251 |
Synthesis and Structure-Property Relationships of Polysaccharide-Based Block Copolymers and HydrogelsChen, Junyi 04 February 2020 (has links)
Polysaccharides are known as among the most abundant natural polymers on the Earth. As this class of material is usually renewable, biodegradable, biocompatible in many contexts and environmentally friendly, it is of great interest to use these benign polymers to design and prepare materials, especially for applications with green and biomedical purposes. In this dissertation we will discuss novel pathways to two different types of polysaccharide-based materials: block copolymers and hydrogels.
Block copolymers are composed of two or even more covalent bonded polymer blocks that have quite distinct properties. Synthesis of polysaccharide-based block copolymers is an attractive and challenging research topic, opening up promising application potential and requiring advances in polysaccharide regio- and chemoselectivity. Herein, we report two independent approaches to prepare these interesting and potential useful materials. In one approach, trimethyl cellulose was modified regiospecifically at the reducing end anomeric carbon to create an ω-unsaturated alkyl acetal by solvolysis with an ω-unsaturated alcohol. Then, olefin cross-metathesis, a known versatile and mild tool for polysaccharide chemical modification, was used to couple the trimethyl cellulose block with various polymer blocks containing acrylates. To demonstrate the method, trimethyl cellulose-b-poly(tetrahydrofuran), cellulose-b-poly(ethylene glycol), and cellulose-b-poly(lactic acid) were synthesized by this coupling strategy. In another approach, we introduced a simple and novel method to prepare dextran-based block copolymers. In this strategy, N-bromosuccinimide (NBS)/triphenyl phosphine (PPh3) was chosen to regioselectively brominate the only primary alcohol of linear unbranched dextran. The resulting dextran, bearing a terminal C-6 bromide, was coupled with several amine terminated polymers via SN2 substitution to obtain block copolymers, including dextran-b-polystyrene, dextran-b-poly(N-isopropylacrylamide) and dextran-b-poly(ethylene glycol). Dextran-b-poly(N-isopropylacrylamide) exhibits thermally-induced micellization as revealed by dynamic light scattering, forming micelles with 155 nm diameter at 40 °C. Dextran-b-polystyrene film was analyzed by small angle X-ray scattering, suggesting the existence of microphase separation.
This dissertation also introduces a novel, simple and effective strategy to prepare polysaccharide-based hydrogels. Hydrogels are typically crosslinked hydrophilic polymers that have high water affinity and no longer dissolve in water. Polysaccharide-based hydrogels are of great interest to for biomedical applications due to their benefits including biocompatibility, polyfunctionality, and biodegradability. Recently the Edgar group has discovered that chemoselective oxidation of oligo(hydroxypropyl)-substituted polysaccharides impairs ketone groups at the termini of the oligo(hydroxypropyl) side chains. These ketones can condense with amines to form imines, leading hydrogel formation., Based on this concept, we prepared oxidized hydroxypropyl polysaccharide/chitosan hydrogels. This class of all-polysaccharide hydrogels exhibits a series of interesting properties such as tunable moduli (300 Pa to 13 kPa), self-healing, injectability, and high swelling ratios. To further explore imine-crosslinked hydrogels, we designed thermally responsive hydrogels by using a Jeffamine, a polyethylene oxide-b-polypropylene oxide-b-polyethylene oxide triblock copolymer with two terminal amines. As the Jeffamine has a lower critical solution temperature, oxidized hydroxypropyl cellulose/Jeffamine hydrogels display moduli that are tunable by controlling the temperature. / Doctor of Philosophy / Polysaccharide are natural polymers that are among the most abundant polymers on Earth. It is greatly in society's interest to extend the scope of their applications, due to the benign nature of polysaccharides. This dissertation mainly focuses on two polysaccharides: cellulose and dextran. Cellulose is a long linear polymer of linked glucose molecules. As cellulose is sustainable, biodegradable, non-toxic, affordable and accessable for chemical modification, it is a suitable polymer for biomedical and environmentally friendly application. Dextran is also a polymer chain made up only of glucose but connected with each other differently from cellulose by, bacterial fermentation, and it may be lightly branched. It is biocompatible in many situations and is biodegradable both in vivo and in the environment, thus it has been investigated for drug delivery and many other medical applications. Using these two polysaccharides, we designed and prepared two quite different classes of materials: block copolymers and hydrogels.
Block copolymers consist of two or more different types of polymer blocks connected by strong covalent bonds. As block copolymerization enables construction of a single polymer comprising segments with distinct properties, it is appealing to synthesize a block copolymer which preserves the properties of natural polymers coupled to very different polymers, such as polyolefins (e.g. the polyethylene that is used for milk bottles). In order to prepare polysaccharide-based block copolymers, we developed two different synthetic routes to end-functionalize methyl cellulose and dextran , and these resulting products were used to prepare two independent series of polysaccharide-based block copolymers via combination (in other words, sticking the polysaccharide and, e.g., the polyethylene together end to end). This study confirms the feasibility of this method to make methyl cellulose-based and dextran-based block copolymers. We expect these classes of materials will have significant potential in applications including drug delivery, as compatibilizers for polymer blends of materials that otherwise cannot be mixed (polyolefin/polysaccharide), membrane and adhesive.
