201 |
Dynamique de la réplication de l’ADN et complexe pré-réplicatif chez Leishmania sp.. : apport du système CRISPR/Cas9 / DNA replication dynamics and pre-replication complex in Leishmania : implementation of the CRISPR/Cas9 system in this divergent eukaryoteSollelis, Lauriane 20 December 2016 (has links)
Leishmania est un parasite eucaryote divergent responsable d’un large spectre de maladies à travers le monde. Ce parasite est caractérisé par une aneuploïdie mosaïque, constitutive, c’est-à-dire qu’au sein d’une population chaque cellule comporte une combinaison unique de mono-, di- et trisomies de chacun de ses 36 chromosomes. L’aneuploïdie mosaïque est générée et maintenue chez les générations suivantes grâce à un taux élevé de répartition asymétrique des chromosomes lors de la mitose, entrainant le gain ou la perte de chromosomes entiers. Ceci implique une régulation non-conventionnelle de la réplication, suivie d’une ségrégation permissive des chromosomes.L’objectif général de cette étude était de comprendre la dynamique de la réplication de l’ADN ainsi que de cartographier les sites d’initiation de la réplication chez Leishmania, en utilisant la technique du peignage moléculaire d’une part et celle du ChIP-seq d’une autre part. Nous avons ainsi pu caractériser les différents paramètres de progression de la fourche de réplication. Un des résultats majeurs qui ressort de cette étude est que Leishmania possède les plus grandes distances inter-origines et la plus grande vitesse de réplication parmi les autres eucaryotes déjà étudiés. Nous avons également pu estimer que le génome de Leishmania possède environ 168 origines de réplication. Afin d’étudier les acteurs impliqués dans la réplication de l’ADN chez Leishmania, nous avons développé l’outil génétique CRISPR/Cas9. Pour développer cet outil, nous avons basé notre approche sur une stratégie à deux vecteurs : l’un permet l’expression du single guide (sg)RNA et l’autre celle de l’endonucléase Cas9. La validation de cet outil génétique a été réalisée par le knock-out du locus PFR2 codant une protéine flagellaire. Dans un second temps, nous avons fait évoluer le CRISPR/Cas9 vers un système inductible pour réaliser les knock-out et des étiquetages au locus endogène de protéines d’intérêt. Nous avons utilisé ce nouveau système pour étudier la fonction de deux protéines potentiellement impliquées dans le complexe de reconnaissance des origines de réplication. Malgré une fuite du système, nous avons pu réaliser le KO des gènes Orc1b et Orc1/Cdc6 et suivre la progression du cycle cellulaire. Nous avons pu constater que la perte de ces gènes conduisait à un défaut de croissance ainsi qu’à l’apparition de cellules sans noyau. L’insertion d’une étiquette au locus endogène d’Orc1b nous a parmi de confirmer la localisation que nous avions obtenue avec une construction épisomale et va permettre d’étudier plus précisément le rôle de cette protéine.En conclusion, nous avons mis en évidence des paramètres de réplication originaux et démontré, en utilisant le CRISPR/Cas9, que les protéines Orc1b et Ocr1/Cdc6 étaient impliquées dans la duplication du noyau de Leishmania, ce qui est en accord avec leur rôle putatif dans la réplication de l’ADN. / Leishmania, a protozoan parasite which causes a large range of diseases worldwide, is characterized by a constitutive 'mosaic aneuploidy', i.e. each cell in a population possesses a unique combination of mono-, di- and trisomies for each of its 36 heterologous chromosomes. Mosaic aneuploidy is generated and maintained via high rates of asymmetric chromosomal allotments during mitosis, leading to the gain or loss of whole chromosomes. This implies an unconventional regulation of the replication, followed by a permissive segregation.The main objective of this study was to unravel DNA replication dynamics and to map the replication initiation sites in Leishmania using DNA combing and ChIP-seq analyses. First, we have characterized DNA replication fork parameters. One of the major findings of this study was that Leishmania exhibits the fastest replication speed and the largest interorigin distances among the eukaryotes tested so far. We have also estimated that the Leishmania major genome possesses 168 origins of replication.To study the actors involved in DNA replication, we first had to develop novel genetic tools. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated endonuclease 9) system is a recently discovered powerful technique for genome editing. In order to adapt this system to Leishmania, we have chosen a two-plasmid strategy: one for the expression of the single guide (sg) RNA and a second for the expression of the endonuclease CAS9. The proof of concept has been based on the disruption of the paraflagellar rod-2 (PFR2) loci by the CRISPR-Cas9 system. In a second attempt, we have developed an inducible CRISPR-Cas9 system, both to obtain knock outs and to perform marker-free endogenous gene tagging. We used the system to investigate the function of Origin Recognition Complex proteins. Although the system was leaky, the genome was edited as expected. We thus deleted Orc1b and Orc1/Cdc6 and monitored the cell cycle progression of the parasite. We found that the depletion of these nuclear proteins lead to a growth defect and to the appearance of zoids (anucleated cells). The endogenous tagging of Orc1b confirmed the localization previously obtained using an episomal expression vector, and will allow further investigation on the role of this protein.In total, we have shown the presence of original replication dynamics parameters in Leishmania, and using CRISPR Cas9, we have demonstrated that Orc1b and Orc1/Cdc6 are involved in the nuclear duplication of Leishmania, in agreement with their putative in DNA replication.
|
202 |
Loss of lrrk2 impairs dopamine catabolism, cell proliferation, and neuronal regeneration in the zebrafish brainSuzzi, Stefano 20 September 2017 (has links) (PDF)
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a major cause of Parkinson’s disease (PD), which is why modelling PD by replicating effects in animal models attracts great interest. However, the exact mechanisms of pathogenesis are still unclear. While a gain-of-function hypothesis generally receives consensus, there is evidence supporting an alternative loss-of-function explanation. Yet, neither overexpression of the human wild-type LRRK2 protein or its pathogenic variants, nor Lrrk2 knockout recapitulates key aspects of human PD in rodent models. Furthermore, there is conflicting evidence from morpholino knockdown studies in zebrafish regarding the extent of zygotic developmental abnormalities.
