mental Retardation Consortium EURO-MRX). A triagem foi também realizada em um indivíduo afetado por DM sindrômica que compartilha características clínicas com nossos pacientes. Como acontece com a maioria dos genes do cromossomo X, o gene UBE2A não parece ser responsável por parcela significativa dos casos de DM, já que novas mutações em UBE2A não foram detectadas nessa triagem. Avaliamos o efeito da mutação c.382C 8594; T nos níveis da transcrição e da tradução em homem afetado e em mulher portadora. A presença da mutação que leva a um códon de parada prematura não resultou na degradação do RNA, que detectamos nas células do afetado. Já na mulher portadora, apenas o transcrito normal foi detectado, de acordo com nossos dados anteriores que mostraram desvio completo no padrão de inativação do cromossomo X nas portadoras da mutação, tendo um mesmo cromossomo X ativo nas células do sangue. A vantagem proliferativa das células em que o cromossomo X com alelo mutado estava inativo deve ter levado a esse padrão de inativação desviado do casual, evidenciando o efeito deletério da mutação. Entretanto, o mecanismo pelo qual a mutação afeta a via de UBE2A permanece interrogado. A proteína UBE2A alterada foi encontrada em baixa quantidade nas células do paciente, o que pode ser o resultado de síntese prejudicada ou de degradação pós-traducão. Independente do mecanismo responsável, o fato de apenas uma pequena quantidade da proteína mutada ter sido encontrada, nos permite afirmar que, nas células desses indivíduos, há perda de função de UBE2A. Devemos, contudo, considerar que a proteína mutada é sintetizada e que, no caso de a menor quantidade dever-se à degradação pós-tradução, esse processo pode prejudicar a homeostase celular e contribuir para o quadro clínico. O capítulo II focaliza os transcritos alternativos de UBE2A. Diversos bancos de dados apontam para a existência de três transcritos alternativos do gene UBE2A humano, mas não há trabalho científico que caracterize os tecidos em que os transcritos são expressos ou a função das proteínas por eles codificadas. A mutação c.382C 8594; T localiza-se no éxon 6 do gene, comum a todos os transcritos, de forma que, no caso de eles codificarem proteínas funcionais, a mutação comprometeria três proteínas, e não apenas uma. Demonstramos que os três transcritos de UBE2A são xpressos em leucócitos, pré-adipócitos, placenta, córtex cerebral e hipocampo humanos. Detectamos também os três transcritos nas células de sangue e pré-adipócitos de um de nossos pacientes portador da mutação c.382C 8594; T. Embora os bancos de dados apontem para a existência de apenas um transcrito de UBE2A em camundongos, identificamos um transcrito alternativo correspondente ao transcrito alternativo 3 humano. Este foi detectado inclusive em camundongos nocaute quanto ao gene UBE2A o processo de geração do animal nocaute foi realizado por recombinação homóloga em que o cassete de neomicina foi inserido no éxon 1 do gene, de maneira que não eliminou a existência do transcrito correspondente ao transcrito 3 humano, que utiliza uma 5 UTR alternativa localizada no íntron 3. Entretanto, as proteínas codificadas pelos transcritos alternativos não foram detectadas nos extratos protéicos analisados humanos e de camundongo. Esse resultado poderia ser explicado pela falta de especificidade do anticorpo utilizado ou por essas isoformas representarem pequena parcela do pool de proteínas da célula. Os anticorpos comerciais anti-RAD6 e anti-HR6A/HR6B foram produzidos após imunização de coelhos com a porção N-terminal da isoforma 1. Seria, portanto, possível que não fossem capazes de detectar as isoformas 2 e 3, em que o segmento utilizado para a produção dos anticorpos está total ou parcialmente ausente. No caso de as proteínas estarem pouco representadas na célula, experimentos de co-imunoprecipitação auxiliariam na identificação dessas isoformas nos extratos protéicos. Entretanto, para a detecção de todas as isoformas de UBE2A seria necessário anticorpo que reconhecesse a porção C-terminal de UBE2A. Em 2009, duas novas mutações em UBE2A foram descritas em estudo colaborativo realizado no Welcome Trust Sanger Institute, Hinxton, Cambridge, Reino Unido, após sequenciamento em larga escala de aproximadamente 700 genes do cromossomo X de cerca de 200 indivíduos com DM de herança ligada ao X. Ambas as mutações c.215C 8594; T e c.328C 8594; G eram do tipo missense. Não foram fornecidas informações quanto ao quadro clínico dos portadores dessas mutações e também não foi esclarecido porque apenas a alteração c.215C 8594; T que resulta na troca do resíduo de fenilalanina da posição 72 por um resíduo de serina (F72S) foi considerada pelos autores como possivelmente patogênica. Nossos estudos in vitro, apresentados no Capítulo III, sugerem que ambas as alterações afetam a função de UBE2A. Em 2010, foram publicados dois trabalhos associando novas alterações em UBE2A a quadro de DM. Honda e col. (2010) descreveram uma microdeleção em Xq24 que inclui UBE2A e outros oito genes, em um menino com DM e características também presentes em nossos pacientes. Budny e col. (2010) descreveram mutações missense em UBE2A em duas famílias em que segregava quadro de DM sindrômica semelhante ao de nossos pacientes. Por comunicação pessoal de Arjan de Brouwer (Departamento de Genética Humana da Universidade Radboud, Nijmegen, Holanda), soubemos da existência de três outras microdeleções de segmentos do cromossomo X que incluem UBE2A, em