Hydrogels are crosslinked polymer networks with high water affinity, and they have been heavily investigated in the field of tissue engineering, drug delivery, agriculture and 3D printing. Polysaccharide-based hydrogels are attractive materials for these applications because they are biocompatible, biodegradable and have polyfunctionality. However, any use of toxic small molecules to crosslink the hydrogels diminishes their usefulness in biomedical applications. In this work, we demonstrate a simple, green and efficient method for preparation of all-polysaccharide-based hydrogels. The starting materials, oxidized hydroxypropylpolysaccharide, were simply prepared by using household bleach (NaOCl) as the oxidation reagent. We discovered that oxidized hydroxypropyl polysaccharides readily form hydrogels with hydrophilic amine-containing polymers like chitosan (a natural polysaccharide that comes from shells of crustaceans like crabs or shrimp) and Jeffamines, affording interesting properties including tunable stiffness, self-healing, injectability, and responsiveness to acidity and temperature. We expect that this new class of hydrogel will be very promising for biomedical-related applications.
|
252 |
Block Copolymer Solutions: Transport and Dynamics, Targeted Cargo Delivery, and Molecular Partitioning and ExchangeLi, Xiuli 23 January 2020 (has links)
Block copolymers have been extensively applied in diverse fields including packaging, electrolytes, delivery devices, and biosensors. Multiple investigations have been carried out on polymeric materials for cargo delivery purpose to understand how they behave over time. Block copolymer micelles (BCMs) have demonstrated superiority to deliver cargo, especially in drug delivery due to their encapsulation of hydrophobic agents. This dissertation will mainly study BCMs for potential applications in cargo delivery.
Methods to study BCMs, including NMR spectroscopy, relaxometry and diffusometry, can provide valuable molecular information, such as chemical structure, translational motion, inter- or intramolecular interaction, dynamics, and exchange kinetics. Therefore, this dissertation describes applications of versatile NMR methods to reveal the fundamental behaviors of block copolymer self-assemblies, such as their dynamic stability, cargo partitioning, polymer chain exchange, and chain distribution in solution.
We have investigated two BCM systems. Poly(ethylene oxide)-b-(ε-caprolactone) (PEO-PCL) is a model system to study BCM dynamic stability. PEO-PCL can self-assemble into spherical micelles at 1% w/v in D2O-THF-d8 mixed solvents. We used NMR diffusometry to quantify diffusion coefficients and populations of micelles and unimers (i.e. free polymer chains in solution) over a range of temperature (21 – 50 °C) and solvent composition (10 – 100 vol % THF-d8). By mapping the micelle-unimer coexistence phase diagrams, we are able to enhance our ability to understand and design micelle structure and dynamics. Moreover, we can also probe the chain exchange kinetics between micelles using a new technique we developed – time-resolved NMR spin-lattice relaxation (T1) or TR-NMR. This technique is an analog to time-resolved small-angle neutron scattering (TR-SANS), which can monitor specific signal intensity changes caused after mixing of isotope-labeled micelle solutions.
A second system, Pluronic® F127 (PEO99PPO69PEO99) is a test system to study BCM structure and dynamic changes upon drug uptake. Pluronic® F127 is a commercial copolymer that can solubilize different hydrophobic drugs in micelles. We successfully encapsulated three model drugs into Pluronic® F127 BCMs and investigated the effects of polymer concentration and drug composition on drug partitioning fractions. Also, we proposed to design and synthesize a series of block copolymers with varied glass transition temperatures in core-forming blocks. Using NMR diffusometry, we have measured the existing unimer concentrations in micellar solutions and correlated these results with chain mobility and internal chemical composition.
Lastly, we have extended our expertise in NMR and polymers into the study of ion-containing polymer systems (polyelectrolytes). A critical problem in polymer science is the inability to reliably measure the molecular weight of polyelectrolytes. We are developing methods to solve this problem by using NMR diffusometry, rheology, scattering, and scaling theories to accomplish general molecular weight measurements for polyelectrolytes.
In short, this dissertation describes studies to provide more perspectives on structural and dynamic properties at various time and length scales for polymeric materials. NMR measurements, in combination with many other advanced techniques, have given us a better picture of soft matter behaviors and provided guidance for synthesis and processing efforts, especially in block copolymer micelles for delivery purposes. / Doctor of Philosophy / Block copolymers have been extensively applied in diverse fields in packaging, electrolytes and nano-scale drug delivery carriers. In the area of cancer treatment, only a limited number of drug nanocarriers have been approved for clinical applications. Therefore, it is very important to understand the principles behind drug delivery for targeted purposes. There have been many studies on polymeric delivery carriers but their behaviors have not been completely understood. Therefore, we have tremendous interest in unraveling the mysteries in those polymeric systems.
