Spelling suggestions: "subject:"controlledrelease"" "subject:"controllerincreased""
361 |
Smart microdevices for nutraceutical-controlled deliveryPoyatos Racionero, Elisa 17 January 2021 (has links)
[ES] La presente tesis doctoral, titulada "Microportadores inteligentes para la liberación controlada de sustancias de interés nutracéutico", se centra en el diseño y evaluación de sistemas híbridos orgánico-inorgánicos para proteger y liberar controladamente compuestos bioactivos. Dichos sistemas están basados en (i) materiales de sílice, principalmente partículas mesoporosas, como soporte inorgánico para almacenar y proteger la carga bioactiva; y (ii) una capa externa de biomoléculas como puerta molecular, que regula la liberación de la carga ante ciertos estímulos.
En el primer capítulo de la tesis se describe el ácido oleico como puerta molecular. Este capítulo se subdivide en tres artículos diferentes, con distintos objetivos. En el primer artículo se emplea por primera vez el ácido oleico como puerta molecular de un soporte mesoporoso, cargado con la molécula modelo rodamina B. El material preparado es capaz de proteger la carga en las condiciones presentes en la boca y en el estómago, e inducir su liberación en el intestino con la acción surfactante de las sales biliares. El sistema se ha empleado para la liberación de vitamina B2, demostrando así la utilidad del diseño para la protección y liberación controlada de nutracéuticos. El segundo artículo evalúa la efectividad de esta puerta molecular en diferentes tipos de partículas mesoporosas de sílice, con diversos tamaños y estructuras de poro (MCM-41, MCM-48, SBA-15 y UVM-7). En todos los sistemas estudiados, la puerta molecular es capaz de mantener protegidas las moléculas cargadas, y liberarlas ante la presencia de sales biliares. El sólido basado en la estructura de UVM-7 se validó in vivo, observándose un retraso en la absorción intestinal de la rodamina gracias a su encapsulación. Por último, el tercer artículo incluido en este capítulo ha estudiado la posibilidad de incorporar puertas moleculares en filosilicatos. Se ha conseguido la protección y liberación controlada de biomoléculas de gran tamaño implicadas en el metabolismo humano (vitamina B12 y hematina) empleando filosilicatos funcionalizados con ácido oleico como puerta molecular.
El segundo capítulo describe por primera vez el uso de la proteína zeína (prolamina de maíz) como puerta molecular. La presencia de la prolamina de maíz inhibe la salida de los compuestos antimicrobianos encapsulados (timol, carvacrol y cinamaldehído) liberándolos en presencia de las enzimas proteolíticas excretadas durante el crecimiento bacteriano. De todos los materiales desarrollados, el sistema cargado con cinamaldehído ha demostrado una inhibición del crecimiento de E. coli superior a la del compuesto libre.
Finalmente, el tercer capítulo estudia la efectividad de la lactosa como puerta molecular para proteger aceites esenciales y liberarlos solo en las condiciones presentes en el intestino. Se han preparado tres materiales diferentes basados en MCM-41, cargados con timol, eugenol y cinamaldehído, y funcionalizados con lactosa para inhibir la salida de los compuestos. La acción enzimática de la lactasa secretada en el intestino es capaz de hidrolizar la puerta molecular en los correspondientes monosacáridos, liberando la carga a lo largo del lumen intestinal. Los microdispositivos diseñados han sido validados in vitro con células Caco-2, donde se ha observado el aumento de la capacidad citotóxica del cinamaldehído y la disminución de la permeabilidad a través del modelo de membrana intestinal gracias a su encapsulación. Finalmente, el microdispositivo cargado con cinamaldehído se ha validado in vivo ratificándose la disminución de la permeabilidad del compuesto y su mayor permanencia en el lumen intestinal.