pacientes do sexo masculino, não aparentados. Comparamos as características clínicas de nossos pacientes com as dos portadores das microdeleções em Xq24 e com aquelas dos portadores de mutações missense em UBE2A. A DM grave e o comprometimento significativo ou ausência de fala são comuns a todos. Outras características como baixa estatura, sinófris, boca grande e lábios finos com comissuras voltadas para baixo, pescoço curto e largo, implantação baixa de cabelos na nuca, mamilos espaçados, pênis pequeno, hirsutismo generalizado e a ocorrência de convulsões parecem predominar. Entretanto, enquanto a microcefalia aparece em dois dos três portadores de microdeleções avaliados, a macrocefalia parece predominar no grupo em que ocorrem as mutações de ponto. No Capítulo III, abordamos estudos funcionais in vivo e in vitro para avaliar se as isoformas alternativas de UBE2A compartilham suas funções de conjugase de ubiquitina e compreender o efeito da mutação c.382C8594;T na função de UBE2A. Buscamos estabelecer modelo celular para avaliar o efeito da mutação na formação de neuritos. Trabalho previamente publicado havia demonstrado que a diferenciação neuronal de células PC12 concomitantemente com a inibição parcial do mRNA de UBE2B (parálogo de UBE2A) resultava na redução de 20-30% do comprimento de neuritos. Entretanto, nossos ensaios de diferenciação de pré-adipócitos não responderam nossas questões sobre o efeito da mutação na formação de neuritos, pois não conseguimos obter, nas células do controle ou nas do paciente, a densidade de neuritos descrita anteriormente na diferenciação de pré-adipócitos. Diferentemente das células PC12, de origem ectodérmica, os pré-adipócitos tem origem mesodérmica, o que dificulta sua diferenciação em linhagem derivada de outro folheto germinativo. A elevada conservação entre as proteínas ortólogas UBE2A e UBE2B humanas e RAD6 de levedura e a observação de que ambas as parálogas humanas são capazes de complementar os fenótipos apresentados pela linhagem 916;rad6 de Saccharomyces cerevisiae nos levou a considerar a linhagem de levedura 916;rad6 como modelo para nossos estudos funcionais. Também, avaliamos a capacidade das isoformas 2 e 3 e da isoforma Q128X de UBE2A para ubiquitinar histonas H2A in vitro, conforme previamente descrito para a isoforma UBE2A/1. Os resultados dos ensaios in vivo indicam que apenas a expressão do transcito 1 de UBE2A é capaz de complementar os fenótipos apresentados pela linhagem 916;rad6 de S. cerevisiae. A expressão dos transcritos 2 ou 3 não resulta na restituição do fenótipo de sensibilidade à UV - a expressão gera certa toxicidade, agravada quando as células são cultivadas a 37o C. Entretanto, as isoformas por eles codificadas não parecem ser estáveis na levedura: assim como nos tecidos humanos testados, não conseguimos detectá-las nos extratos protéicos das leveduras que expressavam esses transcritos. A expressão do transcrito 1 contendo a mutação c.382CT revelou que a isoforma UBE2A/Q128X, por sua vez, é estável na linhagem 916;rad6, porém, além de não restituir o fenótipo de sensibilidade à UV, foi, dentre as isoformas de UBE2A, a mais tóxica. Os fenótipos de toxicidade não foram observados após expressão em linhagem selvagem de S. cerevisiae. Esses resultados indicam que as isoformas 2 e 3 de UBE2A não apresentam atividade de conjugase de ubiquitina e que são, aparentemente, degradadas imediatamente após sua expressão em levedura. O fato de o fenótipo de toxicidade ser agravado, em condições de choque térmico, apóia a hipótese de degradação dessas isoformas, em levedura. A degradação pode ser resultado da ausência de parceiro que permita sua estabilidade, mas a ausência das isoformas também em extratos protéicos de tecidos humanos sugere que o mesmo processo de degradação ocorra em mamíferos. Segundo a classificação das E2, as diversas conjugases de ubiquitina têm em comum o domínio UBC altamente conservado e as variações observadas consistem em inserções ou extensões C-terminais, mas nunca deleções, como ocorre nas isoformas 2 e 3 de UBE2A. Os transcritos alternativos teriam, assim, função regulatória. Os ensaios in vitro confirmaram a capacidade de UBE2A/1 ubiquitinar histonas H2A. Os ensaios com UBE2A/2 e UBE2A/3 não foram conclusivos, uma vez que a incapacidade de ubiquitinação de histonas que observamos pode ter consequência da renaturação in vitro, que pode ter ocorrido prejudicando sua função. Entretanto a obtenção das isoformas puras nos permitiu verificar que, caso a isoforma 2 estivesse presente nos extratos de levedura, ela seria reconhecida pelo anticorpo anti-RAD6. Verificamos que a proteína mutada UBE2A/Q128X é capaz de interagir com a E1, da qual recebe a molécula de ubiquitina, mas não é capaz de transferi-la para a histona. O segmento C-terminal ausente nessa isoforma é, portanto, importante nesse processo. Os ensaios in vitro despertaram nossa atenção para o fenômeno de autoubiquitinação de UBE2A, possível mecanismo de autorregulação previamente considerado na literatura. O fato de alguns trabalhos sugerirem que as E2 atuem também como dímeros in vivo e in vitro e a elevada conservação entre as parálogas humanas UBE2A e UBE2B nos levaram a considerar a possibilidade de mecanismo de regulação recíproca. Dessa maneira, a degradação de UBE2A/Q128X nas células do paciente poderia ser dependente de UBE2B. A reduzida capacidade de autoubiquitinação da isoforma mutada dificultaria sua degradação e tornaria necessária a atividade da