161 |
Cellular mechanisms that establish HIV-1 latency in CD4+ T cells and the potential for their manipulation as a therapeutic strategyGagne, Matthew James 14 June 2019 (has links)
Human Immunodeficiency Virus 1 (HIV-1) remains a significant public health concern due to the lack of a cure. In spite of anti-retroviral therapies, HIV-1 persists within infected cells as integrated transcriptionally silent proviruses. Re-activation after therapy interruption results in new HIV-1 replication. Attempts to clear this reservoir through the use of latency reversing agents by targeting cellular mechanisms that maintain HIV-1 in a latent state have been unsuccessful. In addition, subsets of latently infected cells exist within the reservoir that display differential capacities for provirus induction. In order to understand the nature of the reservoir and manipulate it therapeutically, more knowledge is needed regarding factors that bias a virus towards latency or replication at the time of infection.
Because multiple mechanisms that regulate HIV-1 transcription, including chromatin remodeling, transcription factor activation and polymerase pausing, are regulated by the T cell receptor (TCR), I hypothesized that signaling at the time of infection determines proviral fate. I transduced Jurkat cell lines and primary CD4+ T cells with chimeric antigen receptors (CARs) that mimicked signaling from the TCR. These CARs spanned a 3-log range of binding affinities for their ligand, providing a tunable model. High levels of TCR stimulation during infection biased cells towards productive replication and the formation of an inducible latent reservoir. Examination of the mechanisms downstream from TCR signaling revealed that robust cellular activation led to a release of the repressor Negative Elongation Factor from the paused RNA Polymerase II, facilitating transcriptional elongation.
Because signaling determined the presence of repressive factors, I sought to manipulate the balance between latency and expression through recruitment of repressors to the HIV-1 provirus using a nuclease-deficient CRISPR Associated Protein 9 fused to a Krüppel Associated Box Domain. I screened a pool of guide RNAs that mediated transcriptional repression of HIV-1. Our lab discovered that guides bound to the HIV-1 Long Terminal Repeat prevented viral re-activation in an integrated cell model of HIV-1 latency.
The research presented here confirms my hypothesis that signals during infection have prolonged effects on latency reversal. I provide evidence that manipulation of these mechanisms represent therapeutic targets for cure efforts.
|
162 |
CRISPR/Cas9-basierte Etablierung Alkalischer Phosphatase-defizienter odontogener Zelllinien zur Analyse der dentalen Aspekte der Hypophosphatasie / CRISPR/Cas9-based establishment of alkaline phosphatase deficient odontogenous cell lines to analyze dental aspects of HypophosphatasiaPaulus [verh. Rehling], Sofia January 2023 (has links) (PDF)
Die Hypophosphatasie (HPP) ist eine seltene Erberkrankung, welche durch compound-heterozygote oder dominant negative heterozygote Mutationen des ALPL Gens zu einem Funktionsverlust der gewebeunspezifischen Alkalischen Phosphatase (TNAP) führt. Die daraus resultierenden Mineralisierungsstörungen betreffen sowohl den Knochen als auch in milderen Ausprägungsformen die Zähne und den Zahnhalteapparat. Das zahnmedizinische Leitsymptom und in vielen Fällen das erste Anzeichen der HPP ist dabei der vorzeitige Verlust der Milchzähne ohne physiologische Wurzelresorption. Im Rahmen dieser Arbeit wurden verschiedene TNAP defiziente immortalisierte Zellen des parodontalen Ligaments (PDL) mittels der CRISPR/Cas9 Methode generiert und anschließend fünf Zelllinien charakterisiert. Die dabei entstandenen Mutationen variierten von einer moderaten heterozygoten Punktmutation zu einer schwerwiegenden homozygoten Deletion eines einzelnen Nukleotids, welche in einem vorzeitigen Stopcodon resultierte. Analysen der ALPL Expression (qPCR), TNAP