• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 44
  • 36
  • 35
  • 22
  • 21
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 360
  • 67
  • 64
  • 47
  • 45
  • 42
  • 39
  • 38
  • 34
  • 33
  • 31
  • 29
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Modélisation de la propagation et de la réception des ondes élastiques émises par un défaut sous contrainte. Application à la simulation des contrôles non destructifs par émission acoustique / Modeling of the propagation and reception of elastic waves emitted by a crack under stress. Application to the simulation of non-destructive testing by Acoustic Emission

Ben Khalifa, Warida 05 March 2013 (has links)
Le contrôle non destructif (CND) par émission acoustique (EA) est utilisé dans un grand nombre de domaines tels l’énergie nucléaire, le secteur pétrolier et gazier, le génie civil ou l’industrie mécanique afin de vérifier l’intégrité des structures sous contrainte. Selon le rapport entre la longueur d’onde et l’épaisseur de la structure, l’énergie libérée par un défaut sous contrainte peut se propager sous forme d’ondes guidées (cas des structures minces) ou sous forme d’onde de Rayleigh (cas des structures épaisses). L’analyse des signaux issus de cette méthode ultrasonore « passive » présente des difficultés liées principalement à la complexité des signaux typiquement mesurés. L’objectif de la thèse est de développer des modèles permettant la simulation d’expériences de CND par EA dans le cas des structures épaisses ou minces. Les modèles développés sont basés sur un couplage entre un modèle de source d’EA, un modèle de propagation des ondes et un modèle de capteur d’EA. Dans le cas des structures épaisses, deux modèles 2D (concernant le contrôle de pièces de surface plane et cylindrique) et un modèle 3D (surface plane) ont été développés afin de prédire le signal correspondant à l’onde de Rayleigh émise par un défaut sous contraintes. Concernant les structures minces, un modèle 2D a été développée permettant de prédire le signal correspondant aux modes guidés émis par une fissure sous contrainte. Plusieurs études paramétriques ont été menées afin de définir l’influence des différentes données d’entrée des modèles sur les signaux d’EA et ainsi aider à l’interprétation des contrôles par EA. / AE Non-destructive testing is used in many fields such as nuclear energy, oil and gas, civil engineering or mechanical engineering to check the integrity of structures under stress. Depending on the ratio of structure thickness to wavelength, the energy released by a crack under stress can propagate either as guided waves (in thin structures) or as Rayleigh wave (in thick structures). The analysis of signals resulting from this ultrasonic "passive" method is particularly difficult due to the complexity of typically measured signals. The objective of this thesis is to develop models to enable the simulation of AE testing experiments in the case of thick or thin structure. The developed models rely on the coupling between an AE source model, wave propagation models and an AE Sensor model. In the case of thick structures two 2D models (for plane and cylindrical surfaces) and a 3D model (for plane surface) have been developed to predict the signal corresponding to the Rayleigh wave emitted by a crack under stress. In the case of thin structures, a 2D model has been developed to predict the signal corresponding to the guided modes emitted by a crack under stress. Several parametric studies have been conducted to determine the influence of the different model input data on the AE signals and thus help to interpret AE testing results.
232