paráloga. Isso explicaria porque ela é estável quando expressa na linhagem de levedura 916;rad6, mas não nas células do paciente. A presença de RAD6 estaria diretamente relacionada à ausência de toxicidade após a expressão de UBE2A/Q128X em linhagem selvagem a degradação da isoforma mutada está ocorrendo nessas células. A não viabilidade de camundongo duplo-nocaute quanto as parálogas UBE2A e UBE2B não permite testar a estabilidade da isoforma mutada em células de mamíferos. Observamos, de fato, que a inibição do proteassoma nas células do paciente leva ao acúmulo dessa proteína. A presença da mutação c.382C8594;T nas células do paciente parece resultar no fenótipo de DM devido à perda de função de UBE2A: a isoforma mutada não restitui o fenótipo de sensibilidade à UV de S. cerevisiae e não foi capaz de ubiquitinar histonas H2A in vitro. Além disso, indivíduos com microdeleções de UBE2A apresentam fenótipo semelhante ao de nossos pacientes. Por outro lado, a presença da proteína mutada que necessitaria de UBE2B para ser degradada pode caracterizar um ganho tóxico de função - comprometeria a função de ambas as parálogas. É possível que os dois mecanismos contribuam para o quadro clínico. Os dados dos ensaios in vivo e in vitro abrem caminhos de investigação do processo de regulação de UBE2A e UBE2B no nível da proteína, sugerindo a autoubiquitinação e a ubiquitinaão recíproca como possíveis mecanismos reguladores, que podem explicar a conservação das duas parálogas de RAD6 em mamíferos. / We have previously described a nonsense mutation (c.382C8594;T) in the UBE2A gene, at Xq24, which encodes a ubiquitin conjugating enzyme (E2), as the cause of a new X-linked mental retardation syndrome. The predicted protein lacks the 25 C-terminal amino acid residues conserved in vertebrates and in Drosophila. This was the first description of a mutation in a ubiquitin conjugating enzyme gene causative of a human disease. In the present work, we focused on the UBE2A gene, its alternative transcripts and isoforms, and the effect of the c.382C8594;T mutation. We screened for UBE2A mutations 23 males presenting X-linked mental retardation (XLMR), previously mapped to the interval encompassing this gene, and one isolated case, who shared clinical features with our previously described patients. No mutations were detected in this selected series of patients suggesting that mutations in UBE2A is not a common cause of XLMR, similarly to the majority of the XLMR genes hereto described. Very recently four Xq24 microdeletions encompassing UBE2A and three missence mutations were found by other groups in mentally retarded males that shared several clinical features with our patients. Comparing these and our patients, a clinical picture emerges of mental retardation associated with severe speech impairment, present in all of them. Short stature, large mouth with downturned corners and thin lips, short and broad neck, low posterior hairline, widely spaced nipples, marked generalized hirsutism and seizures are common features. However, microcephaly was observed only in patients carrying UBE2A deletions, while carriers of missense or nonsense mutations showed macrocephaly. We evaluated the effect of the UBE2A c.382C8594;T mutation on transcription and translation. This mutation affects the last UBE2A exon and, as expected, does not lead to nonsense mediated RNA decay, demonstrated by the presence of UBE2A mRNA in leucocytes of an affected male. However, only a small amount of the mutated protein was detected in the patients cells, suggesting the loss of UBE2A function as the cause of the syndrome. The posttranslational degradation of the mutated protein could also disturb the cellular homeostasis, a gain of function that remained a possibility. The detrimental effect of the c.382C8594;T mutation was further supported by the presence of only the normal transcript in leucocytes of a heterozygous woman, who had completely skewed X inactivation, thus pointing to the selective advantage of lymphocytes carrying the normal allele on the active X chromosome. Our search in DNA and protein sequence databases suggested that the UBE2A gene produces three alternative transcripts all classified as protein coding. These three tanscripts contain the mutation site (c.382C8594;T). We showed that all three UBE2A transcripts are expressed in human leucocytes, adipocytes, placenta, cerebral cortex and hippocampus. We also detected an alternative transcript in murine, which corresponds to the human transcript 3. This alternative transcript was present in all murine tissues analyzed, including samples from a UBE2A knockout mouse. However, we failed to detect the proteins encoded by the alternative transcripts. This could result from low affinity of the used commercial antibody to the isoforms. Alternatively, a small amount of these proteins in the pool of cellular proteins, might have not been detected by Western blotting. We performed in vivo and in vitro assays to address the role of the alternative UBE2A isoforms, and to evaluate the effect of c.382C-T mutation on UBE2A function. Taking into account the high amino acid conservation between the human UBE2A and the Saccharomyces cerevisiae ortholog RAD6, we used a 916;rad6 yeast strain to verify whether UBE2A alternative and mutated isoforms were able to complement its UV-sensitivity phenotype, as previously demosntrated for UBE2A isoform 1. We also performed in vitro assays to evaluate their ubiquitination