Because reliable null mutants may be useful to infer gene function, and because the zebrafish is a more tractable laboratory vertebrate system than rodents to study disease mechanisms in vivo, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genomic editing was used to delete the ~60-kbp-long zebrafish lrrk2 locus containing the entire open reading frame. Constitutive removal of both the maternal and the zygotic lrrk2 function (mzLrrk2 individuals) causes a pleomorphic phenotype in the larval brain at 5 days post-fertilisation (dpf), including increased cell death, delayed myelination, and reduced and morphologically abnormal microglia/leukocytes. However, the phenotype is transient, spontaneously attenuating or resolving by 10 dpf, and the mutants are viable and fertile as adults. These observations are mirrored by whole-larva transcriptome data, revealing a more than eighteen-fold drop in the number of differentially expressed genes in mzLrrk2 larvae from 5 to 10 dpf.
Additionally, analysis of spontaneous swimming activity shows hypokinesia as a predictor of Lrrk2 protein deficiency in larvae, but not in adult fish.
Because the catecholaminergic (CA) neurons are the main clinically relevant target of PD in humans, the CA system of larvae and adult fish was analysed on both cellular and metabolic level. Despite an initial developmental delay at 5 dpf, the CA system is structurally intact at 10 dpf and later on in adult fish aged 6 and 11 months. However, monoamine oxidase (Mao)-dependent degradation of biogenic amines, including dopamine, is increased in older fish, possibly suggesting impaired synaptic transmission or a leading cause of cell damage in the long term.
Furthermore, decreased mitosis rate in the larval brain was found, in the anterior portion only at 5 dpf, strongly and throughout the whole organ at 10 dpf. Conceivably, lrrk2 may have a more general role in the control of cell proliferation during early development and a more specialised one in the adult stage, possibly conditional, for example upon brain damage. Because the zebrafish can regenerate lost neurons, it represents a unique opportunity to elucidate the endogenous processes that may counteract neurodegeneration in a predisposing genetic background. To this aim, the regenerative potential of the adult telencephalon upon stab injury was tested in mzLrrk2 fish. Indeed, neuronal proliferation was reduced, suggesting that a complete understanding of Lrrk2 biology may not be fully appreciated without recreating challenging scenarios.
To summarise, the present results demonstrate that loss of lrrk2 has an early effect on zebrafish brain development that is later often compensated. Nonetheless, perturbed aminergic catabolism, and specifically increased Mao-dependent aminergic degradation, is reported for the first time in a LRRK2 knockout model. Furthermore, a link between Lrrk2 and the control of basal cell proliferation in the brain, which may become critical under challenging circumstances such as brain injury, is proposed. Future directions should aim at exploring which brain cell types are specifically affected by the mzLrrk2 hypoproliferative phenotype and the resulting consequences on a circuitry level, particularly in very old fish (i.e., over 2 years of age).
|
203 |
Thérapie cellulaire dans un modèle préclinique de Dystrophie Musculaire de Duchenne : Développement par édition génomique de cellules thérapeutiques et traçables in vivo par imagerie médicale / Cell therapy in a preclinical model of Duchenne Muscular Dystrophy : Development by gene editing of therapeutics cells, allowing their tracking in vivoMauduit, David 12 December 2016 (has links)
La dystrophie musculaire de Duchenne de Boulogne (DMD) est une myopathie héréditaire liée au chromosome X et causée par une mutation du gène de la dystrophine. Affectant un garçon sur 5000, cette maladie entraine une dégénérescence progressive des muscles striés squelettiques et cardiaques. A ce jour, la DMD demeure une maladie invalidante, incurable et les personnes atteintes ont une espérance de vie de 30 ans. Parmi les thérapies innovantes en cours de développement, la thérapie cellulaire est une stratégie prometteuse. Cependant elle présente plusieurs limitations notamment liées à l’efficacité des types cellulaires utilisés et le devenir des cellules après injection in vivo. Le premier objectif de cette thèse est le développement d’une méthode d’imagerie pour étudier à l’échelle de l’organisme et de façon non invasive la biodistribution et la survie des cellules suite à leur injection systémique dans un modèle préclinique pertinent, le chien GRMD (Golden Retriever Muscular Dystrophy), un modèle animal reproduisant fidèlement le phénotype DMD. Notre attention s’est portée sur l’utilisation du symporteur sodium iode (NIS) pour le suivi non invasif des cellules. Nous avons obtenu des cellules myogéniques exprimant le NIS, autorisant leur visualisation par scintigraphie grâce à la propriété d’absorption du technétium 99m conférée par ce symporteur. Nous avons montré in vitro que le NIS est fonctionnel pour la capture de radioactivité même après une différentiation avancée des cellules. En parallèle, nous nous sommes intéressés au type cellulaire. Les cellules primaires ayant une capacité de renouvellement limitée, cela restreint leur utilisation en thérapie et leur modification génomique. Afin de contourner cette limitation, plusieurs protocoles visant à obtenir des cellules souches pluripotentes induites (iPSCs) dérivées de cellules canines ont été utilisés. De plus, pour ne plus être dépendant de l’immunosuppression imposée par les greffes allogéniques, nous avons utilisé le système d’édition génomique CRISPR/Cas9 pour mettre au point une correction des cellules GRMD afin de permettre la réalisation de greffes autologues. Nous avons également utilisé le système CRISPR/Cas9 pour réaliser l’insertion ciblée du gène NIS