Rupture et fusion d'un cristal bidimensionnel

Pauchard, Ludovic 28 February 1997 (has links) (PDF)
Le systeme bidimensionnel etudié dans cette thèse est un film de Langmuir, film constitué d'une unique couche de molécules amphiphiles à l'interface eau-air. Une transition du premier ordre, observée dans une monocouche d'acide NBD-stéarique révèle la coexistence entre une phase cristalline et une phase liquide. Les domaines monocristallins se présentent sous la forme de longs bâtonnets, parfaitement adaptés aux études mécaniques. Nous étudions certaines propriétés de ce cristal bidimensionnel. La première étude concerne la rupture de ce solide bidimensionnel. Un cristal maintenu fléchi dans le plan de l'eau se rompt après une durée bien déterminée. Cette durée s'est avérée être fonction de la déformation appliquée au cristal. A fortescontraintes, on second mode de rupture coexiste : un certains nombre de cristaux cassent intantanément tandis que d'autres présentent une rupture différée. La seconde étude s'intéresse à la fusion des cristaux en équilibre avec leur phase liquide. La fusion peut être provoquée par trois processus distincts : deux processus thermodynamiques (réchauffement et décompression) et un processus photochimique. Ce dernier s'est avéré dû à une réaction photochimique réversible avec l'oxygène de l'air, conduisant a l'abaissement du point de fusion du cristal. Les trois processus de fusion conduisent à des observations similaires, indiquant ainsi l'existence d'un mécanisme commun dans l'initiation de la fusion. Les observation montrent que l'intérieur du crystal fond bien avant ses bords. De plus, la fusion d'un cristal maintenu déformé a lieu le long d'une ligne ou la contrainte s'annule. Nous suggérons que le mécanisme responsable de ce phénomène est la migration de défauts, probablement des dislocations, à l'endoit du cristal non déformé.; Ces défauts jouant le rôle de centres de nucléation de la fusion. Ces résultats montrent le rôle primordial des défauts dans la fusion à deux dimension.
233

A study on the influence of microstructure on small fatigue cracks

Castelluccio, Gustavo Marcelo 09 May 2012 (has links)
In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the influence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex microstructure presents particular challenges that are discussed and addressed. The conclusions of this work describe the mechanistic of microstructural small crack. In particular, the fatigue crack growth driving force has been characterized as it evolves within grains and crosses to other grains. Furthermore, the computational models serve as a tool to assess the effects of microstructural features on early stages of fatigue crack formation and growth, such as distributions of grain size and twins.
234

Comportamiento en fatiga de poliamidas reforzadas con fibra de vidrio corta

Casado del Prado, José Antonio 20 July 2001 (has links)
El estudio muestra la existencia de tres estados en el comportamiento en fatiga de la poliamida reforzada con fibra de vidrio corta su rotura.En el estado I se genera deformación por fluencia transitoria, lo que conlleva disipación de energía en el material que aumenta su temperatura. Si el incremento térmico se estabiliza el materialsoporta un número ilimitado de ciclos. Si aumenta la temperatura, la deformación del material alcanza un valor para el que se produce la transición al estado II.En el estado II el material se deforma a velocidad constante. Se inician fenómenos de crazing o pseudo-fisuración en el material, con cierta capacidad portante de carga. El proceso conduce a una inestabilidad final cuando la deformación del material alcanza el valor para el que sucede la transición al estado III.En el estado III se produce la inestabilidad local en el material que antecede a su rotura. Se debe a que el desarrollo de los crazes produce un crecimiento acelerado de la deformación del material y se obtiene su rotura tras un número de ciclos bajo. / The work shows the existence of three states in the fatigue behaviour of short fibre-glass reinforced polyamide up to the moment of failure. In the state I creep transient deformation processes are produced. If temperature, associated to the dynamic process, stabilises, the material is able to withstand an unlimited number of cycles. On the other hand, if temperature grows continuously the material takes a critical strain for which a transition to the state II is reached. This new state shows a constant material´s deformation rate and a homogeneous nucleation of crazing phenomena. The hysteresis energy per cycle grows in a constant way and the material´s temperature increases. These conditions lead to the final instability that starts when the material´s deformation reaches a new critical value for which a second transition to the state III takes place. Under these circumstances local instabilities precede material´s final fracture. This is due to the quantity of crazes and their sizes, which are important enough to origin high concentration of mechanical effects to produce a material´s accelerated growth deformation to obtain its fracture.
235

Analys av sprickdetektion vid automatisk avsyning av granvirke : med avseende på sprickors bredd, längd och djup / Analysis of crack detection by automatic visual scanning of sawn spruce timber : with regard to width, length and depth of cracks