activity towards histone H2A, a known in vitro substrate of RAD6 and UBE2A. Only UBE2A isoform 1 could rescue the UV sensitivity phenotype of the knockout yeast strain. The expression of the alternative isoforms 2 and 3 was partially toxic to this yeast strain, and toxicity increased under heat shock conditions. However, these two isoforms do not seem to be stable in yeast cells: as in human tissues, we failed to detect UBE2A isoforms 2 and 3 in yeast cells expressing the corresponding transcripts. The mutant isoform was stable in yeast, but was unable to rescue the UV-sensitivity phenotype, its expression resulting in severe toxicity to the 916;rad6 strain. On the other hand, toxicity was not observed when the mutant UBE2A isoform was expressed in wild type yeast. These findings suggest that isoforms 2 and 3 do not have ubiquitin conjugating activity and, apparently, are degraded immediately after translation. The fact that toxicity is enhanced when these isoforms are expressed under heat shock conditions supports Degradation hypothesis. The degradation could also be due to the absence of a functional partner, in yeast, that could contribute to their stability. Since the alternative isoforms were not detected in the human tissues analyzed, the degradation might occur in human cells as well. E2 enzymes share a catalytic domain and variations among them consist of insertions or terminal extensions, never deletions. Both isoforms 2 and 3 would have deletions of the catalytic domain, suggesting that they are not functional. A regulatory role for these transcripts is a possibility. Our in vitro assays confirmed that UBE2A isoform 1 is capable of histone H2A ubiquitination. The assays for isoforms 2 and 3 were inconclusive, since their lack of ubiquitin conjugating activity could be caused by incorrect in vitro refolding, required because the proteins were obtained from bacterial inclusion bodies after heterologous expression. The mutated protein, however, was able to interact with the ubiquitin molecule, but failed to transfer it to histones, thus pointing to the importance of the C-terminal segment in this process. Our in vitro assays stongly suggested that UBE2A autoubiquitination occur, an activity previously considered a possible E2 regulatory mechanism. Since there is evidence that some E2s form functional dimers, we hypothesized that, due to their high amino acid conservation, UBE2A and its paralog UBE2B might form heterodimers in vivo, as a mutual regulating mechanism. Under this hypothesis, the degradation of the mutated protein could be UBE2B dependent. The reduced autoubiquitination capacity of the mutated isoform could impair its degradation, and require the participation or the paralog. This would explain why the mutated protein was stable in the 916;rad6 yeast strain, but not in the patient´s cells with a functional UBE2B. Following the same reasoning, in wild type yeast, the presence of RAD6 would explain the absence of the mutated protein and toxicity. The non-viability of the double (UBE2A and UBE2B) knockout cells prevented testing whether the mutated protein was stable in the absence of its paralog. However, proteasome inhibition in cultured cells from one of our patients resulted in accumulation of the mutated protein, confirming its degradion via the ubiquitin-proteasome pathway. In conclusion, the UBE2A c.382C8594;T mutation seems to lead to mental retardation in our patients due to loss of UBE2A function: the mutated isoform is unable to rescue the UV-sensitivity phenotype of 916;rad6 yeast or to ubiquitinate histones in vitro. In addition, patients carrying UBE2A deletions share clinical manifestations with our patients. On the other hand, the possibility remains of a clinical effect of the requirement of UBE2B for degrading the mutated UBE2A. Our data suggest reciprocal ubiquitination in addition to autoubiquitination as UBE2A and UBE2B regulatory mechanism that would explain the conservation of the two paralog genes in mammals.
5

Etudes structurales et fonctionnelles des interactions de SUMO avec des proteines d'echafaudage modeles: TIF1beta, PIAS1 et PML

Mascle, Xavier H. 12 1900 (has links)
L’adaptation des cellules à leur environnement externe repose sur la transduction adéquate de signaux régulés par une pléthore d'événements moléculaires. Parmi ces événements moléculaires, les modifications post-traductionnelles (MPT) de protéines aident à intégrer, à traduire et à organiser de façon spatiotemporelle ces signaux pour que les cellules puissent réagir aux stimuli externes. Parmi les modifications post-traductionnelles, les petites protéines de la famille de l’Ubiquitine (Ublps, Ubiquitin-like proteins) jouent un rôle majeur dans presque toutes les voies de signalisation. Cette thèse rapporte des études fonctionnelles et structurales des interactions covalentes et non covalentes entre SUMO (Small Ubiquitin related MOdifier), un membre de la famille des Ublps, et trois protéines d'échafaudage, TIF1beta, le corépresseur universel des protéines KRAB-multidoigt de zinc, PIAS1, une ligase E3 pour SUMO et PML, un suppresseur de tumeur. La première étude rapporte l'identification et la caractérisation biochimique des sites de SUMOylation de TIF1beta. Nous avons déterminé que la modification covalente de six résidus lysine par SUMO est essentielle à l’activité de répression de la transcription induit par TIF1beta. En outre, nous présentons des évidences indiquant que la SUMOylation de TIF1 