Aktivitätsmessungen (CSPD Assay) und TNAP Färbungen zeigten einen signifikanten Rückgang in allen TNAP-defizienten Zelllinien mit einer starken Korrelation zwischen der Restaktivität und dem Ausmaß der Mutation, welche in Einklang mit der komplexen Genotyp-Phänotyp Korrelation bei HPP zu bringen ist. Das Potential der osteogenen Differenzierung der hTERT PDL Zellen wurde in der homozygot mutierten Zelllinie komplett unterdrückt. Mögliche Mechanismen des vorzeitigen Zahnverlustes bei HPP Patienten ist die geminderte Formation und Mineralisation des Wurzelzements und die fehlerhafte Insertion der parodontalen Fasern. Die hier erstmalig etablierten Zellkulturmodelle liefern ein valides spenderunabhängiges in vitro Modell der HPP, welches dazu beitragen kann, die molekularbiologischen Zusammenhänge der dentalen Aspekte der Hypophosphatasie zu ergründen und daraus gegebenenfalls neue Therapieansätze abzuleiten. / Hypophosphatasia (HPP) is a rare inherited disorder caused by loss-of-function mutations in the ALPL gene encoding the Tissue Nonspecific Alkaline Phosphatase (TNAP). Besides skeletal symptoms, some patients also present dental abnormalities like for example the premature loss of deciduous teeth. Here we generated and characterized five different TNAP-deficient periodontal ligament (PDL) derived cell lines using the method of CRISPR-Cas9. The mutations varied from a moderate heterozygous point mutation to a severe homozygous deletion leading to a premature stop codon. Analysis of the ALPL expression and TNAP activity measurements in CSPD Assays and TNAP stainings revealed a decrease for all TNAP-deficient cell lines with a strong correlation between the residual activity and the extend of the mutation. The already limited differentiation capacity of immortalized hTERT (human telomerase reverse transcriptase) PDL cells is completely abolished in the homozygously mutated cell line. Putative key mechanisms for the premature exfoliation in HPP are the restricted formation and mineralization of the cementum and the impaired insertion of elastic dental fibers. The newly generated TNAP-deficient cell lines provide a promising and donor independent in vitro model to gain better understanding of the molecular mechanisms of dental problems in HPP.
|
163 |
Parathormon als potentielle Therapiestrategie der Odonto-Hypophosphatasie - Untersuchungen in einem dentogenen \(in-vitro\)-Modell / Parathyroid hormone as a potential therapeutic strategy for odonto-hypophosphatasia - investigations in a dentogenic \(in\) \(vitro\) modelSchiffmaier, Jana January 2024 (has links) (PDF)
Hypophosphatasie (HPP) beschreibt eine seltene Erbkrankheit, die hauptsächlich durch heterozygote Mutationen im ALPL-Gen verursacht wird. Diese führen zu einer verminderten Aktivität der gewebeunspezifischen alkalischen Phosphatase (TNAP). Neben skelettalen Symptomen sind Zahnanomalien wie der vorzeitige Verlust von Milchzähnen ohne resorbierte Wurzel sowie eine gestörte Mineralisierung der Zahnhart-substanzen ein typisches Merkmal der HPP. Die zugrunde liegenden molekularen Mechanismen sind bisher noch nicht vollständig verstanden.
In der vorliegenden Arbeit wurden Zelllinien des parodontalen Ligaments mit Mutationen im ALPL-Gen charakterisiert, um anschließend mögliche Therapiestrategien für die HPP auf molekularer Ebene zu untersuchen.
Im Rahmen der basalen Charakterisierung wurden die Zelllinien hinsichtlich der TNAP-Expression (Immunhistochemie, Western Blot), des Stoffwechselprofils (ATP-Assay) und des osteogenen Differenzierungspotenzials (Alizarin-Färbung) analysiert. Von Interesse war auch, ob durch CRISPR/Cas9-basiertes Genediting Off-Target Mutationen entstanden sind. Zur Untersuchung der molekularen Auswirkungen von PTH, welches die ALPL-Expression steigern kann, wurden zwei Protokolle etabliert, die eine kontinuier-liche, kurzzeitige bzw. intermittierende Präsenz von PTH in-vitro imitieren. Anschließend wurde die ALPL-Expression (qPCR) sowie TNAP-Aktivität (CSPD-Assay) ermittelt.
