• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 54
  • 21
  • 21
  • 11
  • 9
  • 7
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 524
  • 271
  • 115
  • 106
  • 105
  • 80
  • 76
  • 72
  • 70
  • 56
  • 53
  • 52
  • 42
  • 41
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Analysis of the adaptation mechanism in the type II-A CRISPR-Cas system

Wong, Shi Pey 21 March 2019 (has links)
Das RNA-guided adaptive Immunsystem CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immunisiert prokaryotische Zellen gegenüber mobilen genetischen Elementen (MGEs). Bei der Adaption wird eine kurze Nukleinsäurensequenz (prespacer) von den MGEs gewonnen, verarbeitet und schließlich als spacer in das CRISPR-Array integriert. Cas1 und Cas2, die Hauptbestandteile der Adaption, bilden einen Integrase-Komplex, welcher neue spacer in das CRISPR-Array integriert. Der molekulare Mechanismus für die Adaptiondes Typ II-A Systems, welches cas9, cas1, cas2, csn2 und tracrRNA codiert, ist bis heute nicht vollständig verstanden. Daher untersuchten wir die Anforderungen der verschiedenen Cas-Proteine für den Adaptionsprozess. Wir verifizierten die Adaptions-Aktivität von Typ II-A Systemen des Streptococcus thermophilus LMD-9 anhand von Adaptionsstudien nach Phagen-Infektion. Dabei beobachteten wir höhere Akquisitionsraten im CRISPR3-Lokus im Vergleich zum CRISPR1-Lokus. Unsere Plasmid-basierte Adaptionsstudie bestätigte die Notwendigkeit von Cas9, zusätzlich zu Cas1, Cas2 und Csn2 bei der Adaption. Der yeast two-hybrid und der pull-down Ansatz zeigten sowohl spezifische Interaktionen zwischen den Cas-Proteinen, als auch Interaktionen zwischen Cas-Proteinen sowie DNA-Reparatur Proteinen. Die Regionen der Cas1 und Cas9 Interaktion wurden durch SPOT peptide assay identifiziert. Zusammenfassend weist unsere Studie darauf hin, dass Cas-Proteine sowohl mit Proteinen innerhalb, als auch außerhalb des CRISPR-Cas Systems interagieren, und bietet somit eine Basis für die Erforschung der möglichen Funktionen von DNA-Reparatur Proteinen in CRISPR-Cas Systemen und vice versa. / The RNA guided adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats) Cas (CRISPR-associated) immunizes prokaryotic cells against mobile genetic elements (MGEs). During spacer acquisition stage, a short nucleic acid sequence (prespacer) is acquired from the MGEs, processed and finally integrated into the CRISPR array as a spacer, which serves as genetic memory to defend against the invasion of the cognate MGEs. The molecular mechanism for the spacer acquisition of the type II A systems, which encode cas9, cas1, cas2, csn2 and tracrRNA, is still not fully understood. Therefore, we investigated the requirement of the different Cas proteins for spacer acquisition. We verified the acquisition activity of the type II A systems of Streptococcus thermophilus LMD 9 via spacer acquisition studies by phage challenge. We observed higher acquisition rates in the CRISPR3 locus compared to the CRISPR1 locus. Our plasmid-based spacer acquisition study confirmed in addition to Cas1, Cas2 and Csn2 the requirement of Cas9 for spacer acquisition. Yeast two hybrid and pull down approaches revealed specific interactions among the Cas proteins, as well as interactions between Cas and DNA repair proteins. The interaction regions of Cas1 with Cas9 were identified by SPOT peptide assay. Altogether, our study suggests that Cas proteins interact with proteins within and beyond the CRISPR Cas systems, and it provides a basis for the investigation of the potential roles of DNA repair proteins in the CRISPR Cas systems and/or vice versa.
212

Identification de voies de résistance aux inhibiteurs de tyrosine kinase dans la leucémie myéloïde chronique par criblage CRISPR-Cas9. / Genome-wide CRISPR-Cas9 Screening to Identify Pathways Involved in Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia

Lewis, Matthieu 12 April 2019 (has links)
La caractérisation des tumeurs malignes et la compréhension des mécanismes de résistance aux traitements anticancéreux sont essentielles pour la découverte de nouvelles cibles thérapeutiques. Les criblages génétiques, devenus encore plus puissants avec la technologie d’édition du génome CRISPR-Cas9, le séquençage nouvelle génération et la bioinformatique, sont des outils formidables pour décrypter de nouveaux mécanismes cellulaires, dont la résistance au traitement. La leucémie myéloïde chronique (LMC) est un syndrome myéloprolifératif qui est caractérisé par l’anomalie génétique t(9;22). Cette aberration chromosomique est à l’origine du gène de fusion BCR-ABL1 qui code l’oncogène du même nom responsable de la prolifération anarchique des cellules. L’imatinib mesylate, un inhibiteur de tyrosine kinase, élimine de manière spécifique les cellules leucémiques en ciblant et en bloquant l’activité kinase de cette protéine. Malheureusement, comme pour tout type de thérapie ciblée, une résistance au traitement survient chez certains patients. Afin de repérer des nouvelles voies de résistance à cet inhibiteur de tyrosine kinase, nous avons effectué un criblage génétique avec la librairie « genome-scale CRISPR knock-out » (GeCKO v2) in vitro dans la lignée cellulaire K562. Nous avons découvert plusieurs gènes qui semblent être essentiels pour la réponse au traitement par imatinib, tels que les facteurs pro-apoptotiques BIM et BAX, ou le répresseur de la voie des MAPK, SPRED2. Le rétablissement spécifique de l’apoptose dans les cellules BIM knock-out (KO) par des BH3-mimétiques, ou l’inhibition ciblée de la voie MAPK dans la lignée SPRED2 KO sensibilise de nouveau les lignées résistantes. Dans ce travail, nous avons découvert des mécanismes de résistance déjà connus (l’apoptose, la voie MAPK…) mais nous avons également démontré l’implication de voies peu connues telles que le complexe Mediator, la maturation de ARNm et l’ubiquitinylation de protéines. Spécifiquement cibler ces lésions génétiques avec des thérapies ciblées combinées peut permettre de surmonter les phénotypes de résistance et ouvre la porte à l’utilisation de l’oncologie de précision. / The characterization of malignant tumour growth and the understanding of resistance mechanisms to treatment in cancer is of utmost importance for the discovery of novel “druggable” targets. Efficient genetic screening, now even more possible with the convergence of CRISPR-Cas9 gene editing technology, next-generation sequencing and bioinformatics, is an important tool for deciphering novel cellular processes, such as resistance to treatment in cancer. Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterised by the t(9;22) genetic abnormality, which encodes the driver of CML, the BCR-ABL1 fusion protein. Imatinib mesylate, a tyrosine kinase inhibitor, specifically eliminates CML cells by targeting and blocking the kinase activity of this protein, yet, as for all targeted therapies in cancer, resistance to treatment exists. In order to discover alternative BCR-ABL1 independent mechanisms of imatinib resistance, we utilized the genome-scale CRISPR knock-out library GeCKO v2 to screen for imatinib sensitising genes in vitro on K562 cells. We revealed genes that seem essential for imatinib induced cell death, such as pro-apoptotic genes (BIM, BAX) or MAPK inhibitor SPRED2. Specifically re-establishing apoptotic capabilities in BIM knock-out (KO) cells with BH3-mimetics, or inhibiting MAP-kinase signalling in SPRED2 KO cells with MEK inhibitors restores sensitivity to imatinib, overcoming resistance phenotypes. In this work, we discovered previously identified pathways (apoptosis, MAP-kinase signalling) and novel pathways that modulate response to imatinib in CML cell lines, such as the implication of the Mediator complex, mRNA processing and protein ubiquitinylation. Targeting these specific genetic lesions with combinational therapy can overcome resistance phenotypes and paves the road for the use of precision oncology.
213