exige non seulement sa capacité à homo-oligomériser, mais est aussi positivement régulée par son interaction avec le domaine KRAB des protéines à doigts de zinc. Partant de ce constat, nous postulons que les protéines KRAB-multidoigt de zinc recrutent leur corépresseur TIF1betaà des gènes cibles, mais aussi accentuent son activité répressive grâce à l'augmentation de sa SUMOylation. Notre seconde étude révèle qu’en plus de réprimer la transcription en tant que MPT covalente, SUMO joue aussi un rôle important dans la répression en tant que partenaire non covalent d’interactions protéine-protéine. Nous avons montré que SUMO interagit simultanément avec deux enzymes de la machinerie de SUMOylation, l’unique enzyme de conjugaison E2, UBC9, et la ligase E3 PIAS1 au sein d’un complexe ternaire répresseur. En outre, nous révélons que la formation du complexe ternaire PIAS1:SUMO:UBC9 est modulée par le niveau de phosphorylation de résidus sérine juxtaposés à un motif d’interaction avec SUMO (SIM) dans PIAS1. Ainsi, SUMO agit comme un adaptateur spécifique qui stabilise les interactions UBC9 E2: E3 PIAS1. Partant de ce constat, nous proposons que les enzymes E2 et E3 des autres systèmes Ublps exploitent des mécanismes similaires dans le cadre de leur fonction Enfin, notre troisième étude explore la régulation des interactions non covalentes de SUMO par la phosphorylation. En utilisant une combinaison d'études in vivo et in vitro, nous démontrons que l'interaction entre SUMO1 et PML est régi par la phosphorylation dépendant de CK2 sur quatre résidus sérine de PML. Les structures cristallographiques des complexes PML-SIM:SUMO1 révèlent que les phospho-sérines de PML contactent des résidus de la région basique de SUMO1. Sachant que la kinase CK2 peut être induite par des kinases activables par le stress, ces résultats suggèrent que les interactions non-covalentes avec SUMO sont modulées par le stress cellulaire. Sur la base de cette constatation, nous postulons que des événements analogues affectent des protéines contenant des séquences SIM ciblées par CK2. En résumé, cette étude révèle qu’en plus de son rôle de MPT, SUMO peut fonctionner comme un adaptateur permettant des interactions spécifiques entre protéines tel que pour les enzymes E3 et E2. / Cell adaption to the external environment relies on proper signal transduction that is orchestrated by a plethora of molecular events. Among these molecular events, post-translational modifications (PTMs) of proteins help to spatiotemporally integrate, translate and dispatch signals so cells can respond to external stimuli. Among these post-translational modifications, the Ubiquitin-like proteins (Ublps) play a major role in almost all signaling pathways. This thesis reports functional and structural studies of the covalent and non-covalent interactions between the Small Ubiquitin-related MOdifier (SUMO), a member of the Ublps family, and three scaffold proteins, TIF1beta, the corepressor of KRAB-Multifinger proteins, PIAS1, a SUMO E3 ligase and the Promyleocytic leukemia (PML) tumor suppressor protein. The first study reports the identification and the biochemical characterization of TIF1betaSUMOylation sites. We mapped six SUMOylation sites in TIF1beta and determined that the covalent modification of these sites by SUMO is essential for its transcriptional repression activity. In addition, we present evidence indicating that SUMOylation of TIF1beta requires not only its ability to homo-oligomerize, but is positively regulated through its interaction with KRAB domains found in zinc-finger proteins. Based on this finding, we postulate that these KRAB domain containing multifinger proteins not only recruit TIF1beta co-repressor to target genes but also increase its repressive activity through enhancement of its SUMOylation. The work in the second study reveals that in addition to suppressing transcription as a covalent PTM, SUMO plays an important role in repression as a non-covalent protein-protein interaction partner. We determine that SUMO can form a repressive complex by simultaneously forming non-covalent interactions with UBC9 and PIAS1, the E2 and E3 enzymes in the SUMOylation system. In addition, we report that the formation of the PIAS1:SUMO:UBC9 ternary complex is modulated by the phosphorylation of serine residues juxtaposed to a SUMO-Interacting Motif (SIM) found in PIAS1. Thus SUMO acts as a specific adaptor that stabilizes UBC9 E2: PIAS1 E3 interactions. Based on this finding, we propose that the E2 and E3 enzymes from other Ublps systems exploit similar mechanisms as part of their function Finally, our third study explores the regulation of SUMO non-covalent interactions by phosphorylation. Using a combination of in vivo and in vitro studies we demonstrate that the interaction between SUMO1 and PML is governed by CK2-dependent phosphorylation of four serine residues in PML. Crystal structures of PML-SIM:SUMO1 complexes reveal that these PML phospho-serine specifically contact SUMO1 basic patch residues. Since CK2 kinase is induced by stress activated kinases pathways, this indicates that SUMO non-covalent interactions are regulated by cellular stress. Based on this finding, we postulated that analogous events influence other CK2-targeted SIM-containing proteins. In summary, this study reveals that in addition to its well described function as PTM, SUMO can function as an adaptor enabling specific proteins interactions such as functional E3:E2 enzymes pairs.