Among a multitude of techniques to study block copolymer materials, the NMR method serves as a potent tool for its non-destructive, chemical-specific and isotope-selective merits. NMR can provide basic information about block copolymer self-assembly and other polymeric properties, such as chemical structure, molecular interactions and diffusion coefficients of species of interests.
Chapters 3, 4, 5, 6, and 7 have investigated different classes of polymeric materials, mainly block copolymer micelles, for their structure and stability, exchange kinetics of polymer chains or cargo, and translational properties. Greater understanding about the fundamental properties of these polymeric systems, is essential for enabling new applications and new research areas.
|
253 |
Synthesis and Characterization of Zwitterion-Containing Acrylic (Block) Copolymers for Emerging Electroactive and Biomedical ApplicationsWu, Tianyu 12 October 2012 (has links)
Conventional free radical polymerization of n-butyl acrylate with 3-[[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (SBMA) and 2-[butyl(dimethyl)amino]ethyl methacrylate methanesulfonate (BDMAEMA MS), respectively, yielded zwitterionomers and cationomers of comparable chemical structures. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM) revealed that zwitterionomers promoted more well-defined microphase-separation than cationic analogs. Dynamic mechanical analyses (DMA) of the copolymers showed a rubbery plateau region due to physical crosslinks between charges for zwitterionomers only. We attributed improved microphase-separation and superior elastomeric performance of the zwitterionomers to stronger association between covalently tethered charged pairs.
Zwitterionomer / ionic liquid binary compositions of poly(nBA-co-SBMA) and 1-ethyl-3-methylimidazolium ethylsulfate (EMIm ES) were prepared using both the 'swelling– and the –cast with– methods. Dynamic mechanical analysis revealed that the 'swollen– membranes maintained their thermomechanical performance with up to 18 wt% EMIm ES incorporation, while that of the –cast with– membranes decreased gradually as the ionic liquid concentration in the composite membranes increased. Small-angle X-ray scattering results indicated that the 'swollen– and the –cast with– membranes have different morphologies, with the ionic liquid distributed more evenly inside the –cast with– membranes. Impedance spectroscopy results showed that the –cast with– membranes had better ionic conductivity than the 'swollen– membrane at high ionic liquid concentration, in agreement with our proposed model. The results indicated that the different processing methods had a significant impact on thermomechanical properties, ionic conductivities, as well as morphologies of the zwitterionomer / ionic liquid binary compositions.
Reversible addition-fragmentation chain transfer polymerization (RAFT) strategy afforded the synthesis of well-defined poly(sty-b-nBA-b-sty). 2-(Dimethylamino)ethyl acrylate (DMAEA), a tertiary amine-containing acrylic monomer, exhibited radical chain transfer tendency toward itself, which is undesirable in controlled radical polymerization processes. We employed a higher [RAFT] : [Initiator] ratio of 20 : 1 to minimize the impact of the chain transfer reactions and yielded high molecular weight poly[sty-b-(nBA-co-DMAEA)-b-sty] with relatively narrow PDIs. The presence of the tertiary amine functionality, as well as their quaternized derivatives, in the central blocks of the triblock copolymers afforded them tunable polarity toward polar guest molecules, such as ionic liquids. Gravimetric measurements determined the swelling capacity of the triblock copolymers for EMIm TfO, an ionic liquid. DSC and DMA results revealed the impact of the ionic liquid on the thermal and thermomechanical properties of the triblock copolymers, respectively. Composite membranes of DMAEA-derived triblock copolymers and EMIm TfO exhibited desirable plateau moduli of ~ 100 MPa, and were hence fabricated into electromechanical transducers.
RAFT synthesized poly(sty-b-nBA-b-sty) triblock copolymer phase separates into long-range ordered morphologies in the solid state due to the incompatibility between the poly(nBA) phases and the poly(sty) phases. The incorporation of DMAEA into the central acrylic blocks enabled subsequent quaternization of the tertiary amines into sulfobetaine functionalities. Both DSC and DMA results suggested that the electrostatic interactions in the low Tg central blocks of poly(sty-b-nBA-b-sty) enhanced block copolymer phase separation. SAXS results indicated that the presence of the sulfobetaine functionalities in acrylate phases increased electron density differences between the phases, and led to better defined scattering profiles. TEM results confirmed that the block copolymers of designed molecular weights exhibited lamellar morphologies, and the lamellar spacing increased with the amount of electrostatic interactions for the zwitterionic triblock copolymers.
