1 |
Nouveaux paradigmes en dynamique de populations hétérogènes : modélisation trajectorielle, agrégation, et données empiriques / New paradigms in heterogeneous population dynamics : pathwise modeling, aggregation, and empirical evidenceKaakai, Sarah 13 December 2017 (has links)
Cette thèse porte sur la modélisation probabiliste de l’hétérogénéité des populations humaines et de son impact sur la longévité. Depuis quelques années, de nombreuses études montrent une augmentation alarmante des inégalités de mortalité géographiques et socioéconomiques. Ce changement de paradigme pose des problèmes que les modèles démographiques traditionnels ne peuvent résoudre, et dont la formalisation exige une observation fine des données dans un contexte pluridisciplinaire. Avec comme fil conducteur les modèles de dynamique de population, cette thèse propose d’illustrer cette complexité selon différents points de vue: Le premier propose de montrer le lien entre hétérogénéité et non-linéarité en présence de changements de composition de la population. Le processus appelé Birth Death Swap est défini par une équation dirigée par une mesure de Poisson à l’aide d’un résultat de comparaison trajectoriel. Quand les swaps sont plus rapides que les évènements démographiques, un résultat de moyennisation est établi par convergence stable et comparaison. En particulier, la population agrégée tend vers une dynamique non-linéaire. Nous étudions ensuite empiriquement l’impact de l’hétérogénéité sur la mortalité agrégée, en s’appuyant sur des données de population anglaise structurée par âge et circonstances socioéconomiques. Nous montrons par des simulations numériques comment l’hétérogénéité peut compenser la réduction d’une cause de mortalité. Le dernier point de vue est une revue interdisciplinaire sur les déterminants de la longévité, accompagnée d’une réflexion sur l’évolution des outils pour l’analyser et des nouveaux enjeux de modélisation face à ce changement de paradigme. / This thesis deals with the probabilistic modeling of heterogeneity in human populations and of its impact on longevity. Over the past few years, numerous studies have shown a significant increase in geographical and socioeconomic inequalities in mortality. New issues have emerged from this paradigm shift that traditional demographic models are not able solve, and whose formalization requires a careful analysis of the data, in a multidisciplinary environment. Using the framework of population dynamics, this thesis aims at illustrating this complexity according to different points of view: We explore the link between heterogeneity and non-linearity in the presence of composition changes in the population, from a mathematical modeling viewpoint. The population dynamics, called Birth Death Swap, is built as the solution of a stochastic equation driven by a Poisson measure, using a more general pathwise comparison result. When swaps occur at a faster rate than demographic events, an averaging result is obtained by stable convergence and comparison. In particular, the aggregated population converges towards a nonlinear dynamic. In the second part, the impact of heterogeneity on aggregate mortality is studied from an empirical viewpoint, using English population data structured by age and socioeconomic circumstances. Based on numerical simulations, we show how a cause of death reduction could be compensated in presence of heterogeneity. The last point of view is an interdisciplinary survey on the determinants of longevity, accompanied by an analysis on the evolution of tools to analyze it and on new modeling issues in the face of this paradigm shift.
