• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 62
  • 27
  • 13
  • 10
  • 10
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 327
  • 80
  • 47
  • 37
  • 36
  • 34
  • 34
  • 33
  • 30
  • 29
  • 28
  • 24
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

One-dimensional bosonization approach to higher dimensions

Zyuzin, Vladimir Alexandrovich 22 February 2013 (has links)
This dissertation is devoted to theoretical studies of strongly interacting one-dimensional and quasi one-dimensional electron systems. The properties of one-dimensional electron systems can be studied within the bosonization technique, which presents fermions as collective bosonic density excitations. The power of this approach is the ability to treat electron-electron interaction exactly in the low-energy limit. The approach predicts the failure of Fermi liquid and an absence of long-range order in one-dimensions. The low-energy description of one-dimensional interacting systems is called the Tomonaga-Luttinger liquid theory. For example, the edges of quantum Hall systems are one-dimensional and described by a chiral Tomonaga-Luttinger liquid. Another example is a quantum spin Hall system with helical edge states, which are also described by a Tomonaga-Luttinger liquid. In our first work, a study of magnetized edge states of quantum spin-Hall system is presented. A magnetic field dependent signature of such edges is obtained, which can be verified in a Coulomb drag experiment. The second part of the dissertation is devoted to quasi-one dimensional antiferromagnetic lattices. A spatially anisotropic lattice antiferromagnet can be viewed as an array of one dimensional spin chains coupled in a way to match the lattice symmetry. This allows to use the non-Abelian bosonization technique to describe the low-energy physics of spin chains and study the inter-chain interactions perturbatively. The work presented in the dissertation studies the effect of Dzyaloshinskii-Moriya interaction on the magnetic phase diagram of the spatially anisotropic kagome antiferromagnet. We predict a Dzyaloshinskii-Moriya interaction driven phase transition from Neel to Neel+dimer state. In the third work, a novel model of the fractional quantum Hall effect is given. Wave functions of two-dimensional electrons in strong and quantizing magnetic field are essentially one-dimensional. That invites one to use the one-dimensional phenomenological bosonization to describe the density fluctuations of the two-dimensional interacting electrons in magnetic field. Remarkably, the constructed trial bosonized fermion operator describing the electron states with a fixed Landau gauge momentum is effectively two-dimensional. / text
52

Magnetic field enhancement of Coulomb blockade conductance oscillations in metal-metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithography

Wiemeri, Jeffrey Charles 28 August 2008 (has links)
Not available / text
53

Hot Carriers in Graphene

Song, Justin Chien Wen 22 October 2014 (has links)
When energy relaxation between electrons and the lattice is slow, an elevated electronic temperature different from that of the lattice persists. In this regime, hot charge carriers control the energy transport in a material. In this thesis, I show how hot carriers can dominate graphene's response enabling it to exhibit novel properties. First, I examine how light is converted to electrical currents in graphene and show that hot carriers play an integral role in this multi-stage process. I show that photocurrent in graphene p-n junctions is dominated by a Photo-thermoelectric effect in which a light-induced elevated hot carrier temperature drives a thermoelectric current. Furthermore, I show that the generation and cooling of hot carriers in graphene during photoexcitation proceeds in an unusual way. In the former, carrier-carrier scattering dominates the initial photoexcitation cascade enabling efficient hot carrier generation. In the latter, a new cooling mechanism - disorder-assisted scattering (supercollisions) - dominates electron-lattice cooling over a wide range of temperatures (including room temperature). Second, I examine the transport characteristics of double layer graphene heterostructures (specifically, G/h-BN/G heterostructures). I show that Coulomb coupling results in vertical (out-of-plane) energy transfer between electrons in proximal (but electrically insulated) graphene layers. This couples lateral (in-plane) charge and energy transport of electrons in the two layers to give rise to a new energy-driven Coulomb drag (inter-layer transresistance) that dominates when the two layers are at charge neutrality. Third, I examine energy transport in charge neutral graphene. I show that the combination of fast carrier-carrier scattering, high electronic quality, and slow electron-lattice cooling (hot carriers) gives rise to a regime of ballistic heat transport. This manifest as electronic energy waves with velocity on the order of graphene's Fermi velocity. The new phenomena enabled by hot carriers and the ideas/approaches described in this thesis provide a basis with which to exploit hot carrier effects in graphene and opens new vistas for controlling and harnessing energy flows on the nanoscale. / Engineering and Applied Sciences
54

An analytic-numerical scheme for a collisional Fokker-Planck time dependent sheath-presheath structure

Dansereau, Jeffrey Paul 12 1900 (has links)
No description available.
55

A non-variational approach to the quantum three-body coulomb problem /

Chi, Xuguang. January 2004 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 131-137). Also available in electronic version. Access restricted to campus users.
56

Präparation und elektrische Charakterisierung elektrostatisch gekoppelter Quantendotsysteme - Eine Realisierung des Anderson-Störstellenmodells eine Realisierung des Anderson-Störstellenmodells /

Wilhelm, Ulf. January 2000 (has links)
Stuttgart, Univ., Diss., 2000.
57

Einfluß von Gitterfluktuationen und Coulomb-Wechselwirkung auf die linear optischen Eigenschaften von Polyacetylen /

Starke, Birgit. Unknown Date (has links)
Humboldt-Universiẗat, Diss., 1997--Berlin.
58

Magnetic field enhancement of Coulomb blockade conductance oscillations in metal-metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithography /

Wiemeri, Jeffrey Charles, Shih, Chih-Kang, January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Chih-Kang Ken Shih. Vita. Includes bibliographical references.
59

Stark broadening in laser-produced plasmas full Coulomb calculation /

Woltz, Lawrence A., January 1982 (has links)
Thesis (Ph. D.)--University of Florida, 1982. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 72-74).
60

Novel simulation methods for Coulomb and hydrodynamic interactions

Pasichnyk, Igor. Unknown Date (has links) (PDF)
University, Diss., 2004--Mainz.

Page generated in 0.0394 seconds