Acrylic radicals are more susceptible to radical chain transfer than their styrenic and methacrylic counterparts. Controlled radical polymerization processes (e.g. RAFT, ATRP and NMP) mediate the reactivity of the acrylic radical and enable the synthesis of well-defined linear poly(alkyl acrylate)s. However, functional groups such as tertiary amine and imidazole on acrylic monomers interfere with the controlled radical polymerization of functional acrylates. Model CFR and RAFT polymerization of nBA in the presence of triethylamine and N-methyl imidazole revealed the interference of the functional group on the polymerization of acrylate. Various RAFT agents, RAFT agent to initiator ratios, degree of polymerization and monomer feed concentrations were screened with an imidazole-containing acrylate for optimized RAFT polymerization conditions. The results suggest that the controlled radical polymerization of functional acrylates, such as 2-(dimethylamino)ethyl acrylate and 4-((3-(1H-imidazole-1-yl)propanoyl)oxy)-butyl acrylate (ImPBA), remained challenging. / Ph. D.
|
254 |
Polymeric and Polymer/Inorganic Composite Membranes for Proton Exchange Membrane Fuel CellsHill, Melinda Lou 18 April 2006 (has links)
Several types of novel proton exchange membranes which could be used for both direct methanol fuel cells (DMFCs) and hydrogen/air fuel cells were investigated in this work. One of the main challenges for DMFC membranes is high methanol crossover. Nafion, the current perfluorosulfonic acid copolymer benchmark membrane for both DMFCs and hydrogen/air fuel cells, shows very high methanol crossover. Directly copolymerized disulfonated poly(arylene ether sulfone)s copolymers doped with zirconium phosphates and phenyl phosphonates were synthesized and showed a significant reduction in methanol permeability. These copolymer/inorganic nanocomposite hybrid membranes show lower water uptake and conductivity than Nafion and neat poly(arylene ether sulfone)s copolymers, but in some cases have similar or even slightly improved DMFC performance due to the lower methanol permeability. These membranes also show advantages for high temperature applications because of the reinforcing effect of the filler, which helps to maintain the modulus of the membrane, allowing the membrane to maintain proton conductivity even above the hydrated glass transition temperature (Tg) of the copolymer. Sulfonated zirconium phenyl phosphonate additives were also synthesized, and membranes incorporating these materials and disulfonated poly(arylene ether sulfone)s showed promising proton conductivity over a wide range of relative humidities. Single-Tg polymer blend membranes were studied, which incorporated disulfonated poly(arylene ether sulfone) with varied amounts of polybenzimidazole. The polybenzimidazole served to decrease the water uptake and methanol permeability of the membranes, resulting in promising DMFC and hydrogen/air fuel cell performance. / Ph. D.
|
255 |
Crystallization and melting behavior of (ε-caprolactone)-based homopolymer and triblock copolymerArnold, Lisa 06 June 2008 (has links)
The goal of this work is to examine the applicability of the Lauritzen-Hoflinan (LH) surface nucleation theory to the crystallization kinetics of poly(ε-caprolactone), PCL. This theory has successfully predicted a number of experimental observations such as the temperature dependence of spherulitic growth rates and the inverse relation between undercooling and the lamellar thickness. Claims have appeared in the literature that analysis of growth rate data using the LH theory does not yield physically meaningful parameters. This work will show that the lateral and fold interfacial free energy parameters, σ and σₑ, found by analysis with the LH theory are related to the chemical structure of the polymer chain in the case of PCL. The fold interfacial free energy is related to the chain stiffness, and a recent proposal relates σ to the characteristic ratio, C<sub>∞</sub>. This work will examine the validity of the proposed relationship for the case of PCL. The effect of polymer chain architecture on the crystallization behavior was also investigated. The crystallization behavior of poly(ε-caprolactone) was compared and contrasted to that of a triblock copolymer containing (ε-caprolactone) blocks. / Ph. D.
|
256 |
Novel antimicrobial films based on ethylene-vinyl alcohol copolymers for food packaging applicationMuriel Galet, Virginia 16 January 2016 (has links)
Tesis por compendio / This PhD dissertation thesis has been focus on the development and characterization of
antimicrobial packaging films based on the incorporation in the polymer matrix or on
the attachment to the film surface of naturally occurring antimicrobial compounds with
the purpose of inhibiting the proliferation of microorganisms and extend the microbiological
shelf life of packaged food products.
The studied active films are based on the use of ethylene vinyl copolymers (EVOH) containing
29% (EVOH29) or 44% (EVOH44) molar percentage of ethylene as polymeric vehicle
for the incorporation of several antimicrobial compounds -oregano essential oil (OEO),
citral, ethyl lauroyl arginate (LAE), epsilon-polylysine (EPL), green tea extract (GTE) and
lysozyme. These antimicrobial agents have been incorporated in the film-forming solution
or immobilized to the film surface by covalent bonding.