Así, la presente tesis doctoral ha demostrado la posibilidad de emplear biomoléculas sencillas de grado alimentario como puertas moleculares sobre diversos materiales de sílice. Estos nuevos sistemas han permitido proteger y liberar control / [CA] La present tesi doctoral, titulada "Microportadors intel·ligents per a l'alliberament controlat de substàncies d'interès nutracèutic", se centra en el disseny i avaluació de sistemes híbrids orgànic-inorgànics per a la protecció i alliberament controlat de compostos bioactius. Aquests sistemes estan basats en (i) materials de sílice, principalment partícules mesoporoses, com a suport inorgànic per emmagatzemar i protegir la càrrega bioactiva; i (ii) una capa externa de biomolècules com a porta molecular, que regula l'alliberament d'aquesta càrrega davant de determinats estímuls.
En el primer capítol de la tesi es descriu l'àcid oleic com a porta molecular. Aquest capítol se subdivideix en tres articles diferents, amb objectius diferents. En el primer article s'empra per primera vegada l'àcid oleic com a porta molecular d'un suport mesoporós, carregat amb la molècula model rodamina B. El material preparat és capaç de protegir la càrrega en les condicions presents a la boca i a l'estómac, i induir el seu alliberament a l'intestí amb l'acció surfactant de les sals biliars. El sistema s'ha emprat per a l'alliberament de vitamina B2, demostrant així la utilitat del disseny per a la protecció i alliberament controlat de nutracèutics. El segon article avalua l'efectivitat d'aquesta porta molecular en diferents tipus de partícules mesoporoses de sílice, amb diverses mides i estructures de porus (MCM-41, MCM-48, SBA-15 i UVM-7). En tots els sistemes estudiats, la porta molecular és capaç de mantindre protegides les molècules carregades, i alliberar-les davant la presència de sals biliars. El sòlid basat en l'estructura de UVM-7 es validà in vivo, observant-se un retard en l'absorció intestinal de la rodamina gràcies a la seua encapsulació. Finalment, en el tercer article inclòs en aquest capítol s'ha estudiat la possibilitat d'incorporar portes moleculars en fil·losilicats. S'ha aconseguit la protecció i alliberament controlat de biomolècules de grans dimensions implicades en el metabolisme humà (vitamina B12 i hematina) emprant fil·losilicats funcionalitzats amb àcid oleic com a porta molecular.
El segon capítol descriu per primera vegada l'ús de la proteïna zeïna (prolamina de dacsa) com a porta molecular. La presència de la prolamina de dacsa inhibeix la sortida dels compostos antimicrobians encapsulats (timol, carvacrol i cinamaldèhid) alliberant-los en presència dels enzims proteolítics excretades durant el creixement bacterià. De tots els materials desenvolupats, el sistema carregat amb cinamaldèhid ha demostrat una inhibició de l'creixement d'E. coli superior a la del compost lliure.
Finalment, el tercer capítol estudia l'efectivitat de la lactosa com a porta molecular per protegir olis essencials i alliberar-los només en les condicions presents a l'intestí. S'han preparat tres materials diferents basats en MCM-41, carregats amb timol, eugenol i cinamaldèhid, i funcionalitzats amb lactosa per inhibir l'eixida dels compostos. L'acció enzimàtica de la lactasa secretada a l'intestí és capaç d'hidrolitzar la porta molecular en els corresponents monosacàrids, alliberant la càrrega al llarg del lumen intestinal. Els microdispositius dissenyats s'han validat in vitro amb cèl·lules Caco-2, on s'observà l'augment de la capacitat citotòxica del cinamaldèhid i la disminució de la permeabilitat a través del model de membrana intestinal gràcies a la seua encapsulació. Finalment, el microdispositiu carregat amb cinamaldèhid s'ha validat in vivo ratificant la disminució de la permeabilitat del compost i la seua major permanència al lumen intestinal.
Així, la present tesi doctoral ha demostrat la possibilitat d'emprar biomolècules senzilles de grau alimentari com portes moleculars sobre diversos materials de sílice. Aquests nous sistemes han permès protegir i alliberar controladament diferents nutracèutics, millorant així la seua biodisponibilitat. / [EN] This PhD thesis, entitled "Smart microdevices for nutraceutical-delivery", is focused on the design and evaluation of organic-inorganic hybrid systems for the protection and controlled release of bioactive molecules. These systems are based on (i) silica materials, mainly mesoporous particles, as inorganic support to store and protect the bioactive cargo; and (ii) an outer layer of biomolecules that regulate the payload release triggered by certain stimuli.