6

Die Funktion der ubiquitinbindenden CUE-Domäne von Cue1 bei der Synthese von Ubiquitinketten

Delbrück, Maximilian von 13 May 2016 (has links)
Ubiquitinierungen sind dynamische, posttranslationale Proteinmarkierungen, die eine Vielzahl zellulärer Reaktionen hervorrufen. Die strukturell unterschiedlichen Signale werden von einer Ubiquitinierungsmaschinerie, bestehend aus E1-, E2- und E3-Enzymen, aufgebaut. Die Synthese von Polyubiquitin wird durch ubiquitinbindende Domänen (UBD) innerhalb der enzymatischen Kaskade stimuliert. Das E2-Enzym Ubc7 katalysiert zusammen mit dessen Kofaktor Cue1 die Polymerisierung von Ubiquitineinheiten und kennzeichnet Substratproteine mit Lysin 48 (K48)-ver¬knüpf¬ten Ubiquitinketten für den Endoplasmatische Retikulum-assoziierten Proteinabbau (ER-associated protein degradation, ERAD). In dieser Arbeit konnte mittels in vitro rekonstitu¬ierter Ubiquitinierungsreaktionen die Funktionsweise der ubiquitinbindenden CUE-Domäne von Cue1 während der Synthese von Polyubiquitin aufgeklärt werden. Verlängerungs¬reaktionen von Ubiquitinketten konnten durch Fluoreszenzmessungen verfolgt und die CUE-Domäne als Substratrezeptor von Ubc7 beschrieben werden. Anscheinend erhöht die Ubiquitin¬bindung durch Cue1 die lokale Konzentration von Ubc7 an den Ketten und positio¬niert das E2-Enzym effizient für die Übertragung der gebundenen Ubiquiti-neinheit. Die Reaktionen werden durch eine Bindungspräferenz der Cue1-CUE-Domäne für K48-ver¬knüpfte Ubiquitinmoleküle zusätzlich beschleunigt. Es ist bekannt, dass UBDs Ubiquitin¬signale entschlüsseln. Die Charakterisierung der CUE-Domäne beschreibt eine Notwendigkeit der Bindung von Ubiquitin bereits während der Entstehung von Polyubiquitin. Neben den E3-Ubiquitinligasen existieren Deubiquitinasen (DUB), die an der Reifung und dem Abbau von Ubiquitinsignalen beteiligt sind. Die proteasomalen DUBs Ubp6 und Rpn11 zeigen basale Aktivitäten in Isolation, die eingebunden in den 26S-Komplex moduliert werden. Fluoreszenz-basierte Untersuchungen von Kettenabbaureaktionen lassen erste Schlüsse über die Spezifitäten und die Abbaumechanismen der Enzyme zu. / Polyubiquitination is an essential process modulating protein function in eukaryotic cells. Only recently ubiquitin binding activity has emerged as an important factor in ubiquitin chain assembly. Cue1 is a crucial component of yeast endoplasmic reticulum associated protein degradation complexes which recruits and activates the E2 ubiquitin conjugating enzyme Ubc7. Our NMR solution structure reveals an unconventional CUE domain of Cue1 that substantially stimulates ubiquitin chain elongation by Ubc7.Results from NMR analysis combined with interaction studies and in vitro ubiquitination reactions imply that binding of CUE to a ubiquitin moiety adjacent to the acceptor ubiquitin is a prerequisite for rapid chain elongation. By this mode of action, the CUE domain counteracts the inability of associated Ubc7, to progressively elongate ubiquitin chains. Elongation of K48-linked ubiquitin chains is additionally accelerated since the CUE domain preferentially binds chains of K48-linkage. Our data support a model, where dynamic binding of ubiquitin chains assist to position Ubc7 for rapid elongation of K48-linked chains. Thus, the CUE domain acts as acceleration factor of elongation. Our study provides detailed mechanistic insight into how a ubiquitin binding domain governs polyubiquitin chain formation.
7

Detection And Characterization Of Plant Genes Involved In Various Biotic And Abiotic Stress Conditions Using Ddrt-pcr And Isolation Of Interacting Proteins

Unver, Turgay 01 August 2008 (has links) (PDF)
The main objective of this thesis dissertation is functionally characterizing the genes involved in biotic and abiotic stresses of plants at molecular level. Previously, upon pathogen attack Rad6 gene expression was found to be changed in wheat and barley plants. To functionally characterize the Rad6 gene, VIGS (Virus induced gene silencing) system was used. HR (Hypersensitive response) like symptoms was detected in every silenced barley and wheat plants. To figure out, transcriptomes and proteomes of Rad6 silenced plants were analyzed. 2-D PAGE analysis was also performed on silenced and control wheat plants. No pathogen growth was observed in Rad6 silenced barley lines. Additionally, the susceptible wild type Arabidopsis plants showed resistant phenotype when any of the Rad6 gene copies is mutated. This suggests that Rad6 gene has a negative regulatory role in plant disease resistance which was proved for the first time. Yeast two hybrid protein interaction study suggests that RAD6 carrying out its function by interacting with SGT1 protein and regulating resistance related genes. It has been first time reported in this thesis that E2 (Ubiquitin conjugating enzyme) takes role in plant disease resistance. Boron which is the other consideration in the scope of thesis as an abiotic stress factor at a very limited amount is necessary for the normal development of plants. This study is conducted on highly boron tolerant Gypsophila perfoliata L. collected from a location in the boron mining area. The plant samples were tested in the presence of high boron (35 mg/kg) concentrations. The transcriptomes of the plant samples treated with the excess levels of boron to that of the samples grown under normal concentration were compared using differential display PCR method. Thirty bands showing differential expression levels at varying time points were analyzed. 18 of them were confirmed via qRT-PCR.