Etudes des translocations chromosomiques en utilisant les méthodes d'édition du génome : des mécanismes moléculaires à l’oncogenèse / Cancer Translocations Induction Using Genome Editing : from Molecular Mechanisms to Oncogenesis

Babin, Loélia 27 September 2019 (has links)
Les translocations chromosomiques sont associées à un grand nombre de cancers. Les translocations chromosomiques sont impliquées dans la tumorigenèse par différents mécanismes : elles conduisent soit à une dérégulation d’un oncogène, soit à la formation d’un nouvel oncogène de fusion. Cependant, le lien direct entre l'apparition d'une translocation chromosomique et la formation d'une tumeur n'est pas totalement établi. Par exemple, plusieurs translocations associées au cancer ont été détectées dans le sang d’individus sains voire dans le sang de cordon des bébés avec une prévalence bien supérieure à celle de la maladie. Ceci suggère que la seule formation de la translocation ne suffit pas toujours à induire l’oncogenèse. La plupart des travaux de recherche antérieurs reposaient sur la surexpression de la protéine de fusion, oncogène supposé. Ces approches présentent de nombreuses limites, la translocation chromosomique est alors absente de même que le contexte chromosomique natif du gène de fusion (promoteur endogène, statut de la chromatine, etc.) ou les éventuels effets d’haplo-insuffisance qui ne sont pas récapitulés. La molécule d’ADN étant organisée de manière non aléatoire dans le noyau, les réarrangements chromosomiques sont également susceptibles d’affecter le statut épigénétique, la réplication et la transcription du chromosome dérivatif entier, en plus des segments d’ADN nouvellement juxtaposés. Or la technologie CRISPR/Cas9, permet de reproduire la translocation chromosomique in situ, après avoir induit deux cassures double-brin simultanées. Ce travail de thèse a porté spécifiquement sur la translocation t(2,5) (p23, q35) qui induit l’expression de la protéine de fusion NPM1-ALK fréquemment rencontrée dans le lymphome anaplasique à grandes cellules (ALCL). Nous avons reproduit la t(2,5) à la fois dans des lignées cellulaires mais aussi dans des cellules T primaires à la fin de ma thèse. Nous avons pu montrer des modifications significatives du timing de réplication des cellules qui portent la translocation en comparaison des cellules isogéniques de départ (par la méthode du Répli-seq) pouvant avoir un impact sur l’homéostasie des cellules tumorales. En parallèle, nous avons mis en évidence la formation d'ARN circulaires de fusion spécifiques, exprimés à partir du gène de fusion, spécifiques des lignées tumorales. Ces ARN circulaires pourraient donner naissance à de nouveaux biomarqueurs diagnostic/pronostic dans le futur. Ces travaux permettront de mieux comprendre les conséquences des translocations chromosomiques oncogéniques dans les cellules humaines et pourraient mener vers de nouvelles orientations thérapeutiques à l’avenir. / Chromosomal translocations are associated with a wide range of cancers. These chromosomal rearrangements are implicated in tumorigenesis by different mechanisms: either they lead to oncogene upregulation or tumor suppressor downregulation. However, the direct link between the appearance of one chromosomal translocation and tumor formation is not always clear. For example, several cancer translocations have been found in PBMCs or in cord blood cells from healthy individuals, suggesting that translocation formation alone is not always sufficient to drive oncogenesis. Most of previous research works on cancer translocation relied on studies using overexpression of the fusion protein. These approaches do not reproduce the chromosome arm translocation nor the chromosomal context of the fusion gene (endogenous promotor, chromatin status etc…) or do not recapitulate a potential haplo-insufficiency of the translocated cells. Because the DNA molecule is organized non-randomly in the nucleus, chromosomal rearrangements are also likely to impact the epigenetic, replication and transcriptional status of the whole rearranged chromosome in addition to the newly juxtaposed gene segments. Using CRISPR/Cas9 technology, we can recapitulate chromosomal translocation in situ, after inducing 2 concurrent double-strand breaks. In this work, we focus on t(2,5)(p23,q35) leading to NPM1-ALK fusion protein frequently found in Anaplasic Large Cell Lymphoma (ALCL). We could recapitulate t(2;5) in cell lines but more importantly in human primary T cells from healthy donors. We showed significant modifications on Replication Timing in model cell lines compare to isogenic non-translocated cells (using Repli-seq analysis). Importantly, these changes might have a direct impact on tumor cell homeostasis. In parallel, we also highlighted the formation of specific fusion circular RNAs expressed from the fusion gene also found in tumor cells. These circular RNAs could give rise to new diagnostic/prognostic biomarkers in the future. This work will lead to a better understanding of the consequences of cancer translocation in human cells and could give new directions for therapeutics in future.
214

Rôle des facteurs de transcription PHOX2B, GATA3 et HAND2 dans l’identité et l’oncogenèse du neuroblastome / Role of the PHOX2B/GATA3/HAND2 Transcription Factors in Neuroblastoma Identity and Oncogenesis

Peltier, Agathe 02 December 2019 (has links)
Le neuroblastome est cancer du jeune enfant se développant au sein du système nerveux périphérique sympathique. Cette tumeur est caractérisée par sa grande hétérogénéité clinique : allant de formes régressant spontanément aux tumeurs de haut-risque, réfractaires aux traitements les plus agressifs. La survie à long terme des patients présentant un neuroblastome de haut-risque reste par ailleurs inférieure à 50%, ce qui souligne la nécessité de trouver de nouveaux traitements afin d’améliorer leur prise en charge thérapeutique.Récemment, en définissant le paysage épigénétique des cellules de neuroblastome, nous avons observé la présence de super-enhancers (SE). La caractérisation du paysage des SE dans les lignées de neuroblastome nous a permis de révéler l’hétérogénéité cellulaire du neuroblastome, composée de deux identités distinctes : noradrénergique et mésenchymateuse. Chacune des identités cellulaires est caractérisée par un circuit de régulation transcriptionnelle (CRC) : les facteurs PHOX2B, HAND2 et GATA3 définissent l’identité noradrénergique alors que les facteurs de la famille AP-1 gouvernent l’identité mésenchymateuse. Nous avons par ailleurs montré la différence de sensibilité aux chimiothérapies classiquement utilisées en clinique entre ces deux types cellulaires, avec une résistance accrue des cellules mésenchymateuses.Mon travail de thèse porte sur la caractérisation du rôle des facteurs de transcription PHOX2B et GATA3 dans l’établissement et le maintien de l’identité noradrénergique des cellules de neuroblastome. J’ai réalisé leur knock-out par CRISPR-Cas9 dans la lignée noradrénergique SH-SY5Y. L’inactivation de PHOX2B ne modifie ni le programme transcriptionnel ni le phénotype des cellules, arborant une identité noradrénergique. En revanche, les cellules inactivées pour GATA3 possèdent un phénotype cellulaire mésenchymateux ainsi que des capacités de migration, d’invasion et de résistance aux chimiothérapies. Le knock-out de PHOX2B et GATA3 entraine une diminution de la prolifération cellulaire, traduisant le phénomène d’addiction transcriptionnelle des cellules cancéreuses. La caractérisation du paysage épigénétique des cellules inactivées pour GATA3 démontre leur reprogrammation de l’identité noradrénergique vers l’identité mésenchymateuse avec l’effondrement des SE noradrénergiques ainsi que l’acquisition de SE mésenchymateux. GATA3 est donc indispensable pour le maintien de l’identité noradrénergique in vitro.Les résultats générés lors de ma thèse montrent que les facteurs de transcription impliqués dans un même CRC possèdent des rôles distincts dans l’identité cellulaire. La caractérisation de la dynamique de reprogrammation ainsi que des facteurs impliqués dans ce processus nous permettrons de mieux comprendre les phénomènes de plasticité cellulaire à l’origine de la progression tumorale et de la rechute thérapeutique des patients. / Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system characterized by its diversity of clinical presentations from spontaneous regression to highly aggressive tumors. Currently, the overall survival of high-risk neuroblastoma patients remains under 50% which highlight the need to find new therapeutic approaches to improve patient outcome.Recently, we defined the epigenetic landscape of neuroblastoma cell lines and observed the presence of super-enhancers (SE). The characterization of the SE landscape let us to define the heterogeneity of neuroblastoma cell identity with the presence of noradrenergic and mesenchymal cells. Both cell identities are governed by a core regulatory circuitry (CRC), composed by PHOX2B-HAND2-GATA3 in the noradrenergic cells and by AP-1 transcription factors in the mesenchymal cells. We also demonstrate the different behaviors of the cells regarding chemotherapy treatments with a higher resistance of the mesenchymal cells.My thesis aimed at deciphering the role of PHOX2B and GATA3 transcription factors in the establishment and the maintenance of the noradrenergic identity of neuroblastoma cells. To do this, PHOX2B and GATA3 were knock-out by CRISPR-Cas9 in the noradrenergic SH-SY5Y cell line. PHOX2B knock-out has no major impact neither on the transcriptomic profile nor the phenotype of the cells. PHOX2B knock-out cells still maintain their noradrenergic identity. In contrast, GATA3 knock-out cells harbor a mesenchymal phenotype showing higher ability to migrate, invade and being pore resistant to chemotherapy than control SH-SY5Y cells. Both PHOX2B and GATA3 knock-out decrease the SH-SY5Y cell proliferation in vitro and in vivo, which highlight the transcriptional dependency of the noradrenergic cells for their identity-related transcription factors. The characterization of the epigenetic landscape of GATA3 knock-out cells revealed their reprograming from the noradrenergic to the mesenchymal identity with the loss of noradrenergic SE and the acquisition of mesenchymal SE. These results demonstrate that GATA3 is essential for the maintenance of the noradrenergic identity in vitro.Altogether, these results show that transcription factors involved in a CRC can have distinct role in the cell identity. The characterization of the reprogramming dynamics as well as the factors involved in this process will allow us to better understand the cellular plasticity involved in the tumor progression and patient relapse.
215