dans un site précis du génome des cellules. Les résultats obtenus autorisent le développement de programmes comparant le potentiel thérapeutique de cellules dans un modèle préclinique de la DMD. / Duchenne muscular dystrophy (DMD), an X-linked recessive myopathy, is caused by mutations in the dystrophin gene. One boy out of 5000 is affected by this disease, which induces a progressive loss of skeletal striated and cardiac muscles. To date, DMD remains an invalidating disease and there is no cure for it. People suffering from DMD usually die in their 30’s. Among the innovative therapies currently under development, cell therapy is a promising strategy. However, it has some limitations related notably to a low efficiency of tested therapeutic cells and their tracking in vivo after injection. The first aim of this thesis is to develop an imaging method allowing non-invasive monitoring of biodistribution and survival of cells at the scale of a large organism, following systemic injection in the GRMD dog (Golden retriever muscular Dystrophy, a relevant animal model of DMD, as it replicates finely the DMD phenotype). We took interest in the sodium iodide symporter (NIS) as an imaging reporter. We induced the expression of the NIS in myogenic cells to allow visualization of the cells by scintigraphy thanks to its ability to uptake technetium 99m. We showed that NIS is functional in the cells and they maintain their ability to differentiate. Primary cells have a limited self-renewal capability restraining their use in human cell therapy and gene editing. To overcome this limitation, we used several protocols to derive induced pluripotent stem cells (iPSCs) from adult canine cells. Furthermore, to avoid immune suppression protocols, we used the CRISPR/Cas9 gene editing tools to design a correction strategy of the GRMD mutation for future autologous injections. We also used CRISPR/Cas9 to perform a targeted integration of the NIS gene in a safe harbor locus. Results allow us to develop protocols to compare the therapeutic potential of candidate cells in a preclinical model of DMD.
|
204 |
Génotypage à haut niveau de résolution des xanthomonades phytopathogènes à l’aide de marqueurs de type CRISPR et VNTR : de la preuve de principe à l’application / High-resolution genotyping of plant-pathogenic xanthomonads by CRISPR and VNTR analyses : from proof-of-principle to applicationPoulin, Lucie 20 November 2014 (has links)
La sécurité alimentaire est basée sur des systèmes de cultures durables. Les agents phytopathogènes présentent un risque sérieux pour la stabilité de l'agriculture mondiale. Dans ce contexte, la biosurveillance des agents phytopathogènes s'avère indispensable afin de connaitre et de comprendre la répartition, les routes et les facteurs de dispersion des populations phytopathogènes, et de prendre les mesures adaptées pour limiter leur propagation. Le genre bactérien Xanthomonas comprend un ensemble d'espèces phytopathogènes-spécifiques s'attaquant a une large gamme d'espèces végétales dont certaines sont importantes pour la production agricole. Les deux espèces d'étude, i.e les pathovars de Xanthomonas oryzae (Xo) et Xanthomonas axonopodis pathovar manihotis (Xam), pathogènes respectivement du riz et du manioc, font partie du « top 10 » des bactéries phytopathogènes d'importance majeure dans le monde. Des travaux portant sur l''épidémiosurveillance de ces bactéries phytopathogenes doivent pouvoir être mis en place en routine. L'objectif est de typer et de relier ces souches bactériennes à différentes échelles géographiques, ainsi que de détecter et caractériser les épidémies de manière précoce. Pour ce faire, plusieurs approches de typage moléculaire à haut niveau de résolution ont été explorées. Des marqueurs moléculaires basés sur les loci VNTR (Variable Number of Tandem repeats) ont été étudiés. Chez X. oryzae, un outil MLVA-25 (Multilocus VNTR Analysis) pour le pathovar Xanthomonas oryzae pv. oryzicola (Xoc) et un outil MLVA-16 pour les trois lignées génétiques de X. oryzae ont été développés. L'étude par le MLVA-16 de populations de X. oryzae a permis de caractériser des complexes clonaux généralement associés à de nouvelles épidémies. La description de nouvelles souches de Xoc en Afrique Centrale et Afrique de l'Est indique une provenance vraisemblablement d'origine asiatique. Chez Xam, la recherche de loci VNTR polymorphiques sur 65 génomes de Xam complets a abouti à la description de seize loci VNTR robustes donc cinq ont été ensuite utilisés pour l'étude de populations de Xam dans les plaines de l'est Colombien. Cette dernière étude met en avant une structuration des populations de Xam selon les régions. Enfin, une méthode de spoligotypage associée aux locus CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats) et des marqueurs minisatellites ont été développés chez les souches du pathovar Xanthomonas oryzae pv. oryzae (Xoo). Les analyses préliminaires ont permis de définir la composition de la cassette CRISPR et de proposer des outils de spoligotypage utiles pour les souches asiatiques de Xoo. D'autre part, 18 marqueurs minisatellites ont indiqué une corrélation significative avec les races des souches et peuvent servir à l'étude plus large de populations Xoo philippines ou asiatiques. En conclusion, des nouvelles approches de typage moléculaire ont été évaluées, mises au point et employées avec succès pour étudier les bactéries pathogènes du riz et du manioc appartenant au genre Xanthomonas. / Food and agriculture safety rely on durable cropping systems. Consequently, phytopathogens pose a serious risk for durable agriculture in the world. In this context, surveillance of phytopathogens is a mandatory prerequisite in order to understand and to predict pathogen repartition, dispersion routes and factors, and to trigger appropriate measures to reduce the pathogen's propagation. The genus Xanthomonas displays a large diversity of