Prior to the preparation of the active films, the antimicrobial activity of the selected compounds
against selected microorganism was demonstrated, confirming that they could be
good candidates to be used as preservatives for active food packaging applications, and
an alternative to synthetic additives. The effect of the incorporation of the antimicrobial
agents on relevant functional properties of the developed EVOH films was studied.
In general, the polymer properties as materials for food packaging were not relevantly
affected.
In order to evaluate the potential of EVOH matrices as sustain release systems of active
compounds, the release kinetics of the active compounds from the film to different media
was evaluated; for that the agent release rate and extend into food simulants was
monitored, and it was concluded that the agent concentration, release temperature, type
of EVOH, interaction of EVOH with the food simulant, and the solubility of the active
compound in the release media were the main controlling factors.
EVOH matrices have also shown good properties to be used for the attachment of active
molecules. In this regard, lysozyme was successfully immobilized on the film surface of
EVOH.
Several experiments were conducted to determine the antimicrobial properties of the
resulting films in vitro against different microorganisms responsible for foodborne illness
and in vivo with real foods –minimally-process salad, infant milk, surimi sticks and chicken
stock- to enhance their preservation. All the materials presented a strong in vitro antimicrobial
activity. Although the results obtained through in vivo tests showed activity
reductions caused by food matrix effects, all materials presented significant microbial
inhibition and, therefore, great potential to be used in the design of active food packaging.
They can be applied as an inner coating of the packaging structure, releasing the active
agent or acting by direct contact, producing a great protection against contamination
with a prolongation of the microbiological food shelf life. / Muriel Galet, V. (2015). Novel antimicrobial films based on ethylene-vinyl alcohol copolymers for food packaging application [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48522 / Premios Extraordinarios de tesis doctorales / Compendio
|
257 |
Non-covalent Intermolecular Interactions in Polymer Design: Segmented Copolymers to Non-viral Gene Delivery VectorsBuckwalter, Daniel James 01 June 2013 (has links)
Non-covalent intermolecular interactions play a large role in determining the properties of a given system, from segmented copolymers to interactions of functionalized polymers with non-viral nucleic acids delivery vehicles. The ability to control the intermolecular interactions of a given system allow for tailoring of that system to yield a desired outcome, whether it is a copolymers mechanical properties or the colloidal stability of a pDNA-delivery vector complex. Each chemical system relies on one or more types of intermolecular interaction such as hydrogen bonding, cooperative À-À stacking, electrostatic interactions, van der waals forces, metal-ligand coordination, or hydrophobic/solvophobic effects. The following research describes the tailoring of specific intermolecular interactions aimed at altering the physical properties of segmented copolymers and non-viral gene delivery vectors.
Amide containing segmented copolymers relies heavily on hydrogen bonding intermolecular interactions for physical crosslinking to impart the necessary microphase separated morphology responsible for a copolymers physical properties. Amide containing hard segments are composed of various chemical structures from crystalline aramids to amorphous alkyl amides with each structure possessing unique intermolecular interactions. Variations to either of the copolymer segments alters the copolymers physical properties allowing for tuning of a copolymers properties for a particular application. The synthetic strategies, structure-property relationships, and physical properties of amide containing segmented copolymers are thoroughly reported in the literature. Each class of segmented copolymer that contain amide hydrogen bonding groups exhibits a wide range of tunable properties desirable for many applications. The segmented copolymers discussed here include poly(ether-block-amide)s, poly(ether ester amide)s, poly(ester amide)s, poly(oxamide)s, PDMS polyamides, and polyamides containing urethane, urea, or imide groups.
The structure-property relationships (SPR) of poly(oxamide) segmented copolymers is not well understood with only one report currently found in literature. The effects of oxamide spacing in the hard segment and molecular weight of the soft segments in PDMS poly(oxamide) segmented copolymers demonstrated the changes in physical properties associated with minor structural variations. The optically clear PDMS poly(oxamide) copolymers possessed good mechanical properties after bulk polymerization of ethyl oxalate terminated PDMS oligomers with alkyl diamines or varied length. FTIR spectroscopy experiments revealed an ordered hydrogen bonding carbonyl stretching band for each copolymer and as the spacing between oxamide groups increased, the temperature at which the hard segment order was disrupted decreased. The increased spacing between oxamide groups also led to a decrease in the flow temperature observed with dynamic mechanical analysis. Copolymer tensile properties decrease with increased oxamide spacing as well as the hysteresis. The structure-property investigations of PDMS poly(oxamide) segmented copolymers showed that the shortest oxamide spacing resulted in materials with optimal mechanical properties.