Die basale TNAP-Expression war variabel und reichte vom völligen Fehlen in den Zell-linien mit Deletionen bis hin zu einer starken TNAP-Expression in der Zelllinie mit einer heterogenen Punktmutation. Eine niedrige Expression ging mit einer verringerten Zell-proliferation sowie extrazellulären ATP einher. Es zeigte sich ein unterschiedliches Mineralisierungspotenzial, das hauptsächlich das TNAP-Expressionsniveau in den verschiedenen Zelllinien widerspiegelt, während die PTH-Stimulation keine Wirkung auf die Differenzierung hatte. Im Gegensatz zu klinischen Beobachtungen deuten die Ergebnisse auf eine hohe Korrelation zwischen Genotyp und Phänotyp in-vitro hin, die in-vivo noch bestätigt werden müssen. Die Sequenzierung bestätigte, dass durch die Geneditierung keine Off-Target Mutationen aufgetreten sind, welche somit keinen limitierenden Faktor hinsichtlich der Differenzierungskapazität darstellen können.
Die Stimulation mit PTH führte zwar nicht zu einer gesteigerten ALPL-Expression, doch konnte die TNAP-Aktivität in den ALPL-defizienten Zelllinien punktuell gesteigert werden und bildet somit eine solide Basis für weitere Experimente, die zur Therapieentwicklung für die Odonto-HPP beitragen können. / Hypophosphatasia (HPP) describes a rare inherited disorder caused mainly by heterozygous mutations in the ALPL gene. These lead to impaired activity of tissue non-specific alkaline phosphatase (TNAP). In addition to skeletal symptoms, dental abnormalities such as premature loss of deciduous teeth without resorption of the roots and impaired mineralization of tooth hard tissues are typical features of HPP. The underlying molecular mechanisms are not yet fully understood.
In the present study, cell lines of the periodontal ligament with mutations in the ALPL gene were characterized to subsequently investigate potential therapeutic strategies for HPP at the molecular level.
As part of the basal characterization, the cell lines were analyzed with respect to TNAP expression (immunohistochemistry, Western blot), metabolic profile (ATP assay) and osteogenic differentiation potential (alizarin staining). Also of interest was whether off-target mutations resulted from CRISPR/Cas9-based gene editing. To investigate the molecular effects of Parathyroid Hormone (PTH), which can increase ALPL expression, two protocols were established that mimic continuous, short-term, and intermittent presence of PTH in-vitro. ALPL gene expression (qPCR), as well as TNAP activity (CSPD assay) were then determined.
Basal TNAP expression was variable, ranging from complete absence in the cell lines with deletions to strong TNAP expression in the cell line with a heterogeneous point mutation. Low expression was associated with decreased cell proliferation as well as extracellular ATP. There was a differential mineralization potential mainly reflecting the TNAP expression level in the different cell lines, whereas PTH stimulation had no effect on differentiation. In contrast to clinical observations, the results indicate a high correlation between genotype and phenotype in-vitro, which remains to be confirmed in-vivo. Sequencing confirmed that no off-target mutations occurred as a result of gene editing, which thus cannot be a limiting factor with respect to differentiation capacity.
Although stimulation with PTH did not result in increased ALPL expression, TNAP activity was selectively increased in the ALPL-deficient cell lines, providing a solid basis for further experiments that may contribute to therapy development for Odonto-HPP.
|
164 |
In Vivo Silicon Lance Array Transfection of Plant CellsBrown, Taylor Andrew 16 April 2020 (has links)
Arrays of silicon lances were made using photolithographic and STS DRIE Bosch techniques. Arrays consist of a 10 mm square grid pattern of lances measuring 100 m tall and having a 3 mm diameter, each lance being spaced 30 mm apart. The tips of lances are pointed, allowing easier penetration through plant cell walls. A nanoinjector device was also made to accept the silicon lance arrays and perform nanoinjections. A nanoinjection consisted of 2 silicon lance arrays, with lances oriented towards each other, being moved into and out of a plant cotyledon placed between them. Prior to the nanoinjection, polar molecules in solution can be attracted to the lances through a process utilizing the nanoinjector device’s ability to control the electrical current between the 2 lance arrays. During the nanoinjection the displacement between the lances, the force exerted on the plant cotyledon and the electrical current between the lance arrays are controlled. Once the lances are inserted into the cells, the electrical current between the lance arrays is reversed, repelling the molecular load from the lance array. Propidium iodide (PI) and Cotton Leaf Crumple Virus (CLCrV) were used as molecular loads in nanoinjections. The nanoinjector also records and outputs data from the nanoinjection for analysis. Nanoinjections were performed on Arabidopsis and Cotton cotyledons. Changes in the force applied during a nanoinjection and varying the number of repeated nanoinjections on the same cotyledon were observed. Too much force or too many repeated injections causes physical damage to the cotyledon. An optimal force and number of repeated injections can be performed without causing physical damage to the cotyledon. Successful transfection of PI and CLCrV was not observed in a relatively small number of performed nanoinjection procedures on either Arabidopsis or Cotton cotyledons. Possible interacting variables and recommendations for further work are discussed.