host-specific plant-pathogenic species that infect a wide range of plant species, including commercially grown crops. The two studied species, i.e. the rice-pathogenic Xanthomonas oryzae and the cassava-pathogenic Xanthomonas axonopodis pathovar manihotis (Xam), belong to the top-10 of phytopathogenic bacteria and are thus of major interest. Routine epidemiological surveillance of these bacteria has to be achieved in order to type and link strains at different geographic scales as well as to characterize outbreaks and epidemics. For this purpose, several high-resolution molecular typing approaches were explored. Firstly, VNTR (Variable Number of Tandem repeats)-based molecular markers were studied. For X. oryzae, multilocus VNTR analyses (MLVA) were developed: MLVA-25 for the pathovar oryzicola (Xoc) and MLVA- 16 for the three known lineages of X. oryzae. A large population study of X. oryzae by MLVA-16 allowed us to characterize genetic clonal complexes, which were likely associated with new epidemics. Also, the novel description of Xoc strains from central and east Africa indicated their probable Asian provenance. For Xam, the exploration of polymorphic VNTR loci in 65 available genome sequences allowed the description of sixteen robust VNTR loci. Among them, five highly polymorphic loci were further used in a population study of Xam in the eastern plain of Colombia. The results provided evidence of a geographical Xam population structuration. Secondly, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-associated spoligotyping and minisatellites markers were explored for a largely divergent set of Philippine strains of Xanthomonas oryzae pv. oryzae (Xoo). Both approaches were compared to genome-wide SNPs and races. Preliminary studies identified the composition of CRISPR arrays, which could be useful for a spoligotyping approach. On the other hand, 18 minisatellites markers revealed a significant correlation with races and could be used for a larger study of Philippine or Asian Xoo populations. In conclusion, novel molecular typing approaches were successfully evaluated, implemented and used to study rice- and cassava-pathogenic bacteria of the genus Xanthomonas.
|
205 |
Construction d’un châssis bactérien viable, minimal et non pathogène grâce aux outils de biologie de synthèse / Construction of a viable, minimal and non-pathogenic bacterial chassis with synthetic biology toolsRuiz, Estelle 16 September 2019 (has links)
Un des objectifs de la biologie de synthèse est de concevoir et produire des organismes « à façon », pour des applications thérapeutiques et industrielles. Une des voies envisagées pour atteindre cet objectif repose sur des techniques de synthèse et de transplantation de génomes entiers, afin de créer des organismes mutants.Le but de cette thèse est de développer des outils de biologie de synthèse qui permettront de construire une cellule minimale et non pathogène, à partir de Mycoplasma pneumoniae. Cette bactérie est l'un des plus petits organismes vivants, avec une taille inférieure au micron et un génome de 816 kpb. Ce mycoplasme est l’un des plus étudiés, avec une collection de données génétiques et multi-« omiques » disponibles. Ces caractéristiques font de cette cellule naturellement « quasi minimale » un point de départ idéal pour la construction d’un châssis bactérien. Néanmoins, la manipulation génétique de ce mycoplasme est difficile, en raison du nombre restreint d'outils disponibles.Une approche récemment développée propose de contourner ces limitations en utilisant la levure Saccharomyces cerevisiae comme plateforme d’ingénierie du génome de M. pneumoniae. L’étape préliminaire à cette approche consiste à cloner le génome bactérien dans la levure. Pour ce faire, une cassette « éléments levure » est insérée dans le génome de M. pneumoniae, pour permettre son maintien comme chromosome artificiel. Les travaux menés au cours de cette thèse ont permis d’insérer cette cassette par le biais d’un transposon, et de cloner ce génome marqué dans la levure. La stabilité du génome cloné a ensuite été étudiée, mettant en évidence que le chromosome bactérien est maintenu durant une dizaine de passages. Nous avons ensuite développé une nouvelle stratégie d’insertion des « éléments levure » en utilisant le système CRISPR/Cas9 pour cloner et éditer simultanément un génome de mycoplasme chez la levure : le CReasPy-Cloning. Cette méthode a été utilisée pour supprimer trois loci différents contenant des gènes impliqués dans la virulence : MPN372 (toxine CARDS), MPN142 (protéine de cytoadhérence) et MPN400 (protéine bloquant les IgG). Elle a ensuite été utilisée pour en cibler deux puis trois en une seule étape.Une fois le clonage et l’ingénierie du génome bactérien réalisés dans la levure, il est nécessaire de pouvoir transférer le chromosome modifié dans une cellule receveuse, afin de produire une cellule mutante. Ce processus nommé transplantation de génome n’étant pas décrit pour M. pneumoniae, une part importante de cette thèse a été dédiée au développement de cet outil. Nous avons utilisé la transformation de plasmides comme mécanisme modèle pour étudier le processus d’entrée de l’ADN dans M. pneumoniae et tester l’utilisation du polyéthylène glycol, le réactif clé de la transplantation. Bien qu’ayant réussi à mettre au point un protocole de transformation de plasmides, nous n’avons pas réussi pour l’instant à réaliser la transplantation de génomes.En parallèle, nous avons développé une stratégie alternative d’édition de génome qui ne dépend pas de la transplantation. Cette approche, nommée « Genomic Transfer - Recombinase-Mediated Cassette Exchange » (GT-RMCE), consiste à capturer dans un vecteur une section du génome bactérien édité présent dans la levure. Ce vecteur est transformé dans M. pneumoniae, et grâce au système Cre-lox la section éditée est introduite dans le génome. Ce mécanisme permet de réaliser des modifications de