Using pooled CRISPR screens to study gene regulation.

López Zepeda, Lorena Sofía 18 August 2023 (has links)
Die Genregulation ist ein komplexer Prozess, bei dem Zellen die Menge der Genprodukte steuern, um ihre Identität auszubilden und auf Umweltveränderungen zu reagieren. Die CRISPR-Technologie hat genetische Screens revolutioniert und ermöglicht es, mehrere Transkripte gleichzeitig zu untersuchen. In dieser Arbeit werden die Vorteile und Herausforderungen gepoolter CRISPR-Screens zur Erforschung der Genregulation untersucht. Es wird ein CRISPR-ko-Screen in embryonalen Mausstammzellen (mESCs) beschrieben, der pluripotenzerhaltende Transkriptionsfaktoren identifiziert. Es zeigte sich, dass ein Screening mit einer kleinen Bibliothek den Großteil des biologischen Signals eines genomweiten Screens erfasst und die Identifizierung von Genkandidaten mit kleinen Effektgrößen verbessert. Nachfolgend wird CRISPTimeR, eine neue Methode für die Analyse von Zeitreihen von CRISPR-Screens, vorgestellt. Sie basiert auf gemischten linearen Modellen und ermöglicht es, Treffer zu identifizieren und gleichzeitig zeitlich zu klassifizieren. Als Nächstes wurde CRISPRi verwendet, um für die Pluripotenz von mESCs relevante lncRNAs zu untersuchen, was aufgrund ihrer schlechten Annotation und niedrigen Expressionsniveaus schwierig ist. Eine mögliche Lösung ist eine manuell verfeinerte Annotation von Transkriptionsstartstellen und kleinere Bibliotheks-Screens mit empfindlicherer phänotypischer Auslesung. Zudem wurde ein Sättigungsscreen genomischer Regionen rund um den PHOX2B-Lokus, zur Identifikation cis-regulierender Elemente, durchgeführt. Dabei wurden CRISPRa-reaktive Elemente identifiziert, die Gene in der PHOX2B-TAD regulieren, und mit diesen mittels Einzelzell RNA-seq in Verbindung gebracht. Zusammenfassend zeigt diese Arbeit den Wert gepoolter CRISPR-Screens für die Erforschung der Genregulation und Herausforderungen der Analyse nicht-kodierender Elemente. Zusätzlich beschreibt sie ein neues Tool für die Analyse von kodierenden und nicht-kodierenden CRISPR-Screens in Zeitreihen. / Gene regulation is a complex process in which cells control gene product levels to establish identity and respond to environmental changes. CRISPR technology has revolutionized genetic screening, enabling researchers to study multiple transcripts simultaneously. This thesis explores the advantages and challenges of using pooled CRISPR screens to study gene regulation. First, I describe a CRISPR-ko screen in mouse embryonic stem cells (mESCs) to identify transcription factors involved in pluripotency maintenance. I show that a small-library screen captures most of the biological signal observed in a genome-wide screen, and it improves the identification of candidate genes with small effect sizes. Next, introduce CRISPTimeR, a novel method for the analysis time-series CRISPR screens. CRISPTimeR is based on mixed linear models; it allows to use information from a time-series experiment to identify, and simultaneously perform temporal classification on, hits. Next, I use CRISPRi to study lncRNAs relevant to pluripotency in mESCs. Targeting lncRNAs poses challenges due to poor annotation and low expression levels. I suggest to address these issues by using a hand-refined annotation of transcription start sites and by designing small-library screens with more sensitive phenotypic readout. Finally, I describe a saturation screen targeting large genomic regions around the PHOX2B locus, to identify putative cis-regulatory elements. I identified CRISPRa responsive elements involved in regulating the expression of genes within the PHOX2B TAD, which were then matched with the genes they control using single-cell RNA-seq. Overall, in this thesis I demonstrate the value of CRISPR pooled screens for studying gene regulation, while highlighting the challenges associated with targeting non-coding elements and suggesting possible approaches to address these challenges. Moreover, I introduce a novel tool for the analysis of both coding and non-coding time-series CRISPR screens.
216