In the first chapter of the thesis oleic acid is described as a molecular gate. This chapter is subdivided into three different articles, with different objectives. In the first article, oleic acid is used for the first time as molecular gate of a mesoporous support, loaded with the rhodamine B model molecule. The designed material is capable of protecting the cargo under the conditions present in the mouth and stomach, and inducing its release in the small intestine with the surfactant action of bile salts. The system has been used for the release of vitamin B2, thus demonstrating the validity of the design for the protection and controlled release of nutraceuticals. The second article evaluates the effectiveness of this molecular gate in different types of mesoporous silica particles, with different sizes and pore structures (MCM-41, MCM-48, SBA-15 and UVM-7). In all the systems studied, the molecular gate is capable of keeping cargo molecules protected and releasing them in the presence of bile salts. The solid based on the structure of UVM-7 was validated in vivo, observing a delay in the intestinal absorption of rhodamine thanks to its encapsulation. Lastly, the third article included in this chapter has studied the possibility of incorporating molecular gates onto phyllosilicates. The protection and controlled release of large biomolecules involved in human metabolism (vitamin B12 and hematin) have been achieved using phyllosilicates functionalized with oleic acid as molecular gate.
The second chapter describes for the first time the use of the protein zein (corn prolamine) as a molecular gate. The presence of corn prolamine inhibits the release of encapsulated antimicrobial compounds (thymol, carvacrol and cinnamaldehyde) releasing them in the presence of the proteolytic enzymes excreted during bacterial growth. Among all the materials developed, the cinnamaldehyde-loaded system has shown greater inhibition of E. coli growth than the free compound.
Finally, the third chapter studies the effectiveness of lactose as a molecular gate to protect essential oils and release them only under the conditions present in the intestine. Three different materials based on MCM-41 loaded with thymol, eugenol, and cinnamaldehyde, and functionalized with lactose to inhibit the release of the compounds have been prepared. The enzymatic action of the lactase secreted in the intestine is capable of hydrolyzing the molecular gate into the corresponding monosaccharides, thus releasing the cargo along the intestinal lumen. The designed microdevices have been validated in vitro with Caco-2 cells, where an increase in the cytotoxic capacity of cinnamaldehyde and a decrease in permeability through the intestinal membrane model have been observed thanks to its encapsulation. Finally, the cinnamaldehyde-loaded microdevice has been validated in vivo, confirming the decrease in the permeability of the compound and its greater permanence in the intestinal lumen.
Thus, the present PhD thesis has demonstrated the possibility of using simple food-grade biomolecules as gatekeepers on various silica materials. These new systems have allowed the protection and controlled release of different nutraceuticals, thus improving their bioavailability. / The authors also thank the Electron Microscopy Service at the UPV for support. The authors also thank Prof. Pedro Amorós for his explanations and
guidance on the knowledge of phyllosilicates. / Poyatos Racionero, E. (2020). Smart microdevices for nutraceutical-controlled delivery [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159247
|
362 |
Development of enzyme-functionalized hybrid mesoporous nanodevices for advanced chemical communicationde Luis Fernández, Beatriz 02 September 2021 (has links)
Tesis por compendio / [ES] La presente tesis doctoral se centra en el diseño, síntesis y caracterización de varios nanodispositivos híbridos orgánico-inorgánicos, utilizando como soporte nanopartículas de sílice mesoporosa equipadas con enzimas y puertas moleculares,
los cuales muestran capacidades comunicativas además de la evaluación de diferentes estrategias de comunicación.
El primer capítulo incluye un resumen de diferentes conceptos sobre los
que se fundamentan los estudios realizados tales como nanotecnología, materiales
de sílice mesoporosa, materiales con puertas moleculares que reaccionan a
estímulos específicos, partículas Janus y biocomputación. Finalmente, se incluyen
conceptos básicos acerca de la comunicación química, materiales y estrategias
empleados hasta ahora y ejemplos representativos.