grande ampleur, et est actuellement utilisé pour introduire chez M. pneumoniae les délétions ΔMPN372, ΔMPN400 et ΔMPN372-ΔMPN400 produites par CReasPy-cloning. Nous avons également utilisé le GT-RMCE pour générer une souche de M. pneumoniae portant deux copies de l’opéron ribosomal S10.Au final, les outils d’ingénierie du génome de M. pneumoniae développés au cours de cette thèse permettent de réaliser un pas significatif vers la construction de nouveaux châssis bactériens. / A goal of synthetic biology is to create and produce “custom” organisms, for therapeutic and industrial applications. One of the contemplated approaches to achieve this goal is based on synthesis techniques and transplantation of whole genomes, in order to create mutant organisms.The aim of this thesis is to develop synthetic biology tools that will enable the construction of a minimal and non-pathogenic cell based on Mycoplasma pneumoniae. This bacterium is one of the smallest living organisms, with a size smaller than one micron and a genome of 816 kbp. This mycoplasma is one of the most studied, with a large set of genetic and multi- “omics” data available. These characteristics make this naturally “almost minimal” cell an ideal starting point for the construction of a bacterial chassis. Nevertheless, the genetic manipulation of this mycoplasma is difficult, due to the limited number of available tools.A recently developed approach offers the possibility to circumvent these limitations by using the yeast Saccharomyces cerevisiae as a genome engineering platform for M. pneumoniae. The preliminary step to this strategy is to clone the bacterial genome in yeast. To do so, a "yeast elements" cassette is inserted into the genome of M. pneumoniae, to allow its maintenance as an artificial chromosome. The work carried out during this thesis allowed us to insert this cassette through a transposon, and to clone this marked genome in yeast. Then, the stability of the cloned genome was studied, demonstrating that the bacterial chromosome is maintained during ten passages. We then developed a new strategy for the insertion of the "yeast elements", using the CRISPR/Cas9 system to simultaneously clone and edit a mycoplasma genome in yeast: the CReasPy-Cloning. This method was used to remove three different loci containing genes involved in virulence: MPN372 (CARDS toxin), MPN142 (cytoadherence protein) and MPN400 (IgG blocking protein). This method was also used to target two and then three different loci in one step.Once in-yeast cloning and bacterial genome engineering is achieved, it is necessary to transfer the modified chromosome into a recipient cell, to produce a mutant organism. This process, called genome transplantation, is not described for M. pneumoniae, so a significant part of this thesis was dedicated to the development of this tool. We used plasmid transformation as a model mechanism to study the process of DNA entry into M. pneumoniae and to test the use of polyethylene glycol, the key reagent for transplantation. Although we succeeded in developing a plasmid transformation protocol, we have not yet been able to perform genome transplantation.Concurrently, we have developed an alternative strategy for genome editing that does not depend on transplantation. This approach, named "Genomic Transfer - Recombinase-Mediated Cassette Exchange" (GT-RMCE), is used to capture in a vector a section of the edited bacterial genome borne by the yeast. This vector is then transformed into M. pneumoniae, and through to the Cre-lox system the edited section is introduced into the genome. This mechanism allows to carry out large-scale modifications, and is currently used to introduce into M. pneumoniae the ΔMPN372, ΔMPN400 and ΔMPN372-ΔMPN400 deletions produced by CReasPy-cloning. We also used the GT-RMCE to generate a strain of M. pneumoniae carrying two copies of the S10 ribosomal operon.Overall, the M. pneumoniae genome engineering tools developed during this thesis constitute a significant step towards the construction of new bacterial chassis.
|
206 |
Towards Understanding the Molecular Basis of Human Endoderm Development Using CRISPR-Effector and Single-Cell TechnologiesGenga, Ryan M. 12 February 2019 (has links)
The definitive endoderm gives rise to several specialized organs, including the thymus. Improper development of the definite endoderm or its derivatives can lead to human disease; in the case of the thymus, immunodeficiency or autoimmune disorders. Human pluripotent stem cells (hPSCs) have emerged as a system to model human development, as study of their differentiation allows for elucidation of the molecular basis of cell fate decisions, under both healthy and impaired conditions. Here, we first developed a CRISPR-effector system to control endogenous gene expression in hPSCs, a novel approach to manipulating hPSC state. Next, the human-specific, loss-of-function phenotypes of candidate transcription factors driving hPSC-to-definitive endoderm differentiation were analyzed through combined CRISPR-perturbation and single-cell RNA-sequencing. This analysis revealed the importance of TGFβ mediators in human definitive endoderm differentiation as well as identified an unappreciated role for FOXA2 in human foregut development. Finally, as the differentiation of definitive endoderm to thymic epithelial progenitors (TEPs) is of particular interest, a single-cell transcriptomic atlas of murine thymus development was generated in anticipation of identifying factors driving later stages of TEP differentiation. Taken together, this dissertation establishes a CRISPR-effector system to interrogate gene and regulatory element function in hPSC differentiation strategies, details the role of specific transcription factors in human endoderm differentiation, and sets the groundwork for future investigations to characterize hPSC-derived TEPs and the factors driving their differentiation.