Development of biophysical test systems for behavioral responses in green alga

Baidukova, Olga 13 October 2023 (has links)
Die Grünalge Chlamydomonas reinhardtii ist ein Modellorganismus, der nach der Entdeckung von zwei Photorezeptoren, den Kanalrhodopsinen, eine Schlüsselrolle bei der Entwicklung der Optogenetik spielte. Kanalrhodopsine sind lichtinduzierte Ionenkanäle, die für das photoinduzierte Verhalten von Chlamydomonas verantwortlich sind. Aufgrund der Herausforderungen bei der gentechnischen Modifizierung in diesem Organismus konnte ihre Funktion in Phototaxis und photophober Reaktion bisher nicht umfassend untersucht werden. In dieser Arbeit präsentiere ich eine CRISPR-Cas9-basierte Technik, die einen zielgerichteten Austausch einzelner Nukleotide in einem ausgewählten Gen in vivo ermöglicht. Hierfür wird gezielt ein DNA-Doppelstrangbruch innerhalb des Gens induziert und anschließend wieder durch Aktivierung des Homologie-gesteuerten Reparaturmechanismus der Alge behoben, bei dem eine ausgewählte Punktmutation integriert wird. Diese Technik habe ich anschließend verwendet, um die Funktion der Kanalrhodopsine ChR1 und ChR2 in vivo aufzuklären. Dazu habe ich die codierenden Gene jeweils im Chlamydomonas Wildtyp-Stamm ausgeschaltet und Punktmutationen im verbleibenden Kanalrhodopsin eingeführt. Die so erzeugten Kanalmutanten weisen Veränderungen in ihrer Photozykluskinetik und Ionenselektivität auf, die das lichtabhängige Verhalten der Alge beeinflussen sollten. Die Ergebnisse zeigten zum einen, dass sowohl ChR1 als auch ChR2 Photorezeptoren sind, die die Phototaxis steuern, und zum anderen, dass eine Erhöhung der ChR2-Expression nach Deletion von ChR1 die phototaktische Aktivität der Algen wiederherstellt. Darüber hinaus wiesen die mutierten Chlamydomonas-Stämme mit veränderter Photozykluskinetik und reduzierter Kalzium-Permeabilität eine fast 100-fache Verringerung der Photosensitivität, eine verminderte photophobische Reaktion und schnellere Lichtadaptation auf. Zudem führte die Umkehr der Selektivität vom Channelrhodopsin von Kationen zu Anionen zum kompletten Verlust der Photoreaktion der Algen. Nicht zuletzt konnte diese Studie die Bedeutung der Proton-Leitfähigkeit der Kanalrhodopsine für das photoinduzierte Verhalten von Chlamydomonas aufzeigen. / The green alga Chlamydomonas reinhardtii is a model organism that played a key role in the development of optogenetics, after discovery of two photoreceptors called channelrhodopsins. Channelrhodopsins are light-gated ion channels that are responsible for photo-induced behavior of Chlamydomonas. Untill now, their functionality in algal photoresponses such as phototaxis and photophobic reaction has not been extensively studied, primarily due to the challenges connected to genetic editing in the organism. In this work, I presented a CRISPR-Cas9-based technique allowing a targeted exchange of single nucleotides in a gene of interest in vivo. It is based on targeted induction of DNA double-stranded breaks in the gene and on subsequent engagement of homologous recombination to repair the damage and integrate a selected point mutation. To elucidate the function of channelrhodopsins ChR1 and ChR2 in vivo, I created channelrhodopsin single knockouts in the wild-type Chlamydomonas strain and integrated point mutations in the remaining channelrhodopsin gene. The selected mutations affected photocycle kinetics and ion selectivity. It was shown that, first, both ChR1 and ChR2 are photoreceptors that mediate phototaxis and second, the upregulation of ChR2 upon the deletion of ChR1 rescues phototactic activity of the algae. Further, the mutant Chlamydomonas strains with altered photocycle kinetics and lower calcium permeability exhibited nearly 100-fold reduction of photosensitivity, a diminished photophobic reaction and faster light adaptation rates. Moreover, the conversion of channelrhodopsin selectivity to anions aborted algal photoresponse. In addition, the study highlighted the importance of proton conductance in the photo-induced behavior of Chlamydomonas.
217