A new class of non-chain extended segmented copolymers that contained both urea and oxamide hydrogen bonding groups in the hard segment were synthesized. PDMS poly(urea oxamide) (PDMS-UOx) copolymers displayed thermoplastic elastomer behavior with enhanced physical properties compared to PDMS polyurea (PDMS-U) controls. Synthesis of a difunctional oxamic hydrazide terminated PDMS oligomer through a two-step end capping procedure with diethyl oxalate and hydrazine proved highly efficient. Solution polymerization of the oxamic hydrazide PDMS oligomers with HMDI afforded the desired PDMS-UOx segmented copolymer, which yielded optically clear, tough elastomeric films. Dynamic mechanical analysis showed a large temperature insensitive rubbery plateau that extended up to 186 ÚC for PDMS-UOx copolymers and demonstrated increased rubbery plateau ranges of up to 120 ÚC when compared to the respective PDMS-U control. The increase in thermomechanical properties with the presence of oxamide groups in the hard segment was due to the increased hydrogen bonding, which resulted in a higher degree of microphase separation. DMA, SAXS, and AFM confirmed better phase separation of the PDMS-UOx copolymers compared to PDMS-U controls and DSC and WAXD verified the amorphous character of PDMS-UOx. Oxamide incorporation showed a profound effect on the physical properties of PDMS-UOx copolymers compared to the controls and demonstrated promise for potential commercial applications.
Two novel segmented copolymers based on a poly(propylene glycol) (PPG) that contained two or three oxamide groups in the hard segment were synthesized. Synthesis of non-chain extended PPG poly(trioxamide) (PPG-TriOx) and PPG poly(urea oxamide) (PPG-UOx) segmented copolymers utilized the two-step end-capping procedure with diethyl oxalate and hydrazine then subsequent polymerization with oxalyl chloride or HMDI, respectively. The physical properties of the PPG-TriOx and PPG-UOx copolymers were compared to those of PPG poly(urea) (PPG-U) and poly(oxamide) (PPG-Ox) copolymers. FTIR studies suggested the presence of an ordered hydrogen bonded hard segment for PGG-TriOx and PPG-Ox copolymers with PPG-TriOx possessing a lower energy ordered hydrogen bonding structure. PPG-UOx copolymers exhibited a larger rubbery plateau and higher moduli compared to PPG-U copolymers and also a dramatic increase in the tensile properties with the increased hydrogen bonding. The described copolymers provided a good example of the utility of this new step-growth polymerization chemistry for producing segmented copolymers with strong hydrogen bonding capabilities.
Non-viral nucleic acid delivery has become a hot field in the past 15 years due to increased safety, compared to viral vectors, and ability to synthetically alter the material properties. Altering a synthetic non-viral delivery vector allows for custom tailoring of a delivery vector for various therapeutic applications depending on the target disease. The types of non-viral delivery vectors are diverse, however the lack of understanding of the endocytic mechanisms, endosomal escape, and nucleic acid trafficking is not well understood. This lack of understanding into these complex processes limits the effective design of non-viral nucleic acid delivery vehicles to take advantage of the cellular machinery, as in the case of viral vectors.
Mechanisms for cellular internalization of polymer-nucleic acid complexes are important for the future design of nucleic acid delivery vehicles. It is well known that the mammalian cell surface is covered with glycosaminoglycans (GAG) that carry a negative charge. In an effort to probe the effect of GAG charge density on the affinity of cationic poly(glcoamidoamine) (PGAA)-pDNA complexes, quartz crystal microbalance was employed to measure the mass of GAGs that associated with a polyplex monolayer. Affinity of six different GAGs that varied in the charge density were measured for polyplexes formed with poly(galactaramidopentaethylenetetramine) (G4) cationic polymers and pDNA. Results showed that the affinity of GAGs for G4 polyplexes was not completely dependent on the electrostatic interactions indicating that other factors contribute to the GAG-polyplex interactions. The results provided some insight into the interactions of polyplexes with cell surface GAGs and the role they play in cellular internalization.
Two adamantane terminated polymers were investigated to study the non-covalent inclusion complexation with click cluster non-viral nucleic acid delivery vehicles for passive targeting of the click cluster-pDNA complexes (polyplex). Incorporation of adamantyl terminated poly(ethylene glycol) (Ad-PEG) and poly(2-deoxy-2-methacrylamido glucopyranose) (Ad-pMAG) polymers into the polyplex formulation revealed increased colloidal stability under physiological salt concentrations. Ad-pMAG polyplexes resulted in lower cellular uptake for HeLa cells and not two glioblastoma cell lines indicating the pMAG corona imparts some cell line specificity to the polyplexes. Ad-pMAG provided favorable biological properties when incorporated into the polyplexes as well as increased polyplex physical properties. / Ph. D.
|
258 |
Functional Block Copolymers via Anionic Polymerization for Electroactive MembranesSchultz, Alison 17 June 2013 (has links)
Ion-containing block copolymers blend ionic liquid properties with well-defined polymer architectures. This provides conductive materials with robust mechanical stability, efficient processability, and tunable macromolecular design. Conventional free radical polymerization and anion exchange achieved copolymers containing n-butyl acrylate and phosphonium ionic liquids. These compositions incorporated vinylbenzyl triphenyl phosphonium and vinylbenzyl tricyclohexyl phosphonium cations bearing chloride (Cl), or bis(trifluoromethane sulfonyl)imide (Tf2N) counteranions. Differential scanning calorimetry and dynamic mechanical analysis provided corresponding thermomechanical properties. Factors including cyclic substituents, counteranion type, as well as ionic concentration significantly influenced phosphonium cation association.