|
165 |
Exploring methods to understand bovine embryo competency in vitroNix, Jada Lindsay 19 December 2023 (has links)
The development of a preimplantation embryo is a stepwise process consisting of morphological, biochemical, and genomic changes. Much remains unknown about the attainment of embryo competency to develop and establish pregnancy. To investigate this, we compared methods of selection at the oocyte or embryo level for improved blastocyst production. Brilliant cresyl blue staining was used to sort oocytes by their growth status (not fully grown vs. fully grown) and the timing of the first embryonic cell division to sort embryos. We found that an embryo's cleavage kinetics are more indicative of their competency than the growth status of the oocyte that gave rise to that embryo. We further investigated the cryopreservation survival of embryos with fast or slow cleavage kinetics and found no significant differences in their ability to hatch post-thawing. Next, we used the complete sequence of the cattle Y chromosome to identify oligonucleotides for efficient sexing of samples. These materials may be used to understand sexual dimorphism as a biological factor in future experiments. Finally, we designed a new method to induce targeted DNA sequence deletions and mRNA cleavage in zygotes using CRISPR-Cas. We targeted the gene OCT4, since the literature shows variable knockout outcomes. Our method improved deletion efficiency while accounting for preexisting or maternally inherited mRNA of the target gene. Our findings can be used to better understand early embryo development and biological drivers of quality, which can be leveraged to improve embryo production and transfer outcomes. / Master of Science / The development of an early embryo involves many biological and structural changes. Much remains unknown about the influences on embryo quality and ability to successfully develop. To investigate this, we compared methods for selecting the highest quality cattle eggs or embryos. We found that the observation of an embryo's development speed is better for selecting high quality embryos than egg quality. We further investigated the freezing survival of embryos with fast or slow growth. We found that the freezing survival of fast and slow growing embryos is not different. Next, we used the complete sequence of the cattle Y chromosome to identify PCR primers for determining sample sex. These resources can help us understand how an individual's sex can influence biological differences. Finally, we designed a new method for removing the total function of a gene in embryos. For this, we deleted segments of DNA and cut RNAs. Our findings can be used to better understand early embryo development and biological drivers of quality, which can be leveraged to improve embryo production and transfer outcomes.
|
166 |
Development and Phenotypic Characterisation of a CRISPR/Cas9 Model of Riboflavin Transporter Deficiency in ZebrafishChoueiri, Catherine 12 December 2023 (has links)
Riboflavin transport is mediated, in part, by riboflavin transporter proteins 2 and 3, encoded by SLC52A2 and SLC52A3, respectively. Biallelic mutations in SLC52A2 and SLC52A3 impair riboflavin transporter protein function and riboflavin transport, causing disruptions to mitochondrial metabolism which result in sensory and motor neurodegeneration and give rise to riboflavin transporter deficiency (RTD) in humans. RTD is a rare neurodegenerative disease characterised by respiratory compromise, muscle and limb weakness, and vision and hearing impairments. RTD patients are treated with high-dose riboflavin supplementation which is effective in over 70% of cases but can be ineffective due to rapid excretion of riboflavin when its plasma concentration exceeds 0.5 μM. To address the need for alternative or supplemental RTD treatment, this study generated morpholino-mediated knockdown and CRISPR/Cas9 models of RTD in zebrafish. An RTD-like phenotype is observed in these RTD models including hearing loss, decreased motor axon length, and impaired locomotor activity. The slc52a3 morphant phenotype was found to be specific via coinjection of slc52a3 morpholino/human SLC52A3 mRNA, which achieved effective rescue of the morphant phenotype, as well as slc52a3 morpholino/p53 morpholino coinjection, which maintains the slc52a3 morphant phenotype. In line with clinical findings, riboflavin supplementation resulted in some improvement of the morphant phenotype. Probenecid was selected as a candidate drug due to its inhibitory effect on OAT-3, which mediates riboflavin excretion. However, supplementing riboflavin treatment with probenecid provided no additional benefit to the slc52a3 knockdown model. Further development of CRISPR/Cas9-knockout lines of slc52a2 and slc52a3, as well continued therapeutic screening of riboflavin and probenecid and consideration of alternative therapeutics will provide more opportunities to uncover novel therapeutic strategies to improve RTD treatment.