|
207 |
Des mécanismes moléculaires pathologiques aux stratégies de correction génomique in vitro de la Dystrophie Facio-Scapulo-Humérale / Molecular mechanisms and in vitro genome correction strategies of Facioscapulohumeral dystrophyBou saada, Yara 28 September 2016 (has links)
La dystrophie Facio-Scapulo-Humérale (FSHD) fait partie des maladies musculaires génétiques les plus fréquentes. Elle se caractérise par une dégénérescence progressive et asymétrique d’un groupe spécifique de muscles striés squelettiques, dont principalement les muscles faciaux, scapulaires et huméraux. D’un point de vue génétique, la FSHD est une maladie multifactorielle qui résulte d’évènements génétiques situés sur la région sub-télomérique du chromosome 4, ainsi que d’évènements épigénétiques altérant l’organisation chromatinienne du locus 4q35. Ces anomalies provoquent une relaxation chromatinienne et une surexpression de la majorité des gènes du locus 4q35, dont DUX4, gène majeur impliqué dans la FSHD. Les répercussions de l’ensemble de ces altérations se traduisent notamment par une dérégulation de la signature transcriptionnelle des myoblastes primaires issus des patients FSHD, et par des anomalies de leur différenciation myogénique in vitro et leur hypersensibilité au stress oxydant. Plusieurs aspects de la maladie demeurent incompris, et la complexité de cette myopathie rend difficile le choix d’une stratégie thérapeutique optimale. Cependant, la découverte des outils de l’édition du génome et la multiplication de leurs applications à visée thérapeutique dans le cadre de maladies humaines, notamment les myopathies, ouvre de nouvelles perspectives pour la FSHD qui reste, jusque-là, incurable.Le travail de thèse a concerné, dans un premier temps, l’implication des dommages de l’ADN et du stress oxydant dans la pathophysiologie de la FSHD. Nous avons mis en évidence l’omniprésence de ces caractéristiques cellulaires dans les myoblastes FSHD, leur lien à l’expression aberrante de DUX4 et leur participation à la morphologie défectueuse des myotubes FSHD in vitro. Dans un second temps, le travail de thèse a consisté à concevoir et à développer des outils de l’édition génomique et épigénomique, capables de cibler spécifiquement un des évènements génétiques causal de la FSHD, le variant pathogénique 4qA161 touchant un site d’attachement à la matrice nucléaire, FR-MAR. A partir de ces outils développés, deux stratégies de corrections génomique et épigénomique à visée thérapeutique peuvent être alors envisagées in vitro, ayant pour but ultime de rétablir la fonction d’insulation de FR-MAR et la conformation chromatinienne de la région 4q35. / Facioscapulohumeral dystrophy (FSHD) is one of the most common genetic myopathies characterized by a progressive and asymmetric weakening of a specific group of skeletal muscles, typically facial, shoulder girdle and upper arms muscles. FSHD is a multifactorial disease that results from the combination of genetic and epigenetic events mapped at the 4q35 locus. These genetic and epigenetic alterations lead to chromatin relaxation and the subsequent overexpression of the majority of 4q35 genes, notably DUX4, the major actor in FSHD pathology. These genomic alterations lead to molecular and cellular defects observed in vitro. Cultured-FSHD myoblasts show a distinct transcription profile, they exhibit morphological differentiation defects and are sensitive to oxidative stress. Several aspects of the disease remain poorly understood, and the elaboration of an appropriate therapeutic strategy is limited by the complexity of this myopathy. However, the discovery of genome editing tools and their successful therapeutic applications in vitro and in animal models of several human diseases, including myopathies, open doors to potential therapeutic strategies for FSHD.This work highlighted the involvement of DNA damage and oxidative stress in the pathophysiology of FSHD, by revealing their constitutive presence in FSHD myoblasts, their link to DUX4 expression and their participation in morphological defects of FSHD myotubes observed in vitro. The second part of this work was aimed at developing genome- and epigenome-editing tools capable of specifically targeting one of the genetic events causing FSHD, a pathogenic variant 4qA161 that contains an insulator and a nuclear matrix attachment site (FR-MAR). These engineered tools will be then used to develop in vitro therapeutic strategies, with the intention of restoring the insulator activity of FR-MAR and the chromatin organization of 4q35 locus.