DNA Nanostructures as Nanomechanical Tools

Kauert, Dominik 15 March 2024 (has links)
The DNA origami method was established by Paul Rothemund in 2009. It allows to produce self-assembling 2D nanostructures with precise geometry and tunable mechanical properties that can be equipped with a broad range of functionalizations. It was extended to 3D by the group of William Shih in 2009 which also presented caDNAno, a software that made the design of nanostructures easier and more accessible. Since then, DNA origami nanostructures were utilized in a broad range of applications, which enabled unprecedented insight into mechanisms and processes of biological systems at the nanoscale. In this thesis multiple nanostructures were designed and manufactured to perform studies at the single-molecule level, which yielded a number of scientifically relevant contributions in the fields of biophysics and nanotechnology. Development of DNA origami nanostructures to mimic the properties and function of membrane proteins As a first application, DNA origami nanostructures with defined geometric and mechanical properties were designed, that mimic the behaviour and function of membrane proteins. To this end, rod-shaped nanostructures were equipped with precisely placed, lipid-integrating cholesterol modifications as well as fluorescent dyes. Subsequently their interaction with lipid membranes was studied. It was found that the prepared nanostructures specifically bound to lipid membranes and could diffuse on their surface, for which the rotational and translational diffusion coefficients were determined. The presence of magnesium thereby promoted the nanostructures to migrate into specific lipid domains in a reversible, switchable manner. Furthermore, their high aspect ratio allowed to investigate crowding effects, which are considered important mechanisms for the self-organisation of membrane proteins. In addition, block-shaped DNA origami nanostructures that organized into micrometre-sized super-structures were designed and produced. They were capable of deforming lipid membranes on the scale of micrometres in a similar fashion to biological counterparts. Establishing ultra-fast twist and torque measurements using DNA origami nanorotors In an additional application, DNA origami nanorotors were developed to perform ultra-fast single-molecule twist and torque measurements, allowing to resolve subtle changes in real-time. This also required the development of a new measurement setup that extended magnetic tweezers with the capability to detect the scattered light of gold nanoparticles. Hence, a complex setup was constructed and calibrated that enabled magnetic tweezers measurements with up to 4 kHz and simultaneously track gold nanoparticles at 4 kHz as well. In an alternative configuration the setup allowed simultaneous magnetic tweezers and single-molecule fluorescence and FRET measurements. DNA origami nanorotors which were embedded within DNA constructs and carried the gold nanoparticles were then obtained and used to perform ultra-fast twist and torque measurements. This constituted improvements in the spatio-temporal resolution over previous methods by one to three orders of magnitude, as demonstrated by direct measurements on the torsional response of DNA to external twists and the unwinding of DNA by an enzyme. Direct measurements of the energy landscape and dynamics of the R-loop formation by the CRISPR-Cas surveillance complex Cascade Using the DNA origami nanorotor enhanced ultra-fast twist measurements, the target recognition process of the CRISPR-Cas surveillance complex Cascade was directly observed. Effector complexes of CRISPR-Cas systems have been widely applied in genome editing recently, since they can be programmed to bind practically any genomic target by their intrinsic RNA (crRNA) component. They have, however, considerable tolerance for mismatches between their RNA and their intended DNA target. For Cascade, after binding with a protein motif to a DNA target, base-pairing between crRNA and the double-stranded DNA target is initiated, resulting in the formation of an R-loop structure which leads to unwinding of the DNA. This was directly measured using the nanorotor, which provided unprecedented insight in the R-loop formation by Cascade, allowing to determine the underlying energy landscape and the dynamics of the process. It was shown that R-loop progression occurs on 6-bp kinetic intermediate steps with an underlying single base pair stepping on fast time scales. Furthermore the effect of mutations in the target DNA on the R-loop formation process was investigated, indicating that the global shape of the energy landscape allows for a highly specific kinetic discrimination of mismatched targets. Investigations into the locking transition, a conformational change that occurs after the full formation of the R-loop and is a prerequisite for subsequent DNA degradation, completed the study. Overall, the findings provide a better understanding of the target recognition process of Cascade, which will contribute to the construction of more precise gene-editing tools in the future. Furthermore, the nanorotor-assisted measurements are applicable to many twist and torque inducing mechanisms and processes that can be investigated in further studies.:1. Introduction 2. Multifunctional magnetic tweezers 3. Applications of DNA origami 4. Ultra-Fast torque measurements on supercoiled DNA 5. R-loop dynamics of the CRISPR-Cas Cascade complex 6. Summary and Discussion Bibliography List of Figures List of Tables List of Publications A. Appendix / Die DNA Origami Methode wurde im Jahr 2006 durch Paul Rothemund begründet. Sie erlaubt es selbst-assemblierende 2D Nanostrukturen mit präzisen Geometrien und kalibrierbaren mechanischen Eigenschaften zu erstellen, die zudem mit einer Vielzahl an Funktionalisierungen ausgestattet werden können. Die Methode wurde 2009 in der Gruppe von William Shih auf 3D Nanostrukturen erweitert, wobei zudem caDNAno präsentiert wurde, eine Software die die Erstellung solcher Nanostrukturen wesentlich einfacher und zugänglicher machte. Seitdem wurden DNA Origami Nanostrukturen in vielfältigen Anwendungen genutzt, die nie dagewesene Einblicke in Mechanismen und Prozesse von biologischen Systemen auf der Nanoskala erlaubten. In dieser Arbeit wird anhand mehrerer Beispiele gezeigt, wie solche Nanostrukturen genutzt werden können, um Studien auf der Einzelmolekül-Ebene durchzuführen. Entwicklung von DNA Origami Nanostrukturen, welche die Eigenschaften und Funktionen von Membranproteinen imitieren In einer ersten Anwendung wurden DNA Origami Nanostrukturen mit definierten geometrischen und mechanischen Eigenschaften entworfen, welche das Verhalten und die Funktion von Membranproteinen nachahmten. Dazu wurden stabförmige Nanostrukturen mit präzise platzierten, lipidintegrierenden Cholesterinmodifikationen und fluoreszierenden Farbstoffen ausgestattet. Anschließend wurde ihre Interaktion mit Lipidmembranen untersucht. Es zeigte sich, dass die Nanostrukturen spezifisch an Lipidmembranen binden und auf deren Oberfläche diffundieren konnten. Hierbei wurden die Diffusionskoeffizienten der Rotations- und Translationsbewegungen bestimmt. Zudem bewirkte die An- oder Abwesenheit freier Magnesiumionen die steuerbare und reversible Anreicherung in verschiedenen Lipiddomänen. Die längliche Form der Nanostrukturen erlaubte es zudem, Verdrängungseffekte zu untersuchen, die als wichtiger Mechanismus für die Selbstorganisation von Membranproteinen gelten. Des weiteren wurden blockartige, multimerisierende DNA Origami Nanostrukturen entwickelt, die mikrometer-große Superstrukturen bilden konnten. Im ähnlichen Maße wie biologische Vorbilder, waren diese Strukturen in der Lage, Lipidmembranen über mehrere Mikrometer hinweg zu verformen. Etablierung ultraschneller Verdrehungs- und Torsionsmessungen mit DNA Origami Nanorotoren In einer weiteren Anwendung wurden DNA Origami Nanorotoren entwickelt, um ultraschnelle Einzelmolekül-Verdrehungs- und Torsionsmessungen durchzuführen, bei denen kleinste Veränderungen in Echtzeit beobachtet werden konnten. Dazu wurde eine neue Messapparatur entwickelt, bei der eine Magnetische Pinzette um die Fähigkeit Goldnanopartikeln zu detektieren erweitert wurde. Dies erlaubte die Konstruktion und Kalibrierung eines komplexen Messaufbaus, mit dem es möglich war Magnetische-Pinzetten-Messungen mit 4 kHz durchzuführen und gleichzeitig Goldnanopartikel mit ebenfalls 4 kHz zu verfolgen. Zudem konnten in einer alternativen Konfiguration Magnetische-Pinzetten-Messungen mit Einzelmolekül-Fluoreszenz- und FRET-Messungen kombiniert werden. Mit Goldnanopartikeln funktionalisierte DNA-Origami-Nanorotoren wurden anschließend in DNA-Konstrukte eingebettet und mit Hilfe des Messaufbaus für ultraschnelle Verdrehungs- und Torsionsmessungen genutzt. Gegenüber vorheriger Methoden wurde dadurch die räumlich-zeitliche Auflösung um eine bis drei Größenordnungen verbessert. Dies wurde anhand der Bestimmung der Torsionsreaktion von DNA auf Verdrehungen sowie deren Entwindung durch ein Enzym demonstriert. Direkte Bestimmung der Energielandschaft und Dynamiken der R-loop Entstehung des CRISPR-Cas Überwachungskomplexes Cascade Die entwickelten DNA Origami Nanorotoren ermöglichten zudem ultraschnelle Verdrehungsmessungen durchzuführen, um den Zielerkennungsprozess des CRISPR-Cas Überwachungskomplexes Cascade direkt zu beobachten. Effektorkomplexe von CRISPR-Cas Systemen werden zunehmend als Geneditierwerkzeuge eingesetzt, da sie aufgrund ihrer intrinsischen RNA-Komponente (crRNA) darauf programmiert werden können an praktisch jede DNA-Sequenz zu binden. Allerdings zeigen Sie eine beträchtliche Toleranz gegenüber Abweichungen zwischen der Sequenz ihrer RNA und der bestimmungsgemäßen DNA-Zielsequenz. Grundsätzlich bindet Cascade zunächst mit einem Protein-Motiv an eine kurze DNA-Sequenz, woraufhin es zur Basenpaarung zwischen der crRNA und der doppelsträngigen DNA-Zielsequenz kommt. Dabei entsteht ein R-loop, was zur Entwindung der DNA führt. Dies wurde direkt mit Hilfe der Nanorotoren gemessen, was nie dagewesene Einblicke in diesen Prozess erlaubte und die Bestimmung der zugrundeliegenden Energielandschaft und Dynamiken ermöglichte. Es wurde gezeigt, dass Längenänderungen des R-loops in kinetischen Zwischenschritten von 6 Basenpaaren erfolgen, denen Einzel-Basenpaar-Schritte auf schnelleren Zeitskalen zugrunde liegen. Des weiteren wurde der Effekt von Mutationen der DNA-Zielsequenz auf die R-loop Entstehung untersucht. Hierbei zeigte sich, dass die globale Form der Energielandschaft eine hochspezifische kinetische Differenzierung von inkongruenten Zielsequenzen erlaubt. Untersuchungen des 'locking' Mechanismus, ein struktureller Übergang der nach der vollständigen Ausbildung des R-loops erfolgt und eine Voraussetzung für die nachfolgende Zersetzung von DNA darstellt, rundeten die Untersuchungen ab. Insgesamt wurde gezeigt, dass mit Hilfe der ultraschnellen Verdrehungsmessungen, neue, detaillierte Einblicke in den Zielerkennungsprozess von Cascade gewonnen wurden, die zur Erstellung präziserer Genmanipulationswerkzeuge in der Zukunft beitragen können. Darüber hinaus eignen sich die Nanorotoren zur Untersuchung weiterer verdrehungs- und torsionserzeugender Mechanismen und Prozesse, die in weiteren Studien erforscht werden können.:1. Introduction 2. Multifunctional magnetic tweezers 3. Applications of DNA origami 4. Ultra-Fast torque measurements on supercoiled DNA 5. R-loop dynamics of the CRISPR-Cas Cascade complex 6. Summary and Discussion Bibliography List of Figures List of Tables List of Publications A. Appendix
218