|
2 |
Raffinement d'éléments propres approchés d'un opérateur compactAhues Blanchait, Mario Paul 06 June 1983 (has links) (PDF)
On propose quatre familles de méthodes itératives pour le raffinement d'éléments propres approches d'un opérateur compact dans un espace de Banach complexe. Ces méthodes sont de type Newton et le calcul de l'inverse de la dérivée de l'opérateur non linéaire dont on calcule un zéro est fait à l'aide de techniques fondées sur le principe de correction du résidu. Selon la précision de ce calcul, on peut atteindre une convergence quadratique, superlinéaire ou linéaire. On pressente des applications aux opérateurs intégraux à noyau continu ou faiblement singulier. Les discrétisations considérées sont les approximations de Galerkin, projection et Sloan avec ou sans quadrature - et les approximations de Fredholm et Nystroem. On donne des exemples numériques
|
3 |
Ninomiya-Victoir scheme : strong convergence, asymptotics for the normalized error and multilevel Monte Carlo methods / Schéma de Ninomiya Victoir : convergence forte, asymptotiques pour l'erreur renomalisée et méthodes de Monte Carlo multi-pasAl Gerbi, Anis 10 October 2016 (has links)
Cette thèse est consacrée à l'étude des propriétés de convergence forte du schéma de Ninomiya et Victoir. Les auteurs de ce schéma proposent d'approcher la solution d'une équation différentielle stochastique (EDS), notée $X$, en résolvant $d+1$ équations différentielles ordinaires (EDOs) sur chaque pas de temps, où $d$ est la dimension du mouvement brownien. Le but de cette étude est d'analyser l'utilisation de ce schéma dans une méthode de Monte-Carlo multi-pas. En effet, la complexité optimale de cette méthode est dirigée par l'ordre de convergence vers $0$ de la variance entre les schémas utilisés sur la grille grossière et sur la grille fine. Cet ordre de convergence est lui-même lié à l'ordre de convergence fort entre les deux schémas. Nous montrons alors dans le chapitre $2$, que l'ordre fort du schéma de Ninomiya-Victoir, noté $X^{NV,eta}$ et de pas de temps $T/N$, est $1/2$. Récemment, Giles et Szpruch ont proposé un estimateur Monte-Carlo multi-pas réalisant une complexité $Oleft(epsilon^{-2}right)$ à l'aide d'un schéma de Milstein modifié. Dans le même esprit, nous proposons un schéma de Ninomiya-Victoir modifié qui peut-être couplé à l'ordre fort $1$ avec le schéma de Giles et Szpruch au dernier niveau d'une méthode de Monte-Carlo multi-pas. Cette idée est inspirée de Debrabant et Rossler. Ces auteurs suggèrent d'utiliser un schéma d'ordre faible élevé au niveau de discrétisation le plus fin. Puisque le nombre optimal de niveaux de discrétisation d'une méthode de Monte-Carlo multi-pas est dirigé par l'erreur faible du schéma utilisé sur la grille fine du dernier niveau de discrétisation, cette technique permet d'accélérer la convergence de la méthode Monte-Carlo multi-pas en obtenant une approximation d'ordre faible élevé. L'utilisation du couplage à l'ordre $1$ avec le schéma de Giles-Szpruch nous permet ainsi de garder un estimateur Monte-Carlo multi-pas réalisant une complexité optimale $Oleft( epsilon^{-2} right)$ tout en profitant de l'erreur faible d'ordre $2$ du schéma de Ninomiya-Victoir. Dans le troisième chapitre, nous nous sommes intéressés à l'erreur renormalisée définie par $sqrt{N}left(X - X^{NV,eta}right)$. Nous montrons la convergence en loi stable vers la solution d'une EDS affine, dont le terme source est formé des crochets de Lie entre les champs de vecteurs browniens. Ainsi, lorsqu'au moins deux champs de vecteurs browniens ne commutent pas, la limite n'est pas triviale. Ce qui assure que l'ordre fort $1/2$ est optimal. D'autre part, ce résultat peut être vu comme une première étape en vue de prouver un théorème de la limite centrale pour les estimateurs Monte-Carlo multi-pas. Pour cela, il faut analyser l'erreur en loi stable du schéma entre deux niveaux de discrétisation successifs. Ben Alaya et Kebaier ont prouvé un tel résultat pour le schéma d'Euler. Lorsque les champs de vecteurs browniens commutent, le processus limite est nul. Nous montrons que dans ce cas précis, que l'ordre fort est $1$. Dans le chapitre 4, nous étudions la convergence en loi stable de l'erreur renormalisée $Nleft(X - X^{NV}right)$ où $X^{NV}$ est le schéma de Ninomiya-Victoir lorsque les