• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charged systems in, out of, and driven to equilibrium : from nanocapacitors to cement / Systèmes chargés à l'équilibre, hors d'équilibre et pilotés : des nanocondensateurs au ciment

Palaia, Ivan 15 November 2019 (has links)
La plupart des systèmes en matière molle sont en contact avec des solutions contenant des espèces chargées. Certains d’entre eux sont bien décrits par des théories de champ moyen, d’autres nécessitent des approches plus fines qui tiennent compte des corrélations entre ions.Dans la première partie de cette thèse, nous analysons la dynamique de relaxation d’un nanocondensateur. Les techniques analytiques et numériques utilisées relèvent du champ moyen (formalisme de Poisson-Nernst-Planck). Nous étudions les temps caractéristiques de relaxation dans les régimes linéaire et non linéaire et caractérisons le comportement du système en fonction de la concentration en sel et du potentiel appliqué. Les géométries planaire et coaxiale sont traitées. Nous nous intéressons ensuite au problème de concevoir un protocole temporel pour le potentiel appliqué, capable de piloter le système d’un état d’équilibre à un autre, que ce soit pour accélérer le processus de formation de la double couche électrique ou celui d’instauration d’un flux électroosmotique.Dans la deuxième partie, nous abordons la physique des systèmes chargés corrélés, avec une attention particulière pour le phénomène d’attraction entre charges du même signe. Nous élaborons une théorie qui décrit les systèmes sans sel à l’équilibre, quelle que soit la valeur du paramètre de couplage électrostatique. Inspirée en partie par le concept du trou de corrélation et en partie par un formalisme à la Poisson-Boltzmann, la théorie satisfait nombre de résultats exacts et elle peut être facilement résolue numériquement.Dans la troisième partie, nous développons la théorie du couplage fort pour les constituants nanoscopiques du ciment. Après avoir présenté l’histoire et l’état de l’art dans notre compréhension de la physique de cet omniprésent matériau, nous analysons des simulations de dynamique moléculaire de l’interface entre plaquettes de C-S-H. Nous montrons que la grande force de cohésion observée est due à une baisse de la permittivité diélectrique sous confinement, ce qui augmente l’importance des corrélations. Nous étudions la statistique du phénomène d’hydratation des ions, et finalement obtenons de façon analytique la pression en fonction de la distance entre plaquettes, en excellent accord avec les simulations. / Most systems in soft matter are immersed in solutions with charged species. Some of them can be described by mean-field techniques, while others require more sophisticated treatments that account for correlations between ions.In the first part of this thesis, we analyze the relaxation dynamics of a nanocapacitor. We use analytical and numerical techniques within mean-field (so-called Poisson-Nernst-Planck formalism). We study characteristic relaxation times in the linear and nonlinear regime and characterize the behavior of the system as a function of salt density and applied voltage. Both the parallel plate and the coaxial geometries are examined. The problem of designing a smart time-dependent applied potential, to drive the system from an initial to a final equilibrium state is also tackled, with regard to both the electric double layer build-up process and the establishment of an electroosmotic flow.In the second part, the physics of correlated charged systems is presented, with particular focus on the like-charge attraction phenomenon. We develop a theory describing salt-free systems, at arbitrary value of the electrostatic coupling parameter. Inspired partly by the correlation-hole concept and partly by the Poisson-Boltzmann formalism, the theory satisfies a number of exact requirements and can be easily solved numerically.In the third part, we develop the theory of strong coupling for the nanoscopic constituents of set cement. After introducing the history and the present understanding of the physics behind this omnipresent material, we analyze molecular dynamics simulations of the interface between C-S-H platelets (Calcium Silicate Hydrate). We show that the strong cohesion force observed is ultimately due to a decrease in the dielectric permittivity under confinement, which enhances correlations. We study the statistics of ion hydration and obtain analytically the pressure as a function of inter-platelet distance, in excellent agreement with simulations.
2

Injection et détection de charges dans des nanostructures semiconductrices par Microscopie à Force Atomique

Dianoux, Raphaelle 21 December 2004 (has links) (PDF)
Les nanostructures semiconductrices isolées possèdent la propriété de confiner les charges sur des temps longs. La rétention de charges dépend de plusieurs paramètres tels que la taille de la nanostructure, la densité et la qualité de l'interface avec le diélectrique. Nous avons exploré ces propriétés à l'aide d'un AFM à l'air par microscopie à force électrostatique (EFM). L'EFM permet d'injecter des charges localement puis de sonder avec une sensibilité de quelques dizaine d'électrons seulement les comportements individuel aussi bien que collectif des nanostructures. Nous avons caractérisé l'interaction pointe-surface non-linéaire pour un couplage électrostatique, puis avons étudié le comportement de nanostructures de Si ou Ge déposées sur du SiO2. Nous avons mis en évidence d'une part la saturation du nuage de charge dans un nappe de nanocristaux, et d'autre part la propagation inhomogène de la charge à l'échelle de l'heure dans une nappe de nanocristaux plus dense.

Page generated in 0.1788 seconds