DNA Nanostructures as Nanomechanical Tools

Kauert, Dominik 15 March 2024 (has links)
The DNA origami method was established by Paul Rothemund in 2009. It allows to produce self-assembling 2D nanostructures with precise geometry and tunable mechanical properties that can be equipped with a broad range of functionalizations. It was extended to 3D by the group of William Shih in 2009 which also presented caDNAno, a software that made the design of nanostructures easier and more accessible. Since then, DNA origami nanostructures were utilized in a broad range of applications, which enabled unprecedented insight into mechanisms and processes of biological systems at the nanoscale. In this thesis multiple nanostructures were designed and manufactured to perform studies at the single-molecule level, which yielded a number of scientifically relevant contributions in the fields of biophysics and nanotechnology. Development of DNA origami nanostructures to mimic the properties and function of membrane proteins As a first application, DNA origami nanostructures with defined geometric and mechanical properties were designed, that mimic the behaviour and function of membrane proteins. To this end, rod-shaped nanostructures were equipped with precisely placed, lipid-integrating cholesterol modifications as well as fluorescent dyes. Subsequently their interaction with lipid membranes was studied. It was found that the prepared nanostructures specifically bound to lipid membranes and could diffuse on their surface, for which the rotational and translational diffusion coefficients were determined. The presence of magnesium thereby promoted the nanostructures to migrate into specific lipid domains in a reversible, switchable manner. Furthermore, their high aspect ratio allowed to investigate crowding effects, which are considered important mechanisms for the self-organisation of membrane proteins. In addition, block-shaped DNA origami nanostructures that organized into micrometre-sized super-structures were designed and produced. They were capable of deforming lipid membranes on the scale of micrometres in a similar fashion to biological counterparts. Establishing ultra-fast twist and torque measurements using DNA origami nanorotors In an additional application, DNA origami nanorotors were developed to perform ultra-fast single-molecule twist and torque measurements, allowing to resolve subtle changes in real-time. This also required the development of a new measurement setup that extended magnetic tweezers with the capability to detect the scattered light of gold nanoparticles. Hence, a complex setup was constructed and calibrated that enabled magnetic tweezers measurements with up to 4 kHz and simultaneously track gold nanoparticles at 4 kHz as well. In an alternative configuration the setup allowed simultaneous magnetic tweezers and single-molecule fluorescence and FRET measurements. DNA origami nanorotors which were embedded within DNA constructs and carried the gold nanoparticles were then obtained and used to perform ultra-fast twist and torque measurements. This constituted improvements in the spatio-temporal resolution over previous methods by one to three orders of magnitude, as demonstrated by direct measurements on the torsional response of DNA to external twists and the unwinding of DNA by an enzyme. Direct measurements of the energy landscape and dynamics of the R-loop formation by the CRISPR-Cas surveillance complex Cascade Using the DNA origami nanorotor enhanced ultra-fast twist measurements, the target recognition process of the CRISPR-Cas surveillance complex Cascade was directly observed. Effector complexes of CRISPR-Cas systems have been widely applied in genome editing recently, since they can be programmed to bind practically any genomic target by their intrinsic RNA (crRNA) component. They have, however, considerable tolerance for mismatches between their RNA and their intended DNA target. For Cascade, after binding with a protein motif to a DNA target, base-pairing between crRNA and the double-stranded DNA target is initiated, resulting in the formation of an R-loop structure which leads to unwinding of the DNA. This was directly measured using the nanorotor, which provided unprecedented insight in the R-loop formation by Cascade, allowing to determine the underlying energy landscape and the dynamics of the process. It was shown that R-loop progression occurs on 6-bp kinetic intermediate steps with an underlying single base pair stepping on fast time scales. Furthermore the effect of mutations in the target DNA on the R-loop formation process was investigated, indicating that the global shape of the energy landscape allows for a highly specific kinetic discrimination of mismatched targets. Investigations into the locking transition, a conformational change that occurs after the full formation of the R-loop and is a prerequisite for subsequent DNA degradation, completed the study. Overall, the findings provide a better understanding of the target recognition process of Cascade, which will contribute to the construction of more precise gene-editing tools in the future. Furthermore, the nanorotor-assisted measurements are applicable to many twist and torque inducing mechanisms and processes that can be investigated in further studies.:1. Introduction 2. Multifunctional magnetic tweezers 3. Applications of DNA origami 4. Ultra-Fast torque measurements on supercoiled DNA 5. R-loop dynamics of the CRISPR-Cas Cascade complex 6. Summary and Discussion Bibliography List of Figures List of Tables List of Publications A. Appendix / Die DNA Origami Methode wurde im Jahr 2006 durch Paul Rothemund begründet. Sie erlaubt es selbst-assemblierende 2D Nanostrukturen mit präzisen Geometrien und kalibrierbaren mechanischen Eigenschaften zu erstellen, die zudem mit einer Vielzahl an Funktionalisierungen ausgestattet werden können. Die Methode wurde 2009 in der Gruppe von William Shih auf 3D Nanostrukturen erweitert, wobei zudem caDNAno präsentiert wurde, eine Software die die Erstellung solcher Nanostrukturen wesentlich einfacher und zugänglicher machte. Seitdem wurden DNA Origami Nanostrukturen in vielfältigen Anwendungen genutzt, die nie dagewesene Einblicke in Mechanismen und Prozesse von biologischen Systemen auf der Nanoskala erlaubten. In dieser Arbeit wird anhand mehrerer Beispiele gezeigt, wie solche Nanostrukturen genutzt werden können, um Studien auf der Einzelmolekül-Ebene durchzuführen. Entwicklung von DNA Origami Nanostrukturen, welche die Eigenschaften und Funktionen von Membranproteinen imitieren In einer ersten Anwendung wurden DNA Origami Nanostrukturen mit definierten geometrischen und mechanischen Eigenschaften entworfen, welche das Verhalten und die Funktion von Membranproteinen nachahmten. Dazu wurden stabförmige Nanostrukturen mit präzise platzierten, lipidintegrierenden Cholesterinmodifikationen und fluoreszierenden Farbstoffen ausgestattet. Anschließend wurde ihre Interaktion mit Lipidmembranen untersucht. Es zeigte sich, dass die Nanostrukturen spezifisch an Lipidmembranen binden und auf deren Oberfläche diffundieren konnten. Hierbei wurden die Diffusionskoeffizienten der Rotations- und Translationsbewegungen bestimmt. Zudem bewirkte die An- oder Abwesenheit freier Magnesiumionen die steuerbare und reversible Anreicherung in verschiedenen Lipiddomänen. Die längliche Form der Nanostrukturen erlaubte es zudem, Verdrängungseffekte zu untersuchen, die als wichtiger Mechanismus für die Selbstorganisation von Membranproteinen gelten. Des weiteren wurden blockartige, multimerisierende DNA Origami Nanostrukturen entwickelt, die mikrometer-große Superstrukturen bilden konnten. Im ähnlichen Maße wie biologische Vorbilder, waren diese Strukturen in der Lage, Lipidmembranen über mehrere Mikrometer hinweg zu verformen. Etablierung ultraschneller Verdrehungs- und Torsionsmessungen mit DNA Origami Nanorotoren In einer weiteren Anwendung wurden DNA Origami Nanorotoren entwickelt, um ultraschnelle Einzelmolekül-Verdrehungs- und Torsionsmessungen durchzuführen, bei denen kleinste Veränderungen in Echtzeit beobachtet werden konnten. Dazu wurde eine neue Messapparatur entwickelt, bei der eine Magnetische Pinzette um die Fähigkeit Goldnanopartikeln zu detektieren erweitert wurde. Dies erlaubte die Konstruktion und Kalibrierung eines komplexen Messaufbaus, mit dem es möglich war Magnetische-Pinzetten-Messungen mit 4 kHz durchzuführen und gleichzeitig Goldnanopartikel mit ebenfalls 4 kHz zu verfolgen. Zudem konnten in einer alternativen Konfiguration Magnetische-Pinzetten-Messungen mit Einzelmolekül-Fluoreszenz- und FRET-Messungen kombiniert werden. Mit Goldnanopartikeln funktionalisierte DNA-Origami-Nanorotoren wurden anschließend in DNA-Konstrukte eingebettet und mit Hilfe des Messaufbaus für ultraschnelle Verdrehungs- und Torsionsmessungen genutzt. Gegenüber vorheriger Methoden wurde dadurch die räumlich-zeitliche Auflösung um eine bis drei Größenordnungen verbessert. Dies wurde anhand der Bestimmung der Torsionsreaktion von DNA auf Verdrehungen sowie deren Entwindung durch ein Enzym demonstriert. Direkte Bestimmung der Energielandschaft und Dynamiken der R-loop Entstehung des CRISPR-Cas Überwachungskomplexes Cascade Die entwickelten DNA Origami Nanorotoren ermöglichten zudem ultraschnelle Verdrehungsmessungen durchzuführen, um den Zielerkennungsprozess des CRISPR-Cas Überwachungskomplexes Cascade direkt zu beobachten. Effektorkomplexe von CRISPR-Cas Systemen werden zunehmend als Geneditierwerkzeuge eingesetzt, da sie aufgrund ihrer intrinsischen RNA-Komponente (crRNA) darauf programmiert werden können an praktisch jede DNA-Sequenz zu binden. Allerdings zeigen Sie eine beträchtliche Toleranz gegenüber Abweichungen zwischen der Sequenz ihrer RNA und der bestimmungsgemäßen DNA-Zielsequenz. Grundsätzlich bindet Cascade zunächst mit einem Protein-Motiv an eine kurze DNA-Sequenz, woraufhin es zur Basenpaarung zwischen der crRNA und der doppelsträngigen DNA-Zielsequenz kommt. Dabei entsteht ein R-loop, was zur Entwindung der DNA führt. Dies wurde direkt mit Hilfe der Nanorotoren gemessen, was nie dagewesene Einblicke in diesen Prozess erlaubte und die Bestimmung der zugrundeliegenden Energielandschaft und Dynamiken ermöglichte. Es wurde gezeigt, dass Längenänderungen des R-loops in kinetischen Zwischenschritten von 6 Basenpaaren erfolgen, denen Einzel-Basenpaar-Schritte auf schnelleren Zeitskalen zugrunde liegen. Des weiteren wurde der Effekt von Mutationen der DNA-Zielsequenz auf die R-loop Entstehung untersucht. Hierbei zeigte sich, dass die globale Form der Energielandschaft eine hochspezifische kinetische Differenzierung von inkongruenten Zielsequenzen erlaubt. Untersuchungen des 'locking' Mechanismus, ein struktureller Übergang der nach der vollständigen Ausbildung des R-loops erfolgt und eine Voraussetzung für die nachfolgende Zersetzung von DNA darstellt, rundeten die Untersuchungen ab. Insgesamt wurde gezeigt, dass mit Hilfe der ultraschnellen Verdrehungsmessungen, neue, detaillierte Einblicke in den Zielerkennungsprozess von Cascade gewonnen wurden, die zur Erstellung präziserer Genmanipulationswerkzeuge in der Zukunft beitragen können. Darüber hinaus eignen sich die Nanorotoren zur Untersuchung weiterer verdrehungs- und torsionserzeugender Mechanismen und Prozesse, die in weiteren Studien erforscht werden können.:1. Introduction 2. Multifunctional magnetic tweezers 3. Applications of DNA origami 4. Ultra-Fast torque measurements on supercoiled DNA 5. R-loop dynamics of the CRISPR-Cas Cascade complex 6. Summary and Discussion Bibliography List of Figures List of Tables List of Publications A. Appendix
219