Andreasson, Robert, Jansson, Pontus January 2008 (has links)
Examensarbetet syftar till att hitta samband mellan ytliga sprickor hos virke, i form av dimensioner och karaktärer, som dagens maskinella avsyningssystem inte klarar av. Tyngdpunkten i projektet har legat på att identifiera eventuella samband mellan verkligt djup hos sprickor och de ytliga sprickmått som kan uppmätas med automatisk avsyning av WoodEye. I huvudsak har projektets praktiska undersökningar gått ut på att bestämma sprickors ytliga dimensioner, djup, typ och position med hjälp av automatisk avsyningsutrustning (WoodEye) samt genom manuell uppmätning i ett antal itusågade sprickzoner. Det provmaterial som använts i utförda försök och som legat till grund för efterföljande sprickanalyser har varit av sådan karaktär att det kunnat jämställas med konstruktionsvirke som normalt sett hållfasthetssorteras enligt europasstandard SS-EN 14081-1. I projektet har 568 sprickor, fördelade över 8 olika spricktyper, analyserats. Av erhållna resultat har det konstaterats att störst respektive minst medelbredd uppvisades hos kådlåpor respektive kantsprickor, störst respektive minst medellängd uppvisades hos splintsidesprickor respektive kådlåpor, samt att störst medeldjup uppvisades hos fäll-, kap- och stormsprickor. Vid analys av sprickors bredd och längd i relation till dess djup har inga entydiga samband kunnat påvisas. / This degree project aims to examine any connections between superficial cracks in timber, in terms of dimensions and characteristics, a matter insufficiently addressed by today's visual grading systems. The projects emphasis lies within the practical studies of cracks, characteristics and dimensions, within the acquired samples. In essence, the survey set out to determine superficial dimensions, depth, type and position of cracks by using a visual grading system (WoodEye), and by comparing the results by manually measuring a number of crosscutted cracks. The material used in the experiments and which formed the basis for subsequent analysis has been of such a nature that it could be equated with structural timber normally defined under the European Standard EN 14081-1. The project has encompassed the analysis of 568 examples of cracks consisting of 8 various types of cracks. By obtained results it has established that the greatest and smallest width is shown in resin pockets, respective side cracks, the greatest and least average height shown in sapwood cracks, respective resin pockets, and that the greatest average depth shown in cracks occurred from felling or hurricanes. From analysis of the cracks breadth and height in relation to depth no clear connection can be established.
236

Fracture Of Plain Concrete Beams Via Fractals

Renuka Devi, M V 11 1900 (has links)
The quantitative description of rough fracture surfaces of concrete has been an important challenge for many years. Looking at the fracture surface of a concrete specimen, one realizes that the self-affine geometry of crack faces results from the stochastic nature of the crack growth. This is due to the heterogeneous nature of concrete that makes the crack tortuous leading its way through weak bonds, voids, mortar and getting arrested on encountering a hard aggregate forming crack face bridges. These mechanisms contribute to the tendency of the crack to follow a tortuous path. The self-similarity contained in the tortuous fracture surface of concrete makes it an ideal candidate to be considered as a fractal. Further, the softening response itself has been treated as a singular fractal function by earlier investigators. The very process of cracking and microcracking, could be considered very close to the stick and slip process and therefore as a fractal. Therefore modeling a crack as a fractal and characterizing it by a fractal dimension have become the focus of research in recent years. Due to randomly distributed discontinuous flaws and high heterogeneity of the internal structure of concrete, mechanical properties also randomly vary. Under the effect of the same external force, the stress intensity factors to which different points in the concrete are subjected are different. Hence the microcracks induced by the external force are distributed discontinuously and randomly. Therefore in the present study the effect of the random nature of the microcracks in the fracture process zone of concrete is investigated using both fractal and probabilistic approach. The most probable fractal dimension of a network of micro cracks is obtained as a function of the branching angle ‘α’ of the microcracks, considered as a random variable. Further, an ensemble of cracks is synthetically generated using Monte Carlo technique imposing a constraint that the random deviations do not exceed the maximum size of the aggregate. Such tortuous cracks are analyzed by extending Fictitious Crack Model (FCM) proposed by Hillerborg et al [37]. A numerical study is carried out to examine the influence of certain important fracture parameters on the beam response of plain concrete beams. The contents of this thesis are organized in seven chapters with references at the end. Chapter-1 summarizes the historical development of fracture mechanics. A brief review of the basic concepts of fracture mechanics theory is presented. In chapter-2 a brief review of literature on fracture mechanics of concrete is presented. An overview of the analytical models, numerical models and fractal models till date has been presented in a systematic way. In chapter-3 the fracture processs zone has been modeled as a fractal following the work of Ji et al [118]. The contribution here has been to improve the work of Ji et al [118] (which considers the region of microcracks as a fractal tree) by considering the branching angle as a random variable. Mean fractal dimension thus obtained is found to match well with the experimental results available in the literature. In chapter-4 FCM, as proposed by Hillerborg et al [37] has been modified to be applicable to cracks with varying inclined faces by considering both horizontal and vertical components of the closing forces. The theoretical aspects of the modified FCM have been described in detail. The procedure for the determination of influence co- efficient matrices for a random tortuous crack in mode-I and mixed-mode along with a fractal crack has been explained. In the subsequent chapters the study has been taken up in two parts. In the first part only one generator of the fractal tree considered by Ji et al [118] has been analyzed by FCM to obtain load-deformation responses and fracture energy. In part two, a random tortuous crack, as already defined earlier has been analyzed both in mode-I and mixed mode using FCM. In chapter-5 plain concrete beams with one generator of fractal tree has been analyzed. The influence of the branching angle on the post-peak response of (P-δ) curves and fracture energy has been obtained. In chapter-6 a random tortuous crack has been analyzed in mode-I by FCM. The analysis reveals the influence of maximum aggregate size upon the pre and post-peak behaviour in support of the experimental findings. The nominal stress at peak is found to depend on the characteristic dimension of the structure thereby confirming the size effect. Further fracture energy values have been obtained by the work of fracture method and the results show good agreement with the results obtained in the literature. In chapter-7 a random tortuous crack has been analyzed in mixed mode by FCM. While modeling, symmetry has been assumed only to facilitate computational work though it is known that loss of symmetry affects the peak load. However analysis of the whole beam can be handled by the code developed in the thesis In chapter-8 a summary of the research work is presented along with a list of major observations and references at the end.
237