A continuación, en el segundo capítulo, se presentan los objetivos
generales de esta tesis doctoral que son abordados en los siguientes capítulos
experimentales.
El tercer capítulo muestra un sistema de biocomputación para liberación
basado en nanopartículas Janus de oro-sílice mesoporosa capaces de comunicarse
con el entorno procesando la información e imitando la función lógica booleana
propia de un demultiplexer y que resulta en la liberación controlada de la carga.
Se muestra que dicho nanodispositivo puede llevar a cabo sus funciones
en medios complejos como en células cancerígenas.
En el cuarto capítulo, se presenta un modelo circular de comunicación
dentro de una red de tres nanopartículas diferentes basado en el intercambio
jerárquicamente programado de mensajes químicos. La parte mesoporosa del
nanodispositivo 1 (S1βgal) es cargada con la especie fluorescente [Ru(bpy)3]Cl2 y
tapada con cadenas de oligo(etilenglicol) que contienen puentes disulfuro y que
funcionan como puertas moleculares, mientras que la enzima β-galactosidasa es
unida a la parte del oro. En la nanopartícula 2 (S2galox), la enzima galactosa oxidasa
es inmovilizada en la cara del oro mientras que la sílice mesoporosa es cargada con
4-(bromometil)benzoato de metilo y los poros tapados con un derivado de
arilboronato autoinmolante sensible a H2O2 que forma un complejo huéspedanfitrión con β-ciclodextrina. Finalmente, el nanodispositivo 3 (S3est) es
funcionalizado con la enzima esterasa en la parte del oro, cargada con la especie
reductora hidroclururo de tris(2-carboxietil)fosfina (TCEP) en la parte mesoporosa
y tapada con una nanoválvula supramolecular que responde a pH (βciclodextrina:benzimidazol).
En el quinto capítulo, se muestra un modelo interactivo de comunicación
química entre una nanopartícula Janus abiótica y un organismo vivo
(Saccharomyces cerevisiae). En particular, el nanodispositivo está basado en
nanopartículas funcionalizadas con glucosa oxidasa en la parte del oro, cargadas
con el genotóxico fleomicina y tapadas con la puerta molecular sensible a pH (βciclodextrina:benzimidazol). El microorganismo usado en el estudio es una levadura
modificada que expresa GFP bajo el control del promotor del gen RNR3; la
transcripción de dicho gen es inducida con la exposición a agentes que dañan el
ADN. La ruta de comunicación interactiva empieza con la adición de sacarosa
(estímulo de entrada) la cual es hidrolizada en glucosa por la invertasa localizada
en el espacio periplásmico de las levaduras y que difunde al nanodispositivo donde
es trasformada en el correspondiente ácido por la glucosa oxidasa de la parte del
oro. La bajada local de pH da lugar a la apertura de la nanoválvula sensible a pH del
nanovehículo y con ello a la liberación de fleomicina (mensaje de vuelta) que induce
la expresión de GFP (señal de salida) en las levaduras.
En el sexto capítulo, proponemos una estrategia para establecer una
comunicación lineal entre dos microorganismos diferentes que no interactúan
entre ellos mediada por un nanodispositivo que actúa como traductor químico.
Finalmente, las conclusiones generales de la presente tesis doctoral son
expuestas en el capítulo siete. El estudio de las capacidades comunicativas de los
nanodispositivos mesoporosos funcionalizados con enzimas permite la
construcción de estrategias de cooperación entre diferentes entidades que
permiten funcionalidades que van más allá que aquellas llevadas a cabo por
agentes individuales. / [CA] La present tesi doctoral es centra en el disseny, síntesi i caracterització de diversos
nanodispositius híbrids orgànic-inorgànics, utilitzant com a suport nanopartícules
de sílice mesoporosa equipades amb enzims i portes moleculars, i que mostren
capacitats comunicatives a més de l’avaluació de diferents estratègies de
comunicació.