Functional Genetic Screening in the Human DNA Damage Response: Genetic Interactions and Nucleotide Variants

Hayward, Samuel Bryant January 2024 (has links)
The ability to generate multiplexed genomic modifications using CRISPR-based gene editing has fundamentally changed the scope of possible reverse genetic screening approaches that can be executed in human cells. A diversity of Cas effector proteins lies at the center of pooled CRISPR screens. Working in unison with targeting gRNAs, CRISPR-Cas effector complexes can produce a range of alterations at user specified genomic sites. The type of alteration, ranging from double-strand break (DSB) formation to precise single nucleotide substitutions, is dictated by the Cas protein. Initially, pooled CRISPR screens were conducted using the Cas9 endonuclease to generate loss of function mutations in single genes through the formation of DSBs. As CRISPR technologies matured, the discovery and engineering of novel Cas proteins has allowed for increasingly complex sets of genomic alterations to be studied in a high-throughput manner. In Chapter 1, I introduce a variety of CRISPR-based functional genomic technologies that have been used in high-throughput screening approaches. Here, I also describe discoveries that have been made in the human DNA damage response (DDR) using these approaches. In Chapter 2, I present my work using Cas12a to interrogate the genetic interaction landscape of the DDR. This work leverages the ability of Cas12a to generate several DSBs from a single gRNA array to investigate ~27,000 genetic interactions between 233 DDR genes. In these screens, novel synthetic lethal interactions were identified, with three sets of synthetic lethal interactions between gene complexes being highlighted. In Chapter 3, I present a published manuscript that demonstrates the utility of precision base editing screens. This study uses BE3-dependent base editing to induce mutational tiling of 86 human DDR genes and analyze the effects of these mutations in response to DNA damaging agents. In total, the work presented here highlights the utility of novel CRISPR screening platforms through the interrogation of the human DDR.
220

Analysis of zebrafish Lrrk2 loss-of-function during brain development and adult brain regeneration

