• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A knowledge based engineering system for the prescription and manufacture of custom contoured seating for clients with severe musculoskeletal and postural conditions

Partlow, Adam January 2014 (has links)
This thesis presents a study into the feasibility of applying a Knowledge Based Engineering System to the manufacture and prescription of custom contoured seating. The custom contoured seats are designed to meet the needs of clients of Cardiff and Vale University Health Board’s Rehabilitation Engineering Unit who have neurological, musculoskeletal and/or other conditions that result in limited movement, complex body shapes and poor posture. The custom contoured seats provide accommodation or correction for poor posture whilst improving the client’s function and comfort level, minimising risk to the client and in some cases providing therapeutic benefits such as improving the client’s unsupported posture. The literature review showed that there is not currently a technique in development or envisaged that would perform the task of the system being investigated in this thesis. Three techniques were identified, two for the prescription of wheelchairs based on a series of extensive questions, the output of which is a wheelchair with no custom contoured seating. The third technique converts pressure readings of clients with low complexity conditions sitting on a flat surface into a custom contoured seat. The client group being investigated in this study are unable to sit unsupported and would not be able to provide a meaningful pressure reading when held in position due to the shape of most of the clients’ bodies. Algorithms were developed to extract useful features from Cardiff and Vale University Health Board’s Rehabilitation Engineering Unit’s mechanical shape sensor; which is called the Cardiff Body Match. The features extracted from the measurements were designed to reduce the dimensionality of the data and inform a clinical engineer as to the anthropometry of the client seated in the Cardiff Body Match mechanical shape sensor. The algorithms developed were able to correct errors in measurements, estimate the location of pelvic landmarks and provide a classification of the curvature of the back. Engineering rules were elicited from clinical engineers at Cardiff and Vale University Health Board’s Rehabilitation Engineering Unit and from the literature. The engineering rules were described in plain English and represented using a novel approach based on notations used in predicate calculus. The engineering rules’ application was tested and the shape of a custom contoured seat that could be produced with the Knowledge Based Engineering System was demonstrated. This study has shown that through further research a Knowledge Based Engineering System for the manufacture and prescription of custom contoured seating for clients of Cardiff and Vale University Health Board’s Rehabilitation Engineering Unit is possible. This thesis contributes to the knowledge by demonstrating the feasibility of the Knowledge Based Engineering System, developing the bespoke algorithms and the novel collection of knowledge through elicitation.
2

Subjective Bayesian analysis of elliptical models

Van Niekerk, Janet 21 June 2013 (has links)
The problem of estimation has been widely investigated with all different kinds of assumptions. This study focusses on the subjective Bayesian estimation of a location vector and characteristic matrix for the univariate and multivariate elliptical model as oppose to objective Bayesian estimation that has been thoroughly discussed (see Fang and Li (1999) amongst others). The prior distributions that will be assumed is the conjugate normal-inverse Wishart prior and also the normal-Wishart prior which has not yet been considered in literature. The posterior distributions, joint and marginal, as well as the Bayes estimators will be derived. The newly developed results are applied to the multivariate normal and multivariate t-distribution. For subjective Bayesian analysis the vector-spherical matrix elliptical model is also studied. / Dissertation (MSc)--University of Pretoria, 2012. / Statistics / MSc / Unrestricted
3

Aerodynamics of a Transonic Turbine Vane with a 3D Contoured Endwall, Upstream Purge Flow, and a Backward-Facing Step