Spontaneous Crack Propagation In Functionally Graded Materials

Haldar, Sandip 12 1900 (has links)
Functionally graded materials (FGMs) are composites that have continuously varying material properties, which eliminate undesirable stress concentrations that might otherwise occur in layered composites. The concept of inhomogeneously varying properties is observed in nature; examples include bones, teeth, shells and timber. Modern engineering applications of FGMs include thermal barrier coatings, wear-resistant coatings, biomedical implants and MEMS devices. Syntactic foams, particle filled nano-composites are examples of inhomogeneous materials of current interest. Analyses and experiments available in the literature have focused on characterizing the inhomogeneous material modulus and density variations. Common techniques employed are nano-indentation and wave propagation studies. There are a few fracture mechanics analyses and experiments available in the literature; most of which are devoted to measuring the fracture toughness of graded materials. A few fracture analyses of graded materials are devoted to deriving asymptotic stress, strain and displacement fields around stationary and steadily growing cracks in inhomogeneous materials. Only a few studies exist that deal with understanding the effect of material property inhomogeneity on the spontaneous crack propagation. In the present thesis the effect of material property inhomogeneity on the dynamic fracture mechanics of cracks in FGMs is described. Numerical analysis of the elastodynamic initial boundary value problem is performed using a spectral scheme. Spectral scheme is a special numerical technique developed to simulate spontaneous, planar crack propagation in a variety of materials. The method is numerically efficient as it can be implemented on parallel machines with ease. The numerical scheme is versatile and can handle any state-and rate-dependent traction-separation laws (cohesive zone models) or frictional laws. Spectral scheme has successfully been used in simulating intersonic crack propagation, earthquake slip dynamics and also direct silicon wafer bonding process used in realizing 3D MEMS structures. In the present work, the spectral formulation accounts for the inhomogeneous variation in the material wave speeds in the medium. The effect of inhomogeneity on spontaneous crack propagation due to in-plane mixed-mode loading is also addressed here. A parametric study has been performed by varying the inhomogeneity length scales independently in the top and bottom half-spaces. The effect of inhomogeneity in shear wave speed on the dynamic stress intensity factors (SIFs) of a crack propagating in a quasi-steady-state along the interface between the two functionally graded half-spaces is studied. A symmetric hardening FGM offers the maximum fracture resistance, while the fracture resistance is minimum for a symmetric softening FGM. Our simulation shows that increasing the inhomogeneity in the wave speed leads to eliminate the overshoot in the dynamic stress intensity factor. The magnitude of the steady-state (long-time) SIF increases indicating an increase in the fracture resistance. The effect of the inhomogeneous wave speed on the mode-3 crack propagation characteristics is demonstrated by taking snapshots of the crack opening at a time interval. The magnitude of the crack sliding displacement is found to increase with increase in the inhomogeneity. The effect of the material property inhomogeneity on the mode-1 crack propagation is simulated to track the crack opening displacements. The inhomogeneity is assumed to be symmetric about the weak-plane. Our spectral scheme developed here for functionally graded material with exponential variation in the material properties is capable of simulating independent bimaterial combinations. When the graded material becomes progressively stiffer and denser (hardening), the crack opening displacement in reduced, indicating an increase in the fracture resistance. On the other hand, for the softening FGMs the crack opening displacement increases indicating a reduction in fracture toughness. It is noted that the cohesive fracture resistance on the weak-plane remains same in all the FGMs.
238

