1 |
Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D / Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equationsKoumaiha, Marwa 19 July 2017 (has links)
Cette thèse est composée de deux parties dans lesquelles nous étudions d'une part des estimations d'erreurs pour des schémas numériques associés à des équations de Hamilton-Jacobi du premier ordre. D'autre part, nous nous intéressons a l'étude de la stabilité et de la contrôlabilité exacte frontière indirecte des équations d'onde couplées.Dans un premier temps, en utilisant la technique de Crandall-Lions, nous établissons une estimation d'erreur d'un schéma numérique monotone aux différences finies pour des conditions de jonction dites a flux limité, pour une équation de Hamilton-Jacobi du premier ordre. Ensuite, nous montrons que ce schéma numérique peut être généralisé à des conditions de jonction générales. Nous établissons alors la convergence de la solution discrétisée vers la solution de viscosité du problème continu. Enfin, nous proposons une nouvelle approche, à la Crandall-Lions, pour améliorer les estimations d'erreur déjà obtenues, pour une classe des Hamiltoniens bien choisis. Cette approche repose sur l'interprétation du type contrôle optimal de l'équation de Hamilton-Jacobi considérée.Dans un second temps, nous étudions la stabilisation et la contrôlabilité exacte frontière indirecte d'un système monodimensionnel d’équations d'ondes couplées. D'abord, nous considérons le cas d'un couplage avec termes de vitesses, et par une méthode spectrale, nous montrons que le système est exactement contrôlable moyennant un seul contrôle à la frontière. Les résultats dépendent de la nature arithmétique du quotient des vitesses de propagation et de la nature algébrique du terme de couplage. De plus, ils sont optimaux. Ensuite, nous considérons le cas d'un couplage d'ordre zéro et nous établissons un taux polynômial optimal de la décroissance de l'énergie. Enfin, nous montrons que le système est exactement contrôlable moyennant un seul contrôle à la frontière / The aim of this work is mainly to study on the one hand a numerical approximation of a first order Hamilton-Jacobi equation posed on a junction. On the other hand, we are concerned with the stability and the exact indirect boundary controllability of coupled wave equations in a one-dimensional setting.Firstly, using the Crandall-Lions technique, we establish an error estimate of a finite difference scheme for flux-limited junction conditions, associated to a first order Hamilton-Jacobi equation. We prove afterwards that the scheme can generally be extended to general junction conditions. We prove then the convergence of the numerical solution towards the viscosity solution of the continuous problem. We adopt afterwards a new approach, using the Crandall-Lions technique, in order to improve the error estimates for the finite difference scheme already introduced, for a class of well chosen Hamiltonians. This approach relies on the optimal control interpretation of the Hamilton-Jacobi equation under consideration.Secondly, we study the stabilization and the indirect exact boundary controllability of a system of weakly coupled wave equations in a one-dimensional setting. First, we consider the case of coupling by terms of velocities, and by a spectral method, we show that the system is exactly controllable through one single boundary control. The results depend on the arithmetic property of the ratio of the propagating speeds and on the algebraic property of the coupling parameter. Furthermore, we consider the case of zero coupling parameter and we establish an optimal polynomial energy decay rate. Finally, we prove that the system is exactly controllable through one single boundary control
|
2 |
Parametric Interaction in Josephson Junction Circuits and Transmission LinesMohebbi, Hamid Reza 06 November 2014 (has links)
This research investigates the realization of parametric amplification in superconducting circuits and structures where nonlinearity is provided by Josephson junction (JJ) elements. We aim to develop a systematic analysis over JJ-based devices toward design of novel traveling-wave Josephson parametric amplifiers (TW-JPA). Chapters of this thesis fall into three categories: lumped JPA, superconducting periodic structures and discrete Josephson transmission lines (DJTL).
The unbiased Josephson junction (JJ) is a nonlinear element suitable for parametric amplification through a four-photon process. Two circuit topologies are introduced to capture the unique property of the JJ in order to efficiently mix signal, pump and idler signals for the purpose of signal amplification. Closed-form expressions are derived for gain characteristics, bandwidth determination, noise properties and impedance for this kind of parametric power amplifier. The concept of negative resistance in the gain formulation is observed. A design process is also introduced to find the regimes of operation for gain achievement. Two regimes of operation, oscillation and amplification, are highlighted and distinguished in the result section. Optimization of the circuits to enhance the bandwidth is also carried out.
Moving toward TW-JPA, the second part is devoted to modelling the linear wave propagation in a periodic superconducting structure. We derive closed-form equations for dispersion and s-parameters of infinite and finite periodic structures, respectively. Band gap formation is highlighted and its potential applications in the design of passive filters and resonators are discussed. The superconducting structures are fabricated using YBCO and measured, illustrating a good correlation with the numerical results.
A novel superconducting Transmission Line (TL), which is periodically loaded by Josephson junctions (JJ) and assisted by open stubs, is proposed as a platform to realize a traveling-wave parametric device. Using the TL model, this structure is modeled by a system of nonlinear partial differential equations (PDE) with a driving source and mixed-boundary conditions at the input and output terminals, respectively. This model successfully emulates parametric and nonlinear microwave propagation when long-wave approximation is applicable. The influence of dispersion to sustain three non-degenerate phased-locked waves through the TL is highlighted.
A rigorous and robust Finite Difference Time Domain (FDTD) solver based on the explicit Lax-Wendroff and implicit Crank-Nicolson schemes has been developed to investigate the device responses under various excitations. Linearization of the wave equation, under small-amplitude assumption, dispersion and impedance analysis is performed to explore more aspects of the device for the purpose of efficient design of a traveling-wave parametric amplifier.
Knowing all microwave characteristics and identifying different regimes of operation, which include impedance properties, cut-off propagation, dispersive behaviour and shock-wave formation, we exploit perturbation theory accompanied by the method of multiple scale to derive the three nonlinear coupled amplitude equations to describe the parametric interaction. A graphical technique is suggested to find three waves on the dispersion diagram satisfying the phase-matching conditions. Both cases of perfect phase-matching and slight mismatching are addressed in this work. The incorporation of two numerical techniques, spectral method in space and multistep Adams-Bashforth in time domain, is employed to monitor the unilateral gain, superior stability and bandwidth of this structure. Two types of functionality, mixing and amplification, with their requirements are described. These properties make this structure desirable for applications ranging from superconducting optoelectronics to dispersive readout of superconducting qubits where high sensitivity and ultra-low noise operation is required.
|
Page generated in 0.3598 seconds