Gillespie, John Lawrie 09 August 2017 (has links)
This experiment investigated the effects of a non-axisymmetric endwall contour and upstream purge flow on the secondary flow of an inlet guide vane. Three cases were tested in a transonic wind tunnel with an exit Mach number of 0.93-a flat endwall with no upstream purge flow, the same flat endwall with upstream purge flow, and a 3D contoured endwall with upstream purge flow. All cases had a backward-facing step upstream of the vanes. Five-hole probe measurements were taken 0.2, 0.4, and 0.6 Cx downstream of the vane row trailing edge, and were used to calculate loss coefficient, secondary velocity, and secondary kinetic energy. Additionally, surface static pressure measurements were taken to determine the vane loading at 4% spanwise position. Surface oil flow visualizations were performed to analyze the flow qualitatively. No statistically significant differences were found between the three cases in mass averaged downstream measurements. The contoured endwall redistributed losses, rather than making an improvement distinguishable beyond experimental uncertainty. Flow visualization found that the passage vortex penetrated further in the spanwise direction into the passage for the contoured endwall (compared to the flat endwall), and stayed closer to the endwall with a blowing ratio of 1.5 with a flat endwall (compared to no blowing with flat endwall). This was corroborated by the five hole probe results. / Master of Science / This experiment investigated effects of a specially designed endwall (the wall of a jet engine where the vanes end) and adding extra flow upstream through a slot on the inefficiencies of a jet engine vane (a stationary part of the engine that looks like a wing). Three cases were tested in a high-speed wind tunnel at almost the speed of sound-a flat endwall with no extra flow upstream, the same flat endwall with extra flow upstream, and the specially designed endwall with extra flow upstream. All cases had a backward-facing step (a step in the direction as if you are walking downstairs) upstream of the vanes. Measurements of flow direction and pressure were taken at three locations close to the vanes, and were used to calculate parameters relating to efficiency. Additionally, measurements were taken to verify that the vanes functioned correctly. Different colored paints (that do not stick) were used to see how the flow changed between each case. Measurements showed there were no major differences in overall efficiency between the three cases. The specially designed endwall made some areas more efficient, and others less efficient, rather than making the overall vane more efficient. The colored paints showed that a region of spinning flow went further away from the wall with the specially designed endwall. The paints also found that the same region of spinning flow stayed closer to wall when extra flow was added upstream. This was corroborated by the five hole probe results. The results from the paints agreed with the measurements of flow direction and pressure. In conclusion, neither the specially designed endwall or the extra flow made much difference in the overall efficiency (instead, they made some parts more efficient and other parts less efficient).
4

Ultra High Dimension Variable Selection with Threshold Partial Correlations

Liu, Yiheng 23 August 2022 (has links)
No description available.
5

Generalized Principal Component Analysis

Solat, Karo 05 June 2018 (has links)
The primary objective of this dissertation is to extend the classical Principal Components Analysis (PCA), aiming to reduce the dimensionality of a large number of Normal interrelated variables, in two directions. The first is to go beyond the static (contemporaneous or synchronous) covariance matrix among these interrelated variables to include certain forms of temporal (over time) dependence. The second direction takes the form of extending the PCA model beyond the Normal multivariate distribution to the Elliptically Symmetric family of distributions, which includes the Normal, the Student's t, the Laplace and the Pearson type II distributions as special cases. The result of these extensions is called the Generalized principal component analysis (GPCA). The GPCA is illustrated using both Monte Carlo simulations as well as an empirical study, in an attempt to demonstrate the enhanced reliability of these more general factor models in the context of out-of-sample forecasting. The empirical study examines the predictive capacity of the GPCA method in the context of Exchange Rate Forecasting, showing how the GPCA method dominates forecasts based on existing standard methods, including the random walk models, with or without including macroeconomic fundamentals. / Ph. D. / Factor models are employed to capture the hidden factors behind the movement among a set of variables. It uses the variation and co-variation between these variables to construct a fewer latent variables that can explain the variation in the data in hand. The principal component analysis (PCA) is the most popular among these factor models. I have developed new Factor models that are employed to reduce the dimensionality of a large set of data by extracting a small number of independent/latent factors which represent a large proportion of the variability in the particular data set. These factor models, called the generalized principal component analysis (GPCA), are extensions of the classical principal component analysis (PCA), which can account for both contemporaneous and temporal dependence based on non-Gaussian multivariate distributions. Using Monte Carlo simulations along with an empirical study, I demonstrate the enhanced reliability of my methodology in the context of out-of-sample forecasting. In the empirical study, I examine the predictability power of the GPCA method in the context of “Exchange Rate Forecasting”. I find that the GPCA method dominates forecasts based on existing standard methods as well as random walk models, with or without including macroeconomic fundamentals.
6