On Modeling Of Constrained Piezoelectric Thin Films For Structural Health Monitoring

Ali, Rizwaan 01 1900 (has links)
The behaviour of a free-standing thin film differs from that of a film surface-bonded or embedded due to the boundary constraints. A general dearth of analytical models, in regard to prediction of the operational competence of a constrained Piezoelectric thin film, prevails. In conventional design of miniaturized thin film devices, several non classical effects, for instance the effect of boundary constraints, are not considered. To warrant the design and performance optimisation of thin film sensors, such effect must be taken into account in a forethoughtful manner. This thesis is an attempt to achieve such optimisation through modeling of thin films. The coupled problem of a film on a substrate is solved semi-analytically in theoretical cases; and by finite element analysis in realistic cases for damage identification in the host structure. We first propose a two-dimensional analytical model of a constrained Piezoelectric thin film embedded in a host. Analytical expressions of capacitance and voltage across the electrodes are obtained by assuming first order shear deformation across the film thickness. The bonding layer between the film and the substrate, which is assumed to be an equivalent single layer including electrodes, insulation layer, adhesive layer etc., is modeled by taking into account its viscoelastic property. Residual stress is incorporated in the constitutive model through equivalent residual strain. Simulations on 10 m thick PVDF and 100 mPZT films are conducted. They illustrate the dependence of voltage response and capacitance on the applied stress, as well as on the residual stress. A maximum percentage variation in capacitance, as compared to the conventional estimate, is about 2% in a PVDF film and +75% to-65% in a PZT film for various combinations of tensile stresses applied at the ends of the film. Effect of residual stress is also exemplified via comparative response of a 1 m PZT film deposited on Pt/Ti/Si(0 0 1), with and without residual stress. For this case, an almost +50% increase in the voltage and an equivalent drop in the capacitance is observed. Next, we look into the voltage response profile of this model by employing it as a sensor to identify a finite mode I and mode II sub-surface cracks in a finite size host. To model the embedded crack, additional perturbation functions in the displacement field due to linear elastic crack tips in an infinite solid under plane strain condition are introduced to accommodate the stress free conditions at its surfaces. The film model requires the interfacial displacement and traction conditions, which are obtained from the analysis of the host. The combined analysis of the film and crack models brings forth the voltage gradient along the film span as a direct indicator of the location of crack in the axial direction, whereas the voltage magnitude represents the size of the crack. Following this analysis, a quasi three-dimensional(3-D) model of a Piezoelectric thin film surface-bonded to the host structure is proposed. With due consideration of restriction on the thickness of the film, here the model is based on a reduced 3-D continuum mechanics approach. The displacement field in the film is assumed to vary according to the third-order shear deformation theory; and the electrical and mechanical boundary conditions on the surfaces of the film are accommodated in a consistent manner. The formulation yields a governing inhomogeneous system of second-order Partial Differential Equations(PDEs), which is dependent on the displacement field at the film-host interface through force terms. Semi-analytical expressions of potential difference and capacitance are obtained. This system is solved numerically for two unknown rotations about X and Y axes of the film by finite element method. A maximum variation of about 2.5% is obtained in the capacitance of a 10 m PVDF film, as compared to its conventional estimate. The operational performance of this model is assessed in terms of its voltage response over the film area for various displacement fields. Conformation of this response to the input displacement field attests to its mathematical integrity. Next, we ascertain the versatility of this model in its role as a sensor for Structural Health Monitoring. To deal with cracks in the host plate, finite size rectangular surfaces are introduced as crack faces. The film domain and the host domain are discretized with an a posteriori h-refinement strategy and compatible interfacial nodes at the film-host interface via finite element interpolation. The resulting coupled problem is solved by static finite element analysis. The nature of the voltage pattern over the film surface is peculiar to the mode of crack, and is a qualitative portrayal of its presence. To correlate the electric potential(voltage) –a distributed parameter – to the geometry and orientation of the crack, as well as to quantify it, electrostatic measures in terms of integrated potential difference and its spatial gradients on the film surface are proffered. The numerical implications of these measures are elicited through simulation results of various crack sizes in damaged and healthy hosts under identical conditions of stress and boundary. The pattern of these measures in a damaged host becomes oscillatory as compared to straight lines observed in a healthy host. Furthermore, the reduced 3-D model is extended to perform dynamic analysis with the inclusion of inertial terms in the governing equilibrium equations. Subsequently, the acceleration terms appear in the governing inhomogeneous system of PDEs in the force terms. Finite element analyses of this extended film model on an isotropic beam with surface and sub-surface cracks, and on a composite plate with delamination, are then performed in the time domain. In all cases, an excellent conformation of the voltage profile at any point in the film domain to the velocity profile at the corresponding point in the film-host interface is observed. Again, to quantify the extent of damage in the host, we proffer electrical measures based on the Lpnorm, of second order, of the voltage and its directional derivatives. We exemplify the numerical implications of these measures in the time domain through sensitivity analysis in regard to the defected areas, and their region of occurrence relative to the film sensor. The response of the film model educes that the relatively flat curves after the first incident pulse in a healthy structure shoots off to a monotonic pattern in damaged hosts. The measures depict high degree of sensitivity in regard to the variation in the area of damage of any nature. An apposition of the static and dynamic analyses is elaborated towards the end of this dissertation. It proves to be very insightful in the damage assessment of the host structure, for it shows the utility of the dynamic model to sense the location of the damage occurrence, whereas a more in-depth assessment on its nature and mode of the crack would demand a static analysis in its proximal regions. To sum up, in light of these models and the proposed measures, this thesis establishes salient justifications pertaining to their pragmatic significance. We believe that these results represent an important contribution towards the ongoing research on understanding the role of boundary constraints in mechanically thin Piezoelectric films.
239