champs de vecteurs browniens commutent. Nous démontrons la convergence du processus d'erreur renormalisé vers la solution d'une EDS affine. Lorsque le champ de vecteurs dritf ne commute pas avec au moins un des champs de vecteurs browniens, la vitesse de convergence forte obtenue précédemment est optimale / This thesis is dedicated to the study of the strong convergence properties of the Ninomiya-Victoir scheme, which is based on the resolution of $d+1$ ordinary differential equations (ODEs) at each time step, to approximate the solution to a stochastic differential equation (SDE), where $d$ is the dimension of the Brownian. This study is aimed at analysing the use of this scheme in a multilevel Monte Carlo estimator. Indeed, the optimal complexity of this method is driven by the order of convergence to zero of the variance between the two schemes used on the coarse and fine grids at each level, which is related to the strong convergence order between the two schemes. In the second chapter, we prove strong convergence with order $1/2$ of the Ninomiya-Victoir scheme $X^{NV,eta}$, with time step $T/N$, to the solution $X$ of the limiting SDE. Recently, Giles and Szpruch proposed a modified Milstein scheme and its antithetic version, based on the swapping of each successive pair of Brownian increments in the scheme, permitting to construct a multilevel Monte Carlo estimator achieving the optimal complexity $Oleft(epsilon^{-2}right)$ for the precision $epsilon$, as in a simple Monte Carlo method with independent and identically distributed unbiased random variables. In the same spirit, we propose a modified Ninomiya-Victoir scheme, which may be strongly coupled with order $1$ to the Giles-Szpruch scheme at the finest level of a multilevel Monte Carlo estimator. This idea is inspired by Debrabant and R"ossler who suggest to use a scheme with high order of weak convergence on the finest grid at the finest level of the multilevel Monte Carlo method. As the optimal number of discretization levels is related to the weak order of the scheme used in the finest grid at the finest level, Debrabant and R"ossler manage to reduce the computational time, by decreasing the number of discretization levels. The coupling with the Giles-Szpruch scheme allows us to combine both ideas. By this way, we preserve the optimal complexity $Oleft(epsilon^{-2}right)$ and we reduce the computational time, since the Ninomiya-Victoir scheme is known to exhibit weak convergence with order 2. In the third chapter, we check that the normalized error defined by $sqrt{N}left(X - X^{NV,eta}right)$ converges to an affine SDE with source terms involving the Lie brackets between the Brownian vector fields. This result ensures that the strong convergence rate is actually $1/2$ when at least two Brownian vector fields do not commute. To link this result to the multilevel Monte Carlo estimator, it can be seen as a first step to adapt to the Ninomiya-Victoir scheme the central limit theorem of Lindeberg Feller type, derived recently by Ben Alaya and Kebaier for the multilevel Monte Carlo estimator based on the Euler scheme. When the Brownian vector fields commute, the limit vanishes. We then prove strong convergence with order $1$ in this case. The fourth chapter deals with the convergence of the normalized error process $Nleft(X - X^{NV}right)$, where $X^{NV}$ is the Ninomiya-Victoir in the commutative case. We prove its stable convergence in law to an affine SDE with source terms involving the Lie brackets between the Brownian vector fields and the drift vector field. This result ensures that the strong convergence rate is actually $1$ when the Brownian vector fields commute, but at least one of them does not commute with the Stratonovich drift vector field
|
4 |
Evolution of cooperation in evolutionary games with the opting-out strategy and under random environmental noiseLi, Cong 07 1900 (has links)
Dans cette thèse, nous étudions les effets d'un environnement stochastique et de l'utilisation d'une stratégie d'opting-out sur l'évolution de la coopération dans les jeux évolutionnaires. La thèse contient 8 articles, dont 6 sont déjà publiés dans des revues avec comité de lecture. Outre l'introduction, la thèse est divisée en deux parties, la partie 1 composée de 5 articles et la partie 2 de 3 articles.