Wirsching, Paul 03 June 2024 (has links)
The neurodegenerative disorder Parkinson's Disease (PD) represents both a major socioeco-nomic challenge and an individual burden for many patients. Despite major efforts, neither satisfactory explanations of the pathogenesis of PD, nor disease-modifying drugs have been developed to date. Mutations of the multidomain kinase LRRK2 represent the overall most common cause of he-reditary PD. Furthermore, LRRK2 mutations have been linked to dysregulations of the immune system such as inflammatory bowel disease, cancer, or the susceptibility towards mycobacte-rial infections. Several pathogenic point mutations have been identified that – directly or indi-rectly – lead to a pathological gain-of-function of the protein’s kinase domain. Despite recent advances, the physiological functions of LRRK2, as well as the underlying processes of LRRK2-mediated pathologies, remain largely unknown. Much research effort has aimed at generating reliable animal models for the study of LRRK2. Nevertheless, neither loss-of-function of the gene, nor overexpression of normal or mutant LRRK2, has yielded definitive results. Previous work from our research group on zebrafish (Danio rerio) has generated two genetic lrrk2 knock-out lines using different mutagenesis strat-egies: lrrk2TILLING and lrrk2CRISPR (Ahrendt, 2011; Suzzi, 2017). These studies’ results were par-tially contradictory, and the described phenotypes were not stable. Whilst this previous work investigated lrrk2 loss-of-function, so far, no genetic knock-in line carrying one of the multiple known pathogenic lrrk2 mutations, has been reported in zebrafish. Therefore, this work aimed to further investigate the effects of Lrrk2-deficiency in zebrafish and to establish a genetic knock-in of the common pathogenic G2019S substitution to model the genotype of PD patients more accurately. A variety of methods was applied to achieve these aims. Immunohistochemistry and conventional histology studies were performed on zebrafish brains and kidneys at different developmental stages, both under physiological conditions and following the induction of brain regeneration. Since the zebrafish’s neuroregenerative capabil-ity is closely linked to an initial neuroinflammation, and previous studies on lrrk2 knock-out zebrafish have suggested an impaired immune response and reduced brain regeneration, the neuroinflammation and neuroregeneration of adult lrrk2TILLING zebrafish were investigated by inducing a telencephalic stab-lesion and a subsequent BrdU-pulse-chase analysis. To investi-gate functional effects of the gene knock-out, a set of behavioral experiments was performed. Using CRISPR/Cas9 genome editing, the basis for a knock-in of the G2019S substitution was established. Immunohistochemistry analyses of larval and adult zebrafish brains were performed in a set of experiments. By quantifying all mitotic cells in larval brains at different time points, the basal brain proliferation levels during development were analyzed, as well as the levels of constitutive neurogenesis during adulthood. Under physiological conditions, basal brain prolif-eration was found unimpaired in Lrrk2-deficient zebrafish. Similarly, the number of microglia found in the telencephalon of Lrrk2-deficient zebrafish was not reduced under physiological conditions, although one experimental group showed signs of neuroinflammation. Upon induc-tion of a traumatic brain injury in adult fish, neither the trauma-induced proliferation of leuko-cytes, nor the number of regenerated neurons were altered in Lrrk2-deficient animals. A multi-dimensional behavioral analysis of Lrrk2-deficient zebrafish revealed no significant constraints. The total swimming distance, average velocity and ratio of mobility states were unimpaired upon lrrk2-knock-out, as was the fish’s exploratory behavior in an anxiety model using a light-dark-box. In a test for social preference, Lrrk2-deficient and wild-type zebrafish showed the same tendency to join a group of conspecific animals, suggesting no major deficits in overall social interaction. In contrast to these preserved functions, adult Lrrk2-deficient kidneys revealed a pronounced accumulation of vacuole-like particles in the proximal renal tubules, a finding that may indicate disruptions in the endolysosomal pathway and that is in line with phenotypes described in LRRK2-deficient rodents as well as with the side effects induced by pharmacological LRRK2 inhibitors. These findings represent a promising lead for future exploration. During this work a CRISPR/Cas9 target site with high cleavage efficiency was established within the Lrrk2 kinase domain of freshly spawned zebrafish eggs. In combination with recent advances in CRISPR methodology, these results provide an opportunity for the generation of a genetic Lrrk2-G2019S knock-in line in zebrafish. In summary, this work found Lrrk2-deficient zebrafish unimpaired regarding various physiolog-ical functions. While in line with previously reported results, a satisfactory explanation for Lrrk2-mediatied pathogenesis is still lacking. Morphological alterations of Lrrk2-deficient kidneys hint towards perturbations in the lysosomal homeostasis, and a promising target for future re-search. Modelling human LRRK2 genotypes more precisely will hopefully provide further in-sights into the enigma of LRRK2 and its link to neurodegeneration. / Die neurodegenerative Erkrankung Morbus Parkinson (Idiopathisches Parkinson-Syndrom, IPS) stellt sowohl eine individuelle Belastung für betroffene Menschen als auch eine große sozio-ökonomische Herausforderung für die Gesellschaft dar. Trotz großer Anstrengungen konnten bisher weder zufriedenstellende pathophysiologische Erklärungen des IPS, noch krankheits-modulierende Medikamente entwickelt werden. Mutationen der Kinase LRRK2 sind die insgesamt häufigste Ursache für erbliche Parkinson-Syndrome. Darüber hinaus wurden LRRK2-Mutationen mit immundysregulatorischen Syndro-men wie chronisch-entzündlichen Darmerkrankungen, Malignomen oder der Anfälligkeit ge-genüber Mykobakterien-Infektionen in Verbindung gebracht. Verschiedene pathogene Punktmutationen von LRRK2 sind bekannt. Diese führen – direkt oder indirekt – zu einer pa-thologischen Überaktivierung seiner Kinasedomäne. Trotz jüngster Fortschritte in der For-schung sind die Funktionen von LRRK2 und die Prozesse, die zu den LRRK2-vermittelten Pathologien führen, weiterhin weitgehend unbekannt. Viele Studien haben sich um die Entwicklung zuverlässiger Tiermodelle für die Untersuchung von LRRK2 bemüht. Dennoch haben weder die Untersuchung eines Gen-Funktionsverlusts noch die Überexpression von normalem oder mutiertem LRRK2 bislang zu eindeutigen Ergeb-nissen geführt. Frühere Arbeiten unserer Arbeitsgruppe haben in Zebrafischen (Zebrabärbling, Danio rerio) zwei genetische lrrk2-Knockout-Linien mit unterschiedlichen Mutagenesestrate-gien erzeugt: lrrk2TILLING und lrrk2CRISPR (Ahrendt, 2011; Suzzi, 2017). Die Ergebnisse dieser Studien widersprachen sich teilweise, und die beschriebenen Phänotypen waren nicht stabil reproduzierbar. Während alle bisherigen Arbeiten einen Funktionsverlust von Lrrk2 untersuch-ten, wurde bisher noch keine genetische Knock-in-Linie im Zebrafisch publiziert, die eine der zahlreichen bekannten pathogen-überaktivierenden LRRK2-Mutationen trägt. Ziel dieser Arbeit war es daher zum einen, die Auswirkungen eines Lrrk2-Funktionsverlusts in Zebrafischen weiter zu untersuchen, und zum anderen eine genetische Knock-in-Linie der häufigen pathogenen G2019S-Mutation zu etablieren, um den Genotyp menschlicher Parkin-son-Patienten präziser zu modellieren. Um diese Ziele zu erreichen, wurde eine Vielzahl von Methoden angewandt. Es wurden im-munhistochemische und konventionelle histologische Untersuchungen an Gehirnen und Nie-ren von Zebrafischen in verschiedenen Entwicklungsstadien durchgeführt, sowohl unter phy-siologischen Bedingungen als auch nach der Induktion einer Gehirnregeneration. Da die Fä-higkeit des Zebrafischs zur umfassenden Neuroregeneration durch eine initiale Neuroinflam-mation vermittelt wird und frühere Studien an lrrk2-Knockout-Zebrafischen in Folge traumati-scher Hirnverletzungen eine beeinträchtigte Immunreaktion und eine verringerte Neurorege-neration feststellen konnten, wurden die posttraumatische Neuroinflammation und die Neuroregeneration von adulten lrrk2TILLING-Zebrafischen untersucht, indem eine Stichverlet-zung des Großhirns induziert und eine anschließende BrdU-Pulse-Chase-Analyse durchge-führt wurde. Um die funktionellen Auswirkungen des Gen-Knockouts zu untersuchen, wurde eine Reihe von Verhaltensexperimenten durchgeführt. Mit Hilfe von CRISPR/Cas9-Genom-Editierung wurde die Grundlage für den Knock-in der G2019S-Mutation geschaffen. In einer ersten Reihe von Experimenten wurden larvale und adulte Zebrafischgehirne immun-histochemisch analysiert. Durch die Quantifizierung aller zerebraler mitotischer Zellen zu ver-schiedenen Zeitpunkten wurden die basale Hirnproliferation während der larvalen Entwicklung sowie die konstitutive Neurogenese im Erwachsenenalter analysiert. Unter physiologischen Bedingungen war die basale Hirnproliferation bei Lrrk2-defizienten Zebrafischen nicht beein-trächtigt. Auch die Anzahl der Mikroglia im Telenzephalon der Lrrk2-defizienten Zebrafische war unter physiologischen Bedingungen nicht verringert, obwohl eine Versuchsgruppe Anzei-chen einer Neuroinflammation zeigte. Infolge einer gezielten Verletzung einer Großhirnhemi-sphäre waren bei Lrrk2-defizienten Tieren weder die traumabedingte Proliferation von Leuko-zyten noch die Anzahl der anschließend regenerierten Neuronen verändert. Eine Verhaltensanalyse von Lrrk2-defizienten Zebrafischen ergab keine signifikanten Ein-schränkungen. Die Gesamtschwimmdistanz, die Durchschnittsgeschwindigkeit und das Ver-hältnis verschiedener Mobilitätszustände waren durch den Lrrk2-Knock-out unbeeinträchtigt, ebenso wie das Erkundungsverhalten der Fische in einem Angstmodell mit einer Hell-Dunkel-Kammer. In einem Test auf soziale Präferenz zeigten Lrrk2-defiziente und Wildtyp-Zebrafische die gleiche Tendenz, sich einer Gruppe von Artgenossen anzuschließen, was auf keine größeren Defizite in der allgemeinen sozialen Interaktion hindeutet. Im Gegensatz zu diesen unauffälligen Ergebnissen zeigten erwachsene Lrrk2-defiziente Nie-ren eine ausgeprägte Anhäufung vakuolenartiger Partikel in den proximalen Tubuli. Dieser Befund könnte auf Störungen im endolysosomalen Weg hinweisen und ist konsistent zu den bei LRRK2-defizienten Nagetieren beschriebenen Phänotypen, sowie den durch pharmakolo-gische LRRK2-Inhibitoren hervorgerufenen Nebenwirkungen. Diese Ergebnisse sind ein viel-versprechender Ansatzpunkt für künftige Experimente. Im Rahmen dieser Arbeit wurde eine CRISPR/Cas9-target-site mit hoher Schnitteffizienz in-nerhalb der LRRK2-Kinasedomäne von Zebrafisch-Embryonen etabliert. In Kombination mit Fortschritten in der CRISPR-Methodik bilden diese Ergebnisse eine Grundlage zur Erzeugung einer lrrk2-G2019S Knock-in-Linie. Zusammenfassend zeigt sich in dieser Arbeit, dass Lrrk2-defiziente Zebrafische in Hinblick auf verschiedene physiologische Funktionen nicht beeinträchtigt zu sein scheinen. Obwohl dies im Einklang mit früher berichteten Ergebnissen steht, bleibt eine zufriedenstellende Erklärung für die Lrrk2-vermittelte Pathogenese weiterhin aus. Morphologische Veränderungen in Lrrk2-defizienten Nieren deuten auf Störungen in der Homöostase des Lysosoms hin und bieten ein vielversprechendes Forschungsziel. Eine präzisere Modellierung des menschlichen LRRK2-Genotyps in fortschrittlichen Tiermodellen könnte zukünftig mehr Einblick in das Rätsel von LRRK2 und seiner Rolle in der Neurodegeneration bieten.

Page generated in 0.0913 seconds