|
208 |
développement d'approches de correction des myoblastes issus de patients atteints de la dystrophie facio-scapulo-humérale / Development of Correction Approaches for Myoblasts from Patients with Facio-Scapulohumeral DystrophyDib, Carla 05 September 2018 (has links)
La dystrophie Facio-Scapulo-Humérale est caractérisée par une faiblesse musculaire progressive et asymétrique. Elle affecte principalement les muscles faciaux, scapulaires et huméraux. L’association de plusieurs évènements épigénétiques à trois facteurs génétiques de la région subtélomérique du chromosome 4 résulte en un changement dans l’organisation chromatinienne la rendant permissive à l’expression aberrante des gènes de la région 4q35. Les myoblastes DFSH présentent des défauts de différenciation in vitro et des dérégulations dans des voies majeures comme celle de la réponse cellulaire au stress oxydant et de la différenciation myogénique. L’enjeu génétique et épigénétique complexe dans la DFSH et les limitations de la thérapie cellulaire dans son contexte laissent la DFSH jusque-là incurable. Toutefois les avancées dans les thérapies cellulaires et génétiques des myopathies ouvrent des horizons pour de futures applications dans le cadre de la DFSH.Le travail de thèse s’articule autour de trois thématiques. Premièrement, nous démontrons la faisabilité de la correction phénotypique et fonctionnelle des myotubes DFSH in vitro par la fusion de 50% de myoblastes normaux avec des myoblastes DFSH. Ensuite, nous évaluons deux approches d’édition génomique. Dans la première approche, nous ciblons le site de rattachement du chromosome 4 à la matrice nucléaire, FR-MAR avec la protéine CTCF à l’aide du système CRISPR/dCas9 en vue du rétablissement de l’organisation chromatinienne et de la fonction isolatrice de FR-MAR. Dans la deuxième, nous échangeons par translocation les régions homologues 4q35 et 10q26 dans le but de corriger les myoblastes DFSH comme les trois facteurs génétiques du locus 4q35 ne sont pathogéniques que sur un fond génétique lié au chromosome 4. Finalement, nous étudions le rôle du stress oxydant dans la DFSH. / Facio-Scapulo-Humeral dystrophy is characterized by progressive and asymmetrical muscle weakness. It mainly affects the facial, scapular and humeral muscles. The association of several epigenetic events with three genetic factors of the subtelomeric region of chromosome 4 results in a chromatin organization modification making it permissive to the aberrant expression of genes in the 4q35 region. FSHD myoblasts exhibit differentiation defects in vitro and dysregulations in major pathways such as the cellular response to oxidative stress and myogenic differentiation. The limitations of cell therapy and the complex genetic and epigenetic interplay in FSHD leave it, till now, incurable. However advances in cellular and genetic therapies of myopathies open up new horizons for future applications in the FSHD context. The thesis work is structured around three themes. First, we demonstrate the feasibility of phenotypic and functional correction of FSHD myotubes in vitro by fusing 50% of normal myoblasts with FSHD myoblasts. Next, we evaluate two genomic editing approaches. In the first one, we target the site of attachment of chromosome 4 to the nuclear matrix, FR-MAR with the CTCF protein using the CRISPR / dCas9 system for the purpose of restoring the chromatin organization and the insulating function of FR-MAR. In the second one, we exchange the homologous regions 4q35 and 10q26 by translocation in order to correct the FSHD myoblasts as the three genetic factors of the 4q35 locus are pathogenic only on a genetic background linked to chromosome 4. Finally, we study the role of the oxidative stress in the FSHD.
|
209 |
Validation in vivo de l'implication de nouveaux gènes impliqués dans le développement musculaire des mammifères / In vivo validation of the implication of new genes in mammalian muscle developmentHelary, Louise 19 December 2019 (has links)
Même si les acteurs majeurs du développement musculaire ont été identifiés et les voies de transductions décrites, d’autres régulateurs restent encore à découvrir. Un crible ARNi pratiqué sur un modèle cellulaire couramment utilisé, la lignée myoblastique C2C12, a identifié 20 nouveaux gènes potentiellement impliqués dans la myogenèse in vitro. Au cours de ma thèse, deux de ces gènes ont été invalidés sur modèle souris en utilisant la technologie CRISPR/Cas9 pour valider in vivo leur implication. Pour l’un d’entre eux, seuls les animaux hétérozygotes ont pu être étudiés puisqu’une létalité précoce a été observée chez les homozygotes mutés. Aucune anomalie du développement musculaire n’a été mise en évidence. Une étude plus fine dans les premières phases du développement embryonnaire nous a permis de montrer le rôle indispensable de cette protéine précocement. L’étude du second gène – dont les analyses se poursuivent – semble confirmer in vivo le rôle de ce gène au cours de la myogenèse. Pour éviter la survenue de létalité embryonnaire et observer rapidement les effets de l’invalidation d’autres gènes, une technique de transgenèse somatique s’appuyant sur l’ARN interférence a été mis en place via l’injection de lentivirus contenant une cassette d’expression de shRNA directement dans le tibialis antérieur des souris. La validation de cette approche a été faite sur le gène de la myostatine, régulateur négatif du développement musculaire, et a montré une diminution de l’expression du gène associée à une augmentation de l’aire des fibres musculaires. La même approche appliquée à trois autres gènes renforce l’hypothèse de l’implication d’un des gènes dans le développement musculaire. Cette approche permet donc un crible rapide « in vivo » de gènes identifiés in vitro. Cependant, certaines améliorations doivent être apportées au protocole au regard des résultats obtenus. / Even if the major actors and transduction pathways of muscle development have been identified, there are still unknown regulatory factors. An in vitro RNAi screening performed on C2C12 myoblastic cells has permitted to identify 20 novel genes potentially implicated in myogenesis. During my thesis, two of these genes were invalidated on mouse model using CRISPR/Cas9 technology in order to confirm their implication in vivo. For the first gene, due to an early lethality occurring in homozygous mutated animals, only heterozygous animals were studied and there was no muscular development anomaly detected. A refined study of earlier stages of embryonic development permitted to show the essential role of the protein in these phases. The study of the second gene, still in progress, seems to confirm in vivo the implication of the gene on the myogenesis. In order to avoid embryonic lethality due to germline invalidation and to observe more rapidly the effects of gene invalidation in muscle, we developed a technique of somatic transgenesis based on RNA interference. Lentivirus containing a shRNA expression cassette was injected directly into the tibialis anterior of mice. We validated this approach on Myostatin gene, a well-known negative regulator of muscle development, showing that the decrease of Myostatin gene expression was associated to an increase of muscle fibers area. The same approach was used with three genes and support the hypothesis of the implication of one of them in muscle development. Thus, this approach allows a rapid “in vivo” screening of in vitro identified genes. Nonetheless, some improvements should be brought on the protocol according to the first results.