La partie 1 étudie l'impact de gains randomisés dans les jeux évolutionnaires. L'article 1 introduit les concepts de stabilité pour les jeux avec matrice de paiement aléatoire 2x2 dans des populations infinies avec des générations discrètes sans chevauchement dans un environnement stochastique. On y donne les conditions pour qu'un équilibre, sur la frontière ou à l'intérieur du simplexe des fréquences des stratégies, soit stochastiquement localement stable ou instable. L'article 2 étend les résultats de l'article 1 au cas où la valeur sélective est une fonction exponentielle du gain attendu suite à des interactions aléatoires par paires et montre que, de manière inattendue, le bruit aléatoire environnemental peut rompre un cycle périodique et favoriser la stabilité d'un équilibre intérieur. L'article 3 discute des effets de la sélection faible. Alors que les conditions de stabilité dans un environnement aléatoire reviennent aux conditions du cas déterministe lorsque l'intensité de la sélection diminue, les fluctuations aléatoires des gains peuvent accélérer la vitesse de convergence vers un équilibre stable sous une sélection plus faible. L'article 4 applique la théorie de la stabilité évolutive stochastique à un jeu randomisé de dilemme du prisonnier. On y montre que l'augmentation de la variance des gains de défection est propice à l'évolution de la coopération. L'article 5 étudie les jeux matriciels randomisés dans des populations finies et donne les conditions pour que la sélection favorise l'évolution de la coopération dans le contexte du jeu randomisé de dilemme du prisonnier.
La partie 2 considère un jeu répété de dilemme du prisonnier dans le cas où un comportement d'opting-out est adopté par chaque joueur dans les interactions par paires. L'article 6 étudie la dynamique évolutive de la coopération et de la défection dans ce contexte et montre une possible coexistence à long terme, en supposant une population infinie et un équilibre rapide (en fait, instantané) dans les fréquences des paires. L'article 7 rapporte des résultats expérimentaux avec 264 étudiants universitaires utilisant la stratégie d'opting-out qui soutiennent la prédiction théorique d'une coexistence à long terme de coopération et de défection. L'article 8 étend l'analyse du modèle avec la stratégie d'opting-out au cas d'une population finie et fournit une preuve rigoureuse des deux échelles de temps pour les fréquences de coopération et de défection d'une part et les fréquences de paires de stratégies d'autre part. / In this thesis, we study the effects of a stochastic environment and the use of an opting-out strategy on the evolution of cooperation in evolutionary games. The thesis contains 8 articles, among which 6 are already published in peer-reviewed journals. Apart from the introduction, the thesis is divided into two parts, Part 1 made with 5 articles and Part 2 with 3 articles.
Part 1 studies randomized payoffs in evolutionary games. Article 1 introduces stability concepts for 2x2 matrix games in infinite populations undergoing discrete, non-overlapping generations in a stochastic environment and gives conditions for an equilibrium, either on the boundary or in the interior of the simplex of all strategy frequencies, to be stochastically locally stable or unstable. Article 2 extends the results of Article 1 to the case where fitness is an exponential function of expected payoff in random pairwise interactions and shows that, unexpectedly, environmental random noise can break a periodic cycle and promote stability of an interior equilibrium. Article 3 discusses the effects of weak selection. While stability conditions in a random environment return to conditions in the deterministic case as selection intensity diminishes, random fluctuations in payoffs can accelerate the speed of convergence toward a stable equilibrium under weaker selection. Article 4 applies stochastic evolutionary stability theory to a randomized Prisoner's dilemma game and shows that increasing the variance in payoffs for defection is conducive to the evolution of cooperation. Article 5 studies randomized matrix games in finite populations and gives conditions for selection to favor the evolution of cooperation in the context of a randomized Prisoner's dilemma.
Part 2 considers a repeated Prisoner's dilemma game with an opting-out behavior adopted by every player in pairwise interactions. Article 6 studies the evolutionary dynamics of cooperation and defection in this context and shows possible long-term coexistence, assuming an infinite population and fast (actually, instantaneous) equilibrium in the pair frequencies. Article 7 reports experimental results with 264 university students using the opting-out strategy that support the theoretical prediction of a long-term coexistence of cooperation and defection. Article 8 extends the analysis of the model with the opting-out strategy to the case of a finite population and provides a rigorous proof of the two-time scales for the frequencies of cooperation and defection on one hand and the frequencies of strategy pairs on the other.
|
Page generated in 0.0677 seconds