1, 1\'-(1, 4-Butanediyl)bis(imidazole) neutralized NexarTM sulfonated pentablock copolymers and produced novel electrostatically crosslinked membranes. Variable temperature FTIR and 1H NMR spectroscopy confirmed neutralization. Atomic force microscopy and small angle X-ray scattering studied polymer morphology and revealed electrostatic crosslinking characteristics. Tensile analysis, dynamic mechanical analysis, thermogravimetric analysis, and vapor sorption thermogravimetric analysis investigated polymer properties. The neutralized polymer demonstrated enhanced thermal stability, decreased water adsorption, and well-defined microphase separation. These findings highlight NexarTM sulfonated pentablock copolymers as reactive platforms for novel, bis-imidazolium crosslinked materials.
4-Vinylbenzyl piperidine is a novel styrenic compound that observably autopolymerizes. In situ FTIR spectroscopy monitored styrene and 4-vinylbenzyl piperidine thermal polymerizations. A pseudo-first-order kinetic treatment of the thermal polymerization data provided observed rate constants for both monomers. An Arrhenius analysis derived thermal activation energy values. 4-Vinylbenzyl piperidine exhibited activation energy 80 KJ/mol less than styrene. The monomer differs from styrene in its piperidinyl structure. Consequently, in situ FTIR spectroscopy also monitored styrene thermal polymerization with variable N-benzyl piperidine concentrations. Under these circumstances, styrene revealed activation energy 60 KJ/mol less than its respective bulk value. The similarities in chemical structure between styrene and 4-vinylbenzyl piperidine suggested thermally initiated polymerization occurred by the Mayo mechanism. The unique substituent is proposed to offer additional cationic effects for enhancing polymerization rates.
Living anionic polymerization of 4-vinylbenzyl piperidine achieved novel piperidinyl-containing polymers. Homopolymer and copolymer architectures of this design offer structural integrity, and emphasize base stability. Sequential anionic polymerization afforded a 10K g/mol poly(tert-butyl styrene-co-4-vinylbenzyl piperidine) diblock and a 50K poly(tert-butyl styrene-co-isoprene-co-4-vinylbenzyl piperidine) triblock. Alkylation studies involving a phosphonium bromide salt demonstrated the future avenues for piperidinium based polymer designs. These investigations introduce piperidinyl macromolecules as paradigms for a new class of ammonium based ionic materials. / Master of Science
|
259 |
Polymeric Complexes and Composites for Aerospace and Biomedical ApplicationsZhang, Rui 01 August 2018 (has links)
Polymers, among metals and ceramics, are major solid materials which are widely used in all kinds of applications. Polymers are of particular interest because they can be tailored with desirable properties. Polymer-based complexes and composites, which contain both the polymers and other components such as metal oxide/salts, are playing a more and more important role in the material fields. Such complexes and composites may display the benefits of both the polymer and other materials, endowing them with excellent functionalities for targeted applications.
In this dissertation, a great deal of research was conducted to synthesize novel polymers and build polymeric complexes and composites for biomedical and aerospace applications. In chapter 3, two methods were developed and optimized to fabricate sub-micron high-performance polymer particles which were subsequently used to coat onto functional carbon fibers via electrostatic interactions, for the purpose of fabricating carbon fiber reinforced polymer composites. In chapter 4, a novel Pluronic® P85-bearing penta-block copolymer was synthesized and formed complexes with magnetite. The complexes displayed non-toxicity to cells normally but were able to selectively kill cancer cells without killing normal cells when subjected to a low-frequency alternating current magnetic field. Such results demonstrated the potential of such polymeric complexes in cancer treatment. Chapter 5 described the synthesis of several ionic graft copolymers primarily bisphosphonate-containing polymers, and the fabrication of polymer-magnetite complexes. The in-depth investigation results indicated the capability of the complexes for potential drug delivery, imaging, and other biomedical applications. Chapter 6 described additional polymer synthesis and particle or complex fabrication for potential drug delivery and imaging, as well as radiation shielding. / PHD / Polymers, metals, and ceramics are three major classes of solid materials that are used every day and everywhere. Polymers are of particular significance because they can be tailored to possess certain desirable properties, and, hence, they are playing a more and more important role as substitutes for metals and ceramics in a wide array of applications. Engineering and high-performance polymers were synthesized with excellent properties for biomedical and aerospace applications.