|
210 |
Characterisation of Nuclear Envelope-Associated Proteins (NEAPs) in Arabidopsis thaliana / Caractérisation des protéines associées à l'enveloppe nucléaire (NEAPs) chez Arabidopsis thalianaDétourné, Gwénaëlle 29 May 2019 (has links)
Au cours de l'évolution, les cellules eucaryotes ont acquis une enveloppe nucléaire (NE) renfermant et protégeant le génome organisé en chromatine, une structure où l'ADN s’enroule autour de protéines histones. La NE est composé de deux membranes : du côté nucléoplasmique, la membrane nucléaire interne (INM) et du côté cytoplasmique, la membrane nucléaire externe. La NE permet la communication entre les deux compartiments par le biais des complexes de pores nucléaires et relie le cytosquelette au nucléosquelette via le complexe LINC (LInker of Nucleoskeleton to Cytoskeleton). Ainsi, le nucléosquelette associé à l'INM est nécessaire pour transmettre des signaux au noyau et induire des changements dans l'organisation de la chromatine et finalement dans l'expression des gènes.Une nouvelle famille de protéines associées à l'enveloppe nucléaire (NEAP),proposées comme nouveaux composants du nucléosquelette de la plante, a récemment été mise en évidence dans la plante modèle Arabidopsis thaliana. Ces protéines sont codées par une famille de trois gènes et sont ciblées vers le noyau via un NLS où elles sont ancrées à l'INM via leur domaine transmembranaire C-terminal. Les protéines AtNEAPs possèdent également plusieurs longs domaines en spirale (coiled-coil) rappelant la structure des lamines chez les animaux. Cette thèse visait à réaliser une analyse fonctionnelle des AtNEAPs à l'aide de lignées mutantes T-DNA et CRISPR/Cas9. L'interactome AtNEAP a été étudié par des approches moléculaires (Yeast Two Hybrid), indiquant des interactions entre AtNEAPs pouvant former des homo- ou hétéro-dimères; ainsi que la localisation et la co-localisation in vivo couplées à de l’imagerie (apFRET), qui ont confirmé les interactions avec le facteur de transcription (TF) AtbZIP18. Les anticorps spécifiques à AtNEAP générés au cours de cette étude ont été utilisés pour confirmer l'expression in vivo. En outre, les résultats ont indiqué que les AtNEAPs font partie du nucléosquelette et jouent un rôle dans l’ancrage des TF à l’INM afin de maintenir la morphologie nucléaire et l’organisation de la chromatine. / During evolution, eukaryotic cells have acquired a nuclear envelope (NE) enclosingand protecting the genome, which is organized in chromatin, a structure wrapping DNAaround histone proteins. The NE is composed of two membranes: on the nucleoplasmic side,the Inner Nuclear Membrane (INM) and on the cytoplasmic side, the Outer NuclearMembrane. The NE allows communication between both compartments through Nuclear PoreComplexes and bridges the cytoskeleton to the nucleoskeleton through the LInker ofNucleoskeleton to Cytoskeleton complex. Thus, the nucleoskeleton associated with the INMis needed to transmit signals to the nucleus and induce changes in chromatin organisation andultimately gene expression.A novel family of NUCLEAR ENVELOPE ASSOCIATED PROTEINS (NEAPs)proposed to be new components of the plant nucleoskeleton has been recently evidenced inthe model plant Arabidopsis thaliana. AtNEAP proteins are encoded by a small gene familycomposed of three genes and are targeted through a nuclear localisation signal to the nucleuswhere they are anchored at the INM through their C-terminal transmembrane domain.AtNEAPs also possess several long coiled-coil domains reminiscent of the lamin structure inanimals. This thesis aimed at performing a functional analysis of AtNEAPs using T-DNAinsertion and CRISPR/Cas9 mutant lines. The AtNEAP interactome was investigated bymolecular approaches (Yeast Two Hybrid), which indicated AtNEAP interactions with eachother to form homo or hetero-dimers; as well as in vivo localisation and co-localisationcoupled to image analyses (apFRET, acceptor photobleaching Fluorescence ResonanceEnergy Transfer), which confirmed interactions with the transcription factor (TF) AtbZIP18.AtNEAP specific antibodies generated during this study were used to confirm expression invivo. Altogether, results indicated that AtNEAPs are part of the nucleoskeleton, with a role inanchoring TFs at the INM to maintain nuclear morphology and chromatin organisation.
|
Page generated in 0.0517 seconds