Stochastic Representations of the Matrix Variate Skew Elliptically Contoured Distributions

Zheng, Shimin, Zhang, Chunming, Knisley, Jeff 01 January 2013 (has links)
Matrix variate skew elliptically contoured distributions generalize several classes of important distributions. This paper defines and explores matrix variate skew elliptically contoured distributions. In particular, we discuss two stochastic representations of the matrix variate skew elliptically contoured distributions.
7

Moments of Matrix Variate Skew Elliptically Contoured Distributions

Zheng, Shimin, Knisley, Jeff, Zhang, Chunming 01 January 2013 (has links)
Matrix variate skew elliptically contoured distributions generalize several classes of important distributions. This paper defines and explores matrix variate skew elliptically contoured distributions. In particular, we discuss the first two moments of the matrix variate skew elliptically contoured distributions.
8

Elastomer-based Cellular Micromechanical Stimulators for Mechanobiological Study

Wang, Qian 16 September 2014 (has links)
No description available.
9

Longshot hypersonic wind tunnel flow characterization and boundary layer stability investigations

Grossir, Guillaume 01 July 2015 (has links)
The hypersonic laminar to turbulent transition problem above Mach 10 is addressed experimentally in the short duration VKI Longshot gun tunnel. Reentry conditions are partially duplicated in terms of Mach and Reynolds numbers. Pure nitrogen is used as a test gas with flow enthalpies sufficiently low to avoid its dissociation, thus approaching a perfect gas behavior. The stabilizing effects of Mach number and nosetip bluntness on the development of natural boundary layer disturbances are evaluated over a 7 degrees half-angle conical geometry without angle of attack. <p><p>Emphasis is initially placed on the flow characterization of the Longshot wind tunnel where these experiments are performed. Free-stream static pressure diagnostics are implemented in order to complete existing stagnation point pressure and heat flux measurements on a hemispherical probe. An alternative method used to determine accurate free-stream flow conditions is then derived following a rigorous theoretical approach coupled to the VKI Mutation thermo-chemical library. Resulting sensitivities of free-stream quantities to the experimental inputs are determined and the corresponding uncertainties are quantified and discussed. The benefits of this different approach are underlined, revealing the severe weaknesses of traditional methods based on the measurement of reservoir conditions and the following assumptions of an isentropic and adiabatic flow through the nozzle. The operational map of the Longshot wind tunnel is redefined accordingly. The practical limits associated with the onset of nitrogen flow condensation under non-equilibrium conditions are also accounted for. <p><p>Boundary layer transition experiments are then performed in this environment with free-stream Mach numbers ranging between 10-12. Instrumentation along the 800mm long conical model includes flush-mounted thermocouples and fast-response pressure sensors. Transition locations on sharp cones compare favorably with engineering correlations. A strong stabilizing effect of nosetip bluntness is reported and no transition reversal regime is observed for Re_RN<120000. Wavelet analysis of wall pressure traces denote the presence of inviscid instabilities belonging to Mack's second mode. An excellent agreement with Linear Stability Theory results is obtained from which the N-factor of the Longshot wind tunnel in these conditions is inferred. A novel Schlieren technique using a short duration laser light source is developed, allowing for high-quality flow visualization of the boundary layer disturbances. Comparisons of these measurement techniques between each other are finally reported, providing a detailed view of the transition process above Mach 10. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
10