Polymers can be fabricated into composites and complexes which contain not only polymers but also other materials, such as metal oxides/salts, carbon fibers, glass fibers, etc. When composites and complexes are made with sufficient stability, the materials may display the advantages of each component, making them more promising for specific applications.
In this dissertation, effort was focused on developing versatile polymer-based complexes and composites for aerospace and biomedical applications. Chapter 3 describes the fabrication of sub-micron high-performance polymer particles by two methods and they were subsequently coated onto functional carbon fibers for making composites. Chapter 4 describes the synthesis of a novel copolymer that formed complexes with magnetite nanoparticles. The complexes were able to selectively kill cancerous cells without killing normal cells when exposed to an external magnetic field, and thus these materials have potential for cancer treatment. Chapter 5 describes the fabrication of phosphonate-bearing ionic copolymer-magnetite complexes and their potential applications in drug delivery, imaging, and other biomedical applications. Chapter 6 describes the synthesis of polymers and their corresponding complexes for potential drug delivery and imaging, as well as potential radiation shielding applications.
|
260 |
Chemical and Physical Modifications of Semicrystalline Gels to Achieve Controlled HeterogeneityAnderson, Lindsey J. 07 February 2019 (has links)
Sulfonated polyaromatic hydrocarbon membranes have emerged as desirable candidates for proton exchange membranes (PEMs) due to their excellent mechanical properties, high thermal and chemical stability, and low cost. Specifically, sulfonated multiblock copolymers are attractive because their phase-separated morphologies aide in facile proton transport. In this work, the functionalization of semicrystalline gels of poly(ether ether ketone) (PEEK) is explored as a novel post-polymerization method to prepared blocky copolymers, and the effect of copolymer architecture on membrane physical properties, structure, and performance is extensively investigated. First, the blocky sulfonation of PEEK was explored to prepare blocky copolymers (SPEEK) with densely sulfonated domains and unfunctionalized, crystallizable domains. Compared to random SPEEK ionomers at similar ion content, blocky SPEEK exhibited enhanced crystallizability, decreased melting point depression, and faster crystallization kinetics. Phase separation between the hydrophilic sulfonated blocks and hydrophobic PEEK blocks, aided by polymer crystallization, resulted in enhanced water uptake, superior proton conductivity, and more closely associated ionic domains than random SPEEK.
Furthermore, the random and blocky bromination of PEEK was investigated to prepare PEEK derivatives (BrPEEK) with reactive aryl-bromides. Spectroscopic evidence revealed long domains of unfunctionalized homopolymer for blocky BrPEEK, and this translated to an increased degree of crystallinity, higher melting temperature, and more rapid crystallization kinetics than random BrPEEK at similar degrees of bromination. The subsequent sulfonation of blocky BrPEEK resulted in a hydrophilic-hydrophobic blocky copolymer with clear multi-phase behavior. The phase-separated morphology contributed to decreased water uptake and areal swelling compared to random SPEEK and resulted in considerably higher proton conductivity at much lower hydration levels. Moreover, Ullmann coupling introduced superacidic perfluorosulfonic acid side chains to the BrPEEK backbone, which yielded membranes with less water content and less dimensional swelling than random SPEEK. Superior proton transport than random SPEEK was observed due to the superacid side chain and wider hydrophilic channels within the membranes, resulting in more continuous pathways for proton transport.
Overall, this work provided a novel platform for the preparation of functionalized PEEK membranes using a simple post-polymerization functionalization procedure. The established methods produced blocky-type copolymers with properties reminiscent of multiblock copolymers prepared by direct polymerization from monomers/oligomers. / PHD / Block copolymers are an important class of polymers that are composed of two or more blocks of distinct polymeric segments covalently tethered to one another. Dissimilarity in the chemical nature of the blocks leads to self-organization into well-defined structures, and this unique structural order imparts material properties that are different from (and often superior to) the properties of the individual blocks alone. Thus, block copolymers are advantageous for a diverse array of applications including membranes, gas separation, water purification, medical devices, etc. Although considerable synthetic progress has been made towards discovering novel methods to prepare block copolymers, their widespread use is somewhat limited by the complex, energy-intensive procedures necessary to precisely control the block sequencing during polymerization. In this dissertation, a straightforward, inexpensive physical procedure is explored to synthesize blocky copolymers with controlled sequencing from commercially available polymers. This process relies on performing reactions in the gel state, whereby segments of the polymer chain are effectively shielded from the functionalizing chemistry. In particular, the gel state sulfonation and bromination of poly(ether ether ketone), a high performance polymer, is investigated to develop novel, blocky materials for membrane applications. This work not only expands the methodology towards the synthesis of block copolymers, but alaso provides critical insight into the effect of copolymer architecture on membrane physical properties, structure, and performance. Furthermore, this work provides an economically feasible method to prepare blocky copolymers from commercially derived materials, thereby providing a means to progress the widespread use of block copolymers in industry.
|
Page generated in 0.0467 seconds