|
167 |
Environmental toxicants and human B cells: Insights from CRISPR editing and genomic sequencingAllex-Buckner, Clayton 30 May 2023 (has links)
No description available.
|
168 |
Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA) / Humane induzierte pluripotente Stammzellen in vererbbaren Kardiomyopathien: Generierung und Charakterisierung eines auf Stammzellen basierenden Herzmuskelmodellsystems der Dilatativen Kardiomyopathie mit Ataxie (DCMA)Janz, Anna January 2024 (has links) (PDF)
The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA).
Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC.
Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes.
The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA.
However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM.
Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs.
To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences.
Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future. / Die Entwicklung von induzierten pluripotenten Stammzellen (iPS-Zellen) und die biotechnologische Anwendung des „clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9“ (CRISPR/Cas9) Gen-Editierungssystems bilden eine innovative Forschungsplattform für Wissenschaftler basierend auf lebenden menschlichen pluripotenten Stammzellen. Die bahnbrechende Kombination beider nobelpreisprämierter Techniken erlaubt eine direkte Krankheitsmodellierung insbesondere für die Erforschung von genetisch bedingten Erkrankungen. Um die Untersuchung von mutationsassoziierten Pathomechanismen zu ermöglichen, etablierten wir robuste humane in vitro Systeme von drei vererbbaren Kardiomyopathien: die arrhythmogene Kardiomyopathie (AKM), die dilatative Kardiomyopathie mit juveniler Katarakt (DKMJK) und die dilatative Kardiomyopathie mit Ataxie (DKMA).
Zur Generierung von transgenfreien iPS-Zellen wurden für OCT3/4, SOX2, KLF4 und c-MYC kodierende Sendai-Virus-Vektoren verwendet um humane gesunde Kontroll- oder mutationstragende dermale Fibroblasten von Patienten in einen embryonalen Zustand zu reprogrammieren. Die Verwendung der SeV-vermittelten Reprogrammierung ermöglichte uns eine effiziente und robuste Herstellung von insgesamt fünf transgen-freien iPS-Zelllinien. Zudem befähigt die Nukleofektion der CRISPR/Cas9-Plasmide in gesunden Kontroll-iPS-Zellen eine präzise und effiziente Genom-Editierung krankheitsrelevanter Gene und damit die Generierung von isogenen mutierten iPS-Zelllinien. Mit diesem Verfahren wurden eine PKP2-Knock-out- und eine DSG2-Knock-out iPSZ-Linie hergestellt, die jeweils als Modell für AKM dienen. Darüber hinaus wurde eine mit DKMA-assoziierte Spleißakzeptormutation auf genetischer Basis imitiert, um die mit dem Phänotyp zweier Patienten in Verbindung gebrachte C-terminal verkürzte DNAJC19-Variante (DNAJC19tv) auf translationaler Ebene rekapitulieren zu können. Alle acht eigens generierten iPS-Zelllinien entsprachen international definierten Qualitätskontrollkriterien. Die hergestellten iPS-Zellen behielten die Fähigkeit in vitro in Zellen der drei Keimblätter zu differenzieren und zeigten darüber hinaus einen normalen Karyotyp. Alle iPS-Zelllinien wiesen eine typische stammzellähnliche Morphologie sowie die Expression charakteristischer Pluripotenzmarker bei gleichzeitig hoher Populationsreinheit auf. Die experimentelle Qualtitätskontrolle hat somit die weitere Verwendung aller iPS-Zelllinien in in vitro Systemen von AKM, DKMA und DKMJK validiert.