Turbulence Modeling for Predicting Flow Separation in Rocket Nozzles

Allamaprabhu, Yaravintelimath January 2014 (has links) (PDF)
Convergent-Divergent (C-D) nozzles are used in rocket engines to produce thrust as a reaction to the acceleration of hot combustion chamber gases in the opposite direction. To maximize the engine performance at high altitudes, large area ratio, bell-shaped or contoured nozzles are used. At lower altitudes, the exit pressure of these nozzles is lower than the ambient pressure. During this over-expanded condition, the nozzle-internal flow adapts to the ambient pressure through an oblique shock. But the boundary layer inside the divergent portion of the nozzle is unable to withstand the pressure rise associated with the shock, and consequently flow separation is induced. Numerical simulation of separated flows in rocket nozzles is challenging because the existing turbulence models are unable to correctly predict shock-induced flow separation. The present thesis addresses this problem. Axisymmetric, steady-state, Reynolds-Averaged Navier-Stokes (RANS) simulations of a conical nozzle and three sub-scale contoured nozzles were carried out to numerically predict flow separation in over-expanded rocket nozzles at different nozzle pressure ratios (NPR). The conical nozzle is the JPL 45◦-15◦ and the contoured nozzles are the VAC-S1, the DLR-PAR and the VAC-S6-short. The commercial CFD code ANSYS FLUENT 13 was first validated for simulation of separated cold gas flows in the VAC-S1 nozzle. Some modeling issues in the numerical simulations of flow separation in rocket nozzles were determined. It is recognized that compressibility correction, nozzle-lip thickness and upstream-extension of the external domain are the sources of uncertainty, besides turbulence modeling. In high-speed turbulent flows, compressibility is known to affect dissipation rate of turbulence kinetic energy. As a consequence, a reduction in the spreading rate of supersonic mixing layers occurs. Whereas, the standard turbulence models are developed and calibrated for incompressible flows and hence, do not account for this effect. ANSYS FLUENT uses the compressibility correction proposed by Wilcox [1] which modifies the turbulence dissipation terms based on turbulent Mach number. This, as shown in this thesis, may not be appropriate to the prediction of flow separation in rocket nozzles. Simulation results of the standard SST model, with and without the compressibility correction, are compared with the experimental data at NPR=22 for the DLR-PAR nozzle. Compressibility correction is found to cause under-prediction of separation location and hence its use in the prediction of flow separation is not recommended. In the literature, computational domains for the simulation of DLR subscale nozzles have thick nozzle-lips whereas for the VAC subscale nozzles they have no nozzle-lip. Effect of nozzle-lip thickness on flow separation is studied in the DLR-PAR nozzle by varying its nozzle-lip thickness. It is found that nozzle-lip thickness significantly influences both separation location and post-separation pressure recovery by means of the recirculation bubbles formed at the nozzle-lip. Usually, experimental values of free stream turbulence are unknown. So conventionally, to minimize solution dependence on the boundary conditions specified for the ambient flow, the computational domain external to the nozzle is extended in the upstream direction. Its effect on flow separation is studied in the DLR-PAR nozzle through simulations conducted with and without this domain extension. No considerable effect on separation location and pressure recovery is found. The two eddy-viscosity based turbulence models, Spalart-Allmaras (SA) model and Shear Stress Transport (SST) model, are well known to predict separation location better than other eddy-viscosity models, but with moderate success. Their performances, in terms of predicting separation location and post-separation wall pressure distribution, were compared with each other and evaluated against experimental data for the conical and two contoured nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the range of NPRs and to the type of nozzle. Depending on NPR, the SST model either under-predicts or over-predicts Free Shock Separation (FSS). Moreover, it also fails to capture Restricted Shock Separation (RSS). With compressibility correction, it under-predicts separation at all NPRs to a greater extent. Even though RSS is captured by using compressibility correction, the transition from FSS to RSS is over-predicted [2]. Early efforts by few researchers to improve predictions of nozzle flow separation by realizability corrections to turbulence models have not been successful, especially in terms of capturing both the separation types. Therefore, causes of turbulence modeling failure in predicting nozzle flow separation correctly were further investigated. It is learnt that limiting of the shear stress inside boundary layer, due to Bradshaw’s assumption, and over-prediction of jet spreading rate are the causes of SST model’s failure in predicting nozzle flow separation correctly. Based on this physical reasoning, values of the a 1 parameter and the two diffusion coefficients σk,2 and σω,2 were empirically modified to match the predicted wall pressure distributions with experimental data of the DLR-PAR and the VAC-S6-short nozzles. The results confirm that accurate prediction of flow separation in rocket nozzles indeed depends on the correct prediction of spreading rate of the supersonic separation-jet. It is demonstrated that accurate RANS simulation of flow separation in rocket nozzles over a wide range of NPRs is feasible by modified values of the diffusion coefficients in turbulence model.

Page generated in 0.0499 seconds