El primer capítol inclou un resum de diferents conceptes sobre els quals es
fonamenten els estudis realitzats com ara nanotecnologia, materials de sílice
mesoporosa, materials amb portes moleculars que reaccionen a estímuls
específics, partícules Janus i biocomputació. Finalment, s’inclouen conceptes bàsics
sobre la comunicació química, materials i estratègies utilitzades fins ara i exemples
representatius.
A continuació, en el segon capítol, es presenten els objectius generals
d’aquesta tesi doctoral que són abordats en els següents capítols experimentals.
El tercer capítol mostra un sistema de biocomputació per alliberament
basat en nanopartícules Janus d’or-sílice mesoporosa capaços de comunicar-se
amb l’entorn processant la informació i imitant la funció lògica booleana pròpia
d’un demultiplexer i que resulta en l’alliberament controlat de la càrrega.
Es mostra que aquest nanodispositiu pot dur a terme les seves funcions
en mitjans complexos com en cèl·lules canceroses.
En el quart capítol, es presenta un model circular de comunicació dins d’una
xarxa de tres nanopartícules diferents basat en l’intercanvi jeràrquicament
programat de missatges químics. La part mesoporosa del nanodispositiu 1 (S1βgal)
es carrega amb l’espècie fluorescent [Ru(bpy)3]Cl2 i es tapa amb cadenes
d’oligo(etilenglicol) que contenen ponts disulfur i que funcionen com portes
moleculars, mentre que l’enzim β-galactosidasa s’immobilitza a la part de l’or. A la
nanopartícula 2 (S2galox), l’enzim galactosa oxidasa s’immobilitza a la cara de l’or
mentre que la sílice mesoporosa es carrega amb 4-(bromometil)benzoat de metil i
els porus són tapats amb un derivat d’arilboronat autoimmolant sensible a H2O2
que forma un complex hoste-amfitrió amb β-ciclodextrina. Finalment, el
nanodispositu 3 (S3est) es funcionalitza amb l’enzim esterasa en la part de l’or, es
carrega amb l’espècie reductora hidroclurur de tris (2-carboxietil) fosfina (TCEP) a
la part mesoporosa i es tapa amb una nanoválvula supramolecular que respon a pH
(β-ciclodextrina:benzimidazol). En el cinqué capítol, es mostra un model interactiu de comunicació química
entre una nanopartícula Janus abiòtica i un organisme viu (Saccharomyces
cerevisiae). En particular, el nanodispositiu està basat en nanopartícules
funcionalitzades amb glucosa oxidasa en la part de l’or, carregades amb el
genotòxic fleomicina i tapades amb la porta molecular sensible a pH (βciclodextrina:benzimidazol). El microorganisme utilitzat en l’estudi és un rent
modificat que expressa GFP sota el control del promotor del gen RNR3; la
transcripció d’aquest gen és induïda amb l’exposició a agents que danyen l’ADN. La
ruta de comunicació interactiva comença amb l’addició de sacarosa (estímul
d’entrada) la qual és hidrolitzada en glucosa per la invertasa localitzada en l’espai
periplasmàtic dels rents i que difon al nanodispositiu on és transformada en el
corresponent àcid per la glucosa oxidasa de la part de l’or. La baixada local de pH
dona lloc a l’obertura de la nanoválvula sensible a pH del nanovehicle i amb això
l’alliberament de fleomicina (missatge de tornada) que indueix l’expressió de GFP
(senyal de sortida) en el rent.
En el sisé capítol, proposem una estratègia per establir una comunicació
lineal entre dos microorganismes diferents que no interactuen entre ells facilitada
per un nanodispositiu que actua com a traductor químic.