Die der DKMA zugrundeliegenden herzspezifischen Krankheitsmechanismen wurden zudem mithilfe von in vitro produzierten iPSZ-abgeleiteten Kardiomyozyten (iPSZ-KMs) untersucht. DKMA ist eine autosomal rezessiv vererbte Erkrankung, die durch Mutationen im DNAJC19 Gen hervorgerufen wird. Das wichtigste klinische Merkmal der Patienten ist eine früh einsetzende und lebensbedrohliche dilatative Kardiomyopathie, die oftmals mit einem metabolischen Syndrom einhergeht. DNAJC19 kodiert für ein Protein der inneren mitochondrialen Membran (IMM), dessen postulierte Funktion in der mitochondrialen Biogenese und der Remodellierung von Cardiolipin liegt. Zur Modellierung der DKMA wurden zwei von DKMA-Patienten abgeleitete iPS-Zelllinien (DCMAP1, DCMAP2) eines Geschwisterpaares mit unterschiedlich ausgeprägten kardialen Phänotypen, eine dritte isogene mutierte iPS-Zelllinie (DNAJC19tv) sowie zwei gesunden Kontroll-iPS-Zelllinien (NC6M und NC47F) mithilfe extrazellulärer Spezifikationsfaktoren zur kardiovaskulären Differenzierung angeregt.
Das Monolayer-Protokoll zur kardialen Differenzierung wurde erfolgreich für alle fünf iPSZ-Linien adaptiert und in Bezug auf die Anreicherung des ventrikulären Herzmuskelzellsubtyps, höhere Zellpopulationsreinheiten und adulte Reifegrade optimiert. Die Kombination der Laktat-basierten metabolischen Aufreinigung, der magnetisch-aktivierten Zellsortierung, der Anwendung einer Mattress-basierten Kultivierungsstrategie und verlängerte Kultivierungszeiten ermöglichte die Erfüllung aller DKMA-spezifischen Anforderungen. Zusammengefasst konnten insbesondere adulte Charakteristika durch die Kombination der benannten experimentellen Strategien unter Verwendung von mindestens 60 Tage kultivierten iPSZ-KMs nachgewiesen werden, um eine zuverlässige phänotypische Untersuchung der DKMA gewährleisten zu können. Die innovative humane Untersuchungsplattform wurde etabliert, um die Pathogenese der DKMA im Hinblick auf strukturelle, morphologische und funktionelle Veränderungen entschlüsseln zu können.
Das mit DKMA assoziierte Protein DNAJC19 ist Bestandteil der TIM23-Importmaschinerie und besitzt zudem die Fähigkeit einer direkten Interaktion mit PHB2. PHB2 trägt zur Bildung der membrangebundenen hetero-oligomeren Prohibitin-Ringkomplexe bei, deren Hauptfunktion in der Anreicherung von Phospholipiden und Proteinen innerhalb von Clustern in der IMM liegt. Der durch DNAJC19 Mutationen vermutete hervorgerufenen Verlust der DnaJ-Interaktionsdomäne wurde durch die fehlende Expression des DNAJC19 Proteins in voller Länge in allen mutationstragenden Zellen bestätigt. Die subzelluläre Untersuchung von DNAJC19 zeigte ein auf den Kern beschränktes Expressionsmuster in mutierten iPSZ-KMs. Der Verlust der DNAJC19 Ko-Lokalisation mit mitochondrialen Strukturen ging mit einer abnormen mitochondrialen Fragmentierung, einer signifikanten Abnahme der mitochondrialen Masse und einer signifikant reduzierten Kardiomyozytengröße einher. Ultrastrukturelle Analysen ergaben zudem kleinere Mitochondrien und abnorme Cristae, die eine krankheitsrelevante Verbindung zu Defekten in der mitochondrialen Biogenese und der CL-Reifung darlegen. Vorläufige Daten zu CL-Profilen zeigten längere Acylketten und eine ungesättigtere Acylkettenzusammensetzung, was auf Anomalien in der Phospholipidmaturierung bei DKMA hinweist.