8

Etudes structurales et fonctionnelles des interactions de SUMO avec des proteines d'echafaudage modeles: TIF1beta, PIAS1 et PML

Mascle, Xavier H. 12 1900 (has links)
L’adaptation des cellules à leur environnement externe repose sur la transduction adéquate de signaux régulés par une pléthore d'événements moléculaires. Parmi ces événements moléculaires, les modifications post-traductionnelles (MPT) de protéines aident à intégrer, à traduire et à organiser de façon spatiotemporelle ces signaux pour que les cellules puissent réagir aux stimuli externes. Parmi les modifications post-traductionnelles, les petites protéines de la famille de l’Ubiquitine (Ublps, Ubiquitin-like proteins) jouent un rôle majeur dans presque toutes les voies de signalisation. Cette thèse rapporte des études fonctionnelles et structurales des interactions covalentes et non covalentes entre SUMO (Small Ubiquitin related MOdifier), un membre de la famille des Ublps, et trois protéines d'échafaudage, TIF1beta, le corépresseur universel des protéines KRAB-multidoigt de zinc, PIAS1, une ligase E3 pour SUMO et PML, un suppresseur de tumeur. La première étude rapporte l'identification et la caractérisation biochimique des sites de SUMOylation de TIF1beta. Nous avons déterminé que la modification covalente de six résidus lysine par SUMO est essentielle à l’activité de répression de la transcription induit par TIF1beta. En outre, nous présentons des évidences indiquant que la SUMOylation de TIF1 exige non seulement sa capacité à homo-oligomériser, mais est aussi positivement régulée par son interaction avec le domaine KRAB des protéines à doigts de zinc. Partant de ce constat, nous postulons que les protéines KRAB-multidoigt de zinc recrutent leur corépresseur TIF1betaà des gènes cibles, mais aussi accentuent son activité répressive grâce à l'augmentation de sa SUMOylation. Notre seconde étude révèle qu’en plus de réprimer la transcription en tant que MPT covalente, SUMO joue aussi un rôle important dans la répression en tant que partenaire non covalent d’interactions protéine-protéine. Nous avons montré que SUMO interagit simultanément avec deux enzymes de la machinerie de SUMOylation, l’unique enzyme de conjugaison E2, UBC9, et la ligase E3 PIAS1 au sein d’un complexe ternaire répresseur. En outre, nous révélons que la formation du complexe ternaire PIAS1:SUMO:UBC9 est modulée par le niveau de phosphorylation de résidus sérine juxtaposés à un motif d’interaction avec SUMO (SIM) dans PIAS1. Ainsi, SUMO agit comme un adaptateur spécifique qui stabilise les interactions UBC9 E2: E3 PIAS1. Partant de ce constat, nous proposons que les enzymes E2 et E3 des autres systèmes Ublps exploitent des mécanismes similaires dans le cadre de leur fonction Enfin, notre troisième étude explore la régulation des interactions non covalentes de SUMO par la phosphorylation. En utilisant une combinaison d'études in vivo et in vitro, nous démontrons que l'interaction entre SUMO1 et PML est régi par la phosphorylation dépendant de CK2 sur quatre résidus sérine de PML. Les structures cristallographiques des complexes PML-SIM:SUMO1 révèlent que les phospho-sérines de PML contactent des résidus de la région basique de SUMO1. Sachant que la kinase CK2 peut être induite par des kinases activables par le stress, ces résultats suggèrent que les interactions non-covalentes avec SUMO sont modulées par le stress cellulaire. Sur la base de cette constatation, nous postulons que des événements analogues affectent des protéines contenant des séquences SIM ciblées par CK2. En résumé, cette étude révèle qu’en plus de son rôle de MPT, SUMO peut fonctionner comme un adaptateur permettant des interactions spécifiques entre protéines tel que pour les enzymes E3 et E2. / Cell adaption to the external environment relies on proper signal transduction that is orchestrated by a plethora of molecular events. Among these molecular events, post-translational modifications (PTMs) of proteins help to spatiotemporally integrate, translate and dispatch signals so cells can respond to external stimuli. Among these post-translational modifications, the Ubiquitin-like proteins (Ublps) play a major role in almost all signaling pathways. This thesis reports functional and structural studies of the covalent and non-covalent interactions between the Small Ubiquitin-related MOdifier (SUMO), a member of the Ublps family, and three scaffold proteins, TIF1beta, the corepressor of KRAB-Multifinger proteins, PIAS1, a SUMO E3 ligase and the Promyleocytic leukemia (PML) tumor suppressor protein. The first study reports the identification and the biochemical characterization of TIF1betaSUMOylation sites. We mapped six SUMOylation sites in TIF1beta and determined that the covalent modification of these sites by SUMO is essential for its transcriptional repression activity. In addition, we present evidence indicating that SUMOylation of TIF1beta requires not only its ability to homo-oligomerize, but is positively regulated through its interaction with KRAB domains found in zinc-finger proteins. Based on this finding, we postulate that these KRAB domain containing multifinger proteins not only recruit TIF1beta co-repressor to target genes but also increase its repressive activity through enhancement of its SUMOylation. The work in the second study reveals that in addition to suppressing transcription as a covalent PTM, SUMO plays an important role in repression as a non-covalent protein-protein interaction partner. We determine that SUMO can form a repressive complex by simultaneously forming non-covalent interactions with UBC9 and PIAS1, the E2 and E3 enzymes in the SUMOylation system. In addition, we report that the formation of the PIAS1:SUMO:UBC9 ternary complex is modulated by the phosphorylation of serine residues juxtaposed to a SUMO-Interacting Motif (SIM) found in PIAS1. Thus SUMO acts as a specific adaptor that stabilizes UBC9 E2: PIAS1 E3 interactions. Based on this finding, we propose that the E2 and E3 enzymes from other Ublps systems exploit similar mechanisms as part of their function Finally, our third study explores the regulation of SUMO non-covalent interactions by phosphorylation. Using a combination of in vivo and in vitro studies we demonstrate that the interaction between SUMO1 and PML is governed by CK2-dependent phosphorylation of four serine residues in PML. Crystal structures of PML-SIM:SUMO1 complexes reveal that these PML phospho-serine specifically contact SUMO1 basic patch residues. Since CK2 kinase is induced by stress activated kinases pathways, this indicates that SUMO non-covalent interactions are regulated by cellular stress. Based on this finding, we postulated that analogous events influence other CK2-targeted SIM-containing proteins. In summary, this study reveals that in addition to its well described function as PTM, SUMO can function as an adaptor enabling specific proteins interactions such as functional E3:E2 enzymes pairs.