Finalment, les conclusions generals de la present tesi doctoral són
exposades en el capítol set. L’estudi de les capacitats comunicatives dels
nanodispositius mesoporosos funcionalitzats amb enzims permet la construcció
d’estratègies de cooperació entre diferents entitats que permeten funcionalitats
que van més enllà que aquelles dutes a terme per agents individuals. Esperem que
els resultats obtinguts inspiren aplicacions futures en diferents àrees com ara
biomedicina, nanorobots, materials que imiten la naturalesa i tecnologies de la
informació. / [EN] This PhD Thesis is focused on the design, synthesis and characterization of several hybrid organic-inorganic nanodevices using mesoporous silica nanoparticles equipped with enzymes and molecular gates which display communication capabilities as well as the design and evaluation of different communication strategies. The first chapter includes an overview of the different concepts which lay the foundations of the presented studies such as nanotechnology, mesoporous silica materials, stimuli-responsive gated materials, Janus particles and biocomputing. Basic concepts of chemical communication, materials and enabling technologies employed so far and representative examples in this field are also included. Next, in the second chapter, the general objectives of this PhD Thesis that are addressed in the following experimental chapters are presented. The third chapter shows a biocomputing delivery system based on Janus gold-mesoporous silica nanoparticles capable of chemically communicating with the environment and processing the information mimicking a demultiplexer Boolean logic function which results in a programmed cargo release. Finally, it is shown that such nanodevice is operative in complex media such as cancer cells. In the fourth chapter, it is presented a circular model of communication within a network of three different nanoparticles based on the hierarchically programmed exchange of chemical messages. The mesoporous face of nanodevice 1 (S1βgal) is loaded with the fluorescent dye [Ru(bpy)3]Cl2 and capped with disulfidecontaining oligo(ethylene glycol) chains acting as gatekeepers, whereas the enzyme β-galactosidase is attached to the gold face. In nanoparticle 2 (S2galox), the enzyme galactose oxidase is immobilized on the Au face, while the mesoporous silica is loaded with methyl 4-(bromomethyl)benzoate and the mesopores capped with a H2O2-sensitive self-immolative arylboronate derivative which forms a host-guest complex with β-cyclodextrin. Finally, the nanodevice 3 (S3est) is functionalized with the enzyme esterase on the Au face, loaded with the reductive species tris(2- carboxyethyl)phosphine hydrochloride (TCEP) in the mesoporous face and capped with a pH-responsive supramolecular nanovalve (β-cyclodextrin:benzimidazole). In the fifth chapter, it is showed an interactive model of chemical communication between an abiotic Janus nanoparticle and a living organism (Saccharomyces cerevisiae). In particular, the nanodevice is based on Janus goldmesoporous silica nanoparticles functionalized with glucose oxidase on the Au face, loaded with the genotoxin phleomycin and capped with a pH-responsive (βcyclodextrin:benzimidazole) gatekeeper. The microorganism used in the studies is an engineered budding yeast that expresses GFP under the control of the RNR3 promoter; RNR3 gene transcription is induced upon exposure to DNA-damaging agents. The interactive communication pathway starts with the addition of sucrose (input) which is hydrolyzed into glucose by invertase located in periplasmic space of yeasts and diffuses to the nanodevice where it is transformed into the corresponding acid by glucose oxidase on the Au face. The local drop in pH leads to uncapping of the pH-sensitive nanovalve in the nanocarrier and the release of phleomycin (feedback messenger) that induces GFP expression (output) in yeasts. In the sixth chapter, we propose a strategy to establish linear communication between two different non-interacting microorganisms mediated by a nanodevice which acts as a chemical “nanotranslator”. Finally, the general conclusions from this PhD Thesis are presented in chapter seven. The study of communication capabilities of enzyme-functionalized mesoporous nanodevices enables the construction of strategies of cooperation between different entities allowing sophisticated functionalities that go beyond those carried out by individual agents. We hope that the obtained results inspire future applications in different areas such as biomedicine, nanorobots, life-like materials and information technologies. / The authors wish to thank the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/AEI/FEDER, UE), CTQ2017-87954-P), the Generalitat Valenciana (PROMETEO 2018/024), the Comunidad de Madrid (IND2017/BMD7642) and CIBER-BBN (NANOCOMMUNITY project) for support. / De Luis Fernández, B. (2021). Development of enzyme-functionalized hybrid mesoporous nanodevices for advanced chemical communication [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171506 / Compendio
|
Page generated in 0.0664 seconds