Experimental and Numerical Analysis of Spalling Effect in TRC Specimens

Jerabek, Jakub, Keil, Allessandra, Schoene, Jens, Chudoba, Rostislav, Hegger, Josef, Raupach, Michael 03 June 2009 (has links) (PDF)
The paper presents the study of spalling effect occurring under tensile loading in thin-walled TRC specimens. The experimentally observed failure patterns are first classified and the performed experiment design is explained and discussed. A parameter study of spalling effect with varied thickness of concrete cover and reinforcement configurations including both the textile fabrics and the yarns provided the basis for numerical analysis of the effect. The applied numerical model was designed in order to capture the initiation and propagation of longitudinal cracks leading to the separation of concrete blocks from the textile fabrics. A meso-scopic material resolution in a single crack bridge is used for the simulation exploiting the periodic structure of the crack bridges both in the lateral and in the longitudinal direction of the TRC specimens. The matrix was modeled using an anisotropic damage model falling in the microplane-category of material models. The bond between yarn and matrix follows a non-linear bond-law calibrated using pull-out tests. The epoxy-impregnated reinforcement is considered as a homogeneous bar.
240

Evolution of artificial defects during shape rolling

Filipovic, Mirjana January 2007 (has links)
<p>Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs.</p><p>The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.</p>

Page generated in 0.025 seconds