Der Vergleich aller Mutanten mit gesunden Kontrollen hinsichtlich der mitochondrialen Funktion in iPS-Zellen und Hautzellen (dermale Fibroblasten), zeigte eine insgesamt höhere Sauerstoffverbrauchsrate, die in iPSZ-KMs noch stärker ausgeprägt war. Der erhöhte Sauerstoffverbrauch deutet auf eine höhere Aktivität der Elektronentransportkette hin um den zellulären Energiebedarf decken zu können. Wir vermuten einen erhöhten Sauerstoffverbrauch als Konsequenz des Protonendurchsickerns oder der Entkopplung der ETC-Komplexe, das durch eine abnorme CL-Einbettung in der IMM bedingt sein könnte.
Darüber hinaus wiesen insbesondere iPSZ-KMs erhöhte extrazelluläre Säuerungsraten auf, die auf eine Verstoffwechselung anderer Substrate wie Glukose, Pyruvat oder Glutamin hinweisen, im Gegensatz zu der ansonsten bevorzugten Verstoffwechslung von Fettsäuren. Die Untersuchung der metabolischen Eigenschaften mittels der radioaktiven Tracer 18F-FDG und 125I-BMIPP zeigte eine signifikant verringerte Fettsäureaufnahme in allen Mutanten, die nur in einer Patientenzelllinie von einer erhöhten Glukoseaufnahme begleitet wurde. Diese Ergebnisse weisen auf eine DKMA-spezifische hochdynamische Präferenz der Substrate zwischen den unterschiedlichen Mutanten hin.
Um den Einfluss der molekularen Veränderungen direkt mit physiologischen Prozessen in Verbindung bringen zu können, wurden Untersuchungen der Kalziumkinetik, der Kontraktilität und des arrhythmischen Potentials durchgeführt. Einzelzellmessungen ergaben eine signifikant erhöhte Kontraktionsfrequenz, erhöhte diastolische Kalziumkonzentrationen und eine Tendenz zu reduzierten Zellverkürzungen in allen mutierten Zelllinien basal und verstärkt nach Isoproterenol-Stimulation. Zudem wurden verlangsamte Erholungsgeschwindigkeiten in allen mutierten iPSZ-KMs festgestellt, das in den iPSZ-KMs des einen Patienten besonders auffällig war und mit verlängerten Relaxationszeiten einherging. Die Evaluation der Kalziumtransientenformen deutet auf verstärkte arrhythmische Merkmale in den mutierten Zellen hin, die sowohl das Auftreten von DADs/EADs als auch Fibrillations-ähnlichen Ereignissen mit gegensätzlichen Präferenzen umfasste.
Insgesamt wurden unter der Verwendung patientenspezifischer iPS-Zellen und einer isogenen Mutantenkontrolle neue Einblicke in ein innovatives in vitro Modellsystem der DKMA gewonnen. Basierend auf unseren Ergebnissen vermuten wir, dass der Verlust des DNAJC19 Proteins in voller Länge die Stabilisierung von PHB-Komplexen innerhalb der IMM beeinträchtigt und damit PHB-Ringe an der Bildung von IMM-spezifischen Phospholipid-Clustern hindert. Diese Cluster sind essentiell um eine normale Cardiolipin-Reifung und dessen Funktion in der Cristae-Morphogenese gewährleisten zu können. Abnorme Cristae und fragmentierte mitochondriale Strukturen wurden beobachtet und deuten so auf eine essentielle Rolle von DNAJC19 in der mitochondrialen Morphogenese und Biogenese hin. Abnorme Veränderungen in der mitochondrialen Morphologie werden in der Regel mit einer verminderten ATP-Verfügbarkeit und einer erhöhten Produktion an freien Sauerstoffradikalen assoziiert, das nachfolgend die gesamte Funktionalität der Kardiomyozyten negativ beeinflussen kann. Diese Veränderungen konnten anhand einer erhöhten Sauerstoffverbrauchsrate, unterschiedliche metabolische Eigenschaften und einer abnormalen Kalziumkinetik gemessen werden.