9

Ubiquitin-binding domains in polyubiquitin chain synthesis

Pluska, Lukas 21 August 2020 (has links)
Ubiquitinierung ist eine essentielle posttranslationale Proteinmodifikation (PTM), die vielfältige Prozesse in eukaryotischen Zellen steuert. Ubiquitin wird zu unterschiedlichen polymeren Ketten zusammengesetzt, wobei E2-Ubiquitin-konjugierende Enzyme häufig eine entscheidende Rolle spielen. Im Rahmen meiner Promotion habe ich die molekularen Grundlagen der Ub Kettensynthese durch die E2-Enzyme Ubc1 und Ubc7 untersucht. Dies geschah mithilfe von in vitro Ubiquitinierungs-Reaktionen, biochemischen und strukturellen Untersuchungen sowie zellbiologischen Experimenten. Ich konnte zeigen, dass zugehörige Ubiquitin-Binde-Domänen (UBDs) die Funktion der E2-Enzyme maßgeblich regulieren. Als einziges unter elf E2-Enzymen in S. cerevisiae enthält Ubc1 eine Ub-bindende UBA Domäne, deren Funktion bisher unklar blieb. Ubc1 modifiziert ausschließlich Lysin 48 (K48) in Ub und wurde mit Proteinqualitätskontrolle sowie der Regulation des Zellzyklus in Verbindung gebracht. Meine Ergebnisse zeigen, dass Ubc1 mithilfe seiner UBA-Domäne vorzugsweise mit K63-verknüpftem Polyubiquitin interagiert, wodurch K48/K63 verzweigte Ub-Ketten entstehen. Basierend auf vorhandenen Strukturinformationen und meinen eigenen röntgenkristallographischen Untersuchungen zeige ich eine Modellstruktur für die Reaktion auf. Meine Ergebnisse stellen eine wesentliche Untersuchungsgrundlage für verzweigten Ub-Ketten dar, über deren Vorkommen und Funktion bisher wenig bekannt ist. Ubc7 assembliert mithilfe seines Kofaktors Cue1 K48-verknüpfte Ub-Ketten im Rahmen des Endoplasmatisches-Retikulum-assoziierten Proteinabbaus (ERAD). In einem kollaborativen Projekt haben wir die Ub-bindende CUE-Domäne in Cue1, die hierfür eine Schlüsselrolle spielt, untersucht. Sie ermöglicht die Ausrichtung des E2-Enzyms an der distalen Spitze der Ub-Kette für eine schnelle Kettenverlängerung, besitzt einzigartige auf den Prozess angepasste Bindungseigenschaften und ihre Beeinträchtigung stört den Abbau des ERAD-Substrates Ubc6. / Ubiquitination is an essential posttranslational protein modification (PTM) that regulates widespread intracellular processes in eukaryotic cells. Ubiquitin (Ub) can be assembled into polymeric chains through its seven internal lysine residues and the N-terminus enabling the formation of a complex "Ubiquitin Code". Factors that guide the molecular machinery which produces this code remain poorly understood. In this study, I demonstrate that ubiquitin binding domains (UBDs) associated with the E2 enzymes Ubc1 and Ubc7 substantially contribute to the assembly of particular Ub chains. Uniquely among the eleven E2 enzymes of S. cerevisiae Ubc1 contains a ubiquitin binding UBA domain. Ubc1 exclusively modifies lysine 48 (K48) in Ub and has been implicated in protein quality control and cell cycle progression. However, the function of its UBA domain remained elusive. I identified Ubc1 to preferentially target specific Ub molecules in K63-linked polyubiquitin via its UBA domain. This activity results in the assembly of K48/K63 branched Ub chains. Based on existing structural information and my own X-ray crystallographic experiments, I propose a structure for the transition state of branched chain assembly by Ubc1. My findings provide a basis for the study of this unusual Ub chain type. Ubc7 has previously been shown to be activated by its co-factor Cue1 to assemble Ub chains linked through lysine 48 (K48) in the context of endoplasmic reticulum associated protein degradation (ERAD). In collaboration with Dr. Maximilian von Delbrück and Dr. Andreas Kniss, we identified the ubiquitin binding CUE domain in Cue1 to play a key role in aligning Ubc7 with the distal tip of a K48-linked Ub chain for rapid chain elongation. Furthermore, we showed how binding of Ub by the CUE domain is well adapted towards the chain elongation process and how its disruption impairs degradation of the ERAD substrate Ubc6.

Page generated in 0.0895 seconds