Die zusammengefassten Daten unterstreichen die Verwendbarkeit von humanen iPSZ-KMs als ein eindrucksvolles System zur Rekapitulation von herzspezifischen Phänotypen und haben damit neue Einblicke in die Pathogenese der DKMA ermöglicht. Das Modellsystem bietet ein einzigartiges Potenzial zur Identifizierung therapeutischer Strategien, um pathologische Prozesse umkehren zu können und so den Weg für zukünftige klinische Anwendungen im Rahmen der personalisierten Therapie zu ebnen.
|
169 |
From origin to application: A study of plant orphan genesO'Conner, Seth Jordan 06 August 2021 (has links)
As sequencing technology has taken off since the late 1990's, a unique phenomenon has been observed repeatedly: genes with little to no conservation across species. For a while, the predominant theory that arose to explain these genes was duplication and subsequent evolution of conserved genes. While this theory can explain some, still many genes have now been proven to arrive de novo - from previously non-coding DNA. This work further investigates the origins of these de novo evolved genes and their practical application relevance in crop biotechnology. This work demonstrates the dynamic nature of plant mitochondrial genomes between even closely related species, and the integral role of mitochondrial genomes in the origin of de novo orphan genes in plants. To better understand the functional potential of plant orphan genes, the network of the orphan gene Qua Quine Starch (QQS) is further elucidated. This analysis demonstrates the broad functionality of an orphan gene as a "fine-tuning knob" in many plant pathways. Further, QQS' role in protein and starch allocation and plant defense is tied to the Nuclear Factor Y subunit C4 (NF-YC4) transcription factor - this knowledge leads us to manipulate expression of native NF-YC4 transcription factors in important crop species to successfully increase seed protein, increase broad disease resistance, and expedite maturation in soybean. A key goal in biotechnology is creating non-transgenic plants with advantageous traits. To accomplish this, the CRISPR-CAS9 system was used to target and delete repressive cis-regulatory elements in the GmNF-YC4-1 promoter sequence. This has allowed us to modify the activity of GmNF-YC4-1 and thus increase soybean seed protein, making it possible to get a non-transgenic plant by segregating out the CRISPR-CAS9 T-DNA and keeping the regulatory deletion. Overall, this work uncovers a novel mechanism of orphan gene evolution and uses the study of the orphan gene QQS to develop important crop biotechnology.
|
170 |
Investigating The Molecular Functions of The Os-Sc106 Spliceosomal Protein Via CRISPR/Cas9 SystemAlhabsi, Abdulrahman 11 1900 (has links)
Plants employ sophisticated molecular machineries to fine-tune their responses to growth, developmental, and stress cues. Plants cellular response influences gene expression through regulating processes like transcription and splicing. To increase the genome coding potential and further regulate the expression, pre-mRNA is alternatively spliced. Serine/Arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Recent studies reported only 22 SR proteins encoded in the genome of rice (Oryza sativa), which are classified into 6 subfamilies. Oryza s. SC subfamily 106 kDa (Os-Sc106) locus is homologous to the human SR protein SFSR11 (SRp54). Os-Sc106 contains SR proteins characteristics, and was not included among the rice SR proteins. The clustered regularly interspaced short palindromic repeats (CRISPR) and its associated protein 9 (Cas9) system, an RNA-guided endonuclease complex that introduces a double-strand break (DSB) into the DNA. Innovative scientific advances in genome engineering have made CRISPR/Cas9 an excellent system to conduct functional knockout studies of genes in most biological systems including plants. In this study, I targeted the rice Os-Sc106 locus at exon1, and 3 via CRISPR/Cas9 system. Genotyping analyses revealed the recovery of Os-Sc106 mutants including complete functional knockouts such as sf11h-2, sf11h-8, and sf11h-55. Phenotypic analyses show that Os-Sc106 mutants (sf11h-2, 8, 55, and 57) are oversensitive under abiotic stress in comparison to WT plants, suggesting that Os-Sc106 locus encodes a protein that is important for regulating plant stress responses.
|
Page generated in 0.0424 seconds