Spelling suggestions: "subject:"crm"" "subject:"cr1""
1 |
Exploration of cargo spectrum and NES patterns recognized by the exportin CRM1Kirli, Koray 29 October 2013 (has links)
No description available.
|
2 |
U snRNAの核外輸送複合体の形成に関与する因子の解析和泉, 光人 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18114号 / 理博第3992号 / 新制||理||1576(附属図書館) / 30972 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 大野 睦人, 教授 青山 卓史, 教授 高田 彰二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
3 |
Mechanisms of Nuclear Export in Cancer and Resistance to ChemotherapyEl-Tanani, Mohamed, Dakir, El-Habib, Raynor, Bethany, Morgan, Richard 08 March 2016 (has links)
Yes / Tumour suppressor proteins, such as p53, BRCA1, and ABC, play key roles in preventing the development of a malignant phenotype, but those that function as transcriptional regulators need to enter the nucleus in order to function. The export of proteins between the nucleus and cytoplasm is complex. It occurs through nuclear pores and exported proteins need a nuclear export signal (NES) to bind to nuclear exportin proteins, including CRM1 (Chromosomal Region Maintenance protein 1), and the energy for this process is provided by the RanGTP/RanGDP gradient. Due to the loss of DNA repair and cell cycle checkpoints, drug resistance is a major problem in cancer treatment, and often an initially successful treatment will fail due to the development of resistance. An important mechanism underlying resistance is nuclear export, and a number of strategies that can prevent nuclear export may reverse resistance. Examples include inhibitors of CRM1, antibodies to the nuclear export signal, and alteration of nuclear pore structure. Each of these are considered in this review.
|
4 |
Implication fonctionnelle de la nucléoporine Nup358/RanBP2 et des récepteurs de transport dans l’entrée du génome adénoviral / Functional implications of the nucleoporin Nup358/RanBP2 and transport receptors in adenoviral genome deliveryCarlón-Andrés, Irene 07 December 2017 (has links)
Les adénovirus (AdV), comme d'autres virus à réplication nucléaire, ont besoin d’arriver jusqu’aunoyau cellulaire afin de libérer leur génome. Pour ce faire, les particules des AdV contenant l’ADNviral sont transportées jusqu’au complexe du pore nucléaire (NPC), via le centre d’organisation desmicrotubules, par un mécanisme encore mal compris qui implique l’exportine cellulaire CRM1. Lacapside des AdV dépasse la taille limite d’entrée dans le noyau, et par conséquent, elle doit êtredésassemblée au niveau du NPC. Le mécanisme d’import de molécules d’ADN n’est pas un processusphysiologique. Pour cela, les AdV doivent détourner la machinerie cellulaire afin d’importer leurgénome dans le noyau. Le NPC est un complexe de protéines appelées nucléoporines. LaNup358/RanBP2, principal composant des filaments cytoplasmiques, sert de plateforme de liaison àdes karyopherines (e.g Importin-β, CRM1) et à la protéine GTPase Ran. Les karyopherinesreconnaissent des signaux spécifiques présents dans les cargos et facilitent leur transport d’unemanière très régulée dépendante de RanGTP. Nous avons constaté que l’import du génome AdV estmoins efficace en l’absence de Nup358. Dans ces conditions, nous avons observé que certaineskaryopherines deviennent limitantes pour l’import du génome viral, et identifié la région minimale deNup358 requise pour compenser ce défaut. D’autre part, nous avons confirmé l’implication de CRM1dans l’arrivé des particules virales au noyau et identifié un nouveau rôle de CRM1 dans ledésassemblage de la capside des AdV. Ces travaux contribuent à mieux connaître le mécanismed’entrée du génome AdV dans le noyau et donnent une idée de la façon dont les virus peuventcontourner la machinerie de transport cellulaire pour leur propre bénéfice. / Nuclear delivery of viral genomes is an essential step for nuclear replicating DNA viruses such asAdenovirus (AdV). AdV particles reach the nuclear pore complex (NPC) in the form of genomecontaining, partially disassembled capsids, through a poorly understood CRM1-dependent mechanism.These capsids exceed the NPC size limit and therefore, they must disassemble at the NPC to releasethe viral genome. Nuclear import of DNA cargos is not a physiological process. Consequently, AdVneed to divert the cellular transport machinery for nuclear genome delivery. The NPC is a multiproteincomplex consisting of nucleoporins (Nups). The Nup358/RanBP2 is the major component ofthe cytoplasmic filaments of the NPC and serves as binding platform for factors includingkaryopherins (i.e Importin-β, CRM1) and the small GTPase Ran. Selective transport of cargo throughthe NPC is mediated by karyopherins, which recognize specific signals within the cargos and facilitatetheir transport in a RanGTP-dependent regulated manner. We identified that Nup358-depleted cellsreduce nuclear import efficiency of the AdV genome. Indeed, we observed that karyopherins are ratelimitingfor AdV genome import under these conditions and we mapped the minimal region ofNup358 necessary to compensate the import defect. On the other hand, we could confirm therequirement of CRM1 in nuclear targeting of AdV capsids and identified and additional role inmediating AdV capsid disassembly. This work helps to understand the strategy used by AdV todeliver their genome and gives insight about how viruses hijack the cellular transport machinery fortheir own benefit.
|
5 |
HPV11 E7 Protein Interacts with Nup62 and CRM1 Nuclear Export ReceptorCardoso, Rebeca January 2013 (has links)
Thesis advisor: Junona Moroianu / In this study we investigated the hydrophobic interactions between HPV11 E7 and the FG regions of Nup62N through transfection assays with EGFP-11E7 fusion plasmids in HeLa cells and binding assays with GST-Nup62N immobilized on Glutathione-Sepharose beads. We found that EGFP-11cE7 binds to Nup62N. This suggests a possible mechanism for the nuclear import of HPV11 E7 through direct hydrophobic interactions between its carboxy-terminus and the FG region of Nup62. The interaction between HPV11 E7 and CRM1 nuclear export receptor was also examined using similar methods. Binding between these proteins suggest that nuclear export of 11E7 is mediated by CRM1 binding to its leucine-rich nuclear export signal (NES). / Thesis (BS) — Boston College, 2013. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: College Honors Program. / Discipline: Biology.
|
6 |
Targeting cellular nuclear export to inhibit influenza A virus replicationDewar, Rebecca Amy January 2018 (has links)
Influenza A virus (IAV) is a global health threat, causing seasonal epidemics and potential pandemics leading to morbidity, death and economic losses. Currently, there are two main classes of licensed antivirals against IAV available in the US and Europe; adamantanes and neuraminidase inhibitors, both of which are hindered by the generation of resistant virus variants. The viral polymerase has a high error rate leading to mutations that allow the virus to overcome selection pressures directed at its own genome from conventional antivirals. The prospect of inhibiting host proteins that the virus exploits to facilitate its replication is of increasing interest as an antiviral strategy as the emergence of resistance has been predicted to be slower when targeting a host cellular factor. IAV utilizes the host nuclear export protein CRM1 to transport viral ribonucleoproteins (vRNPs) from the nucleus to the cytoplasm of an infected cell, a critical late stage of the influenza lifecycle. Leptomycin B (LMB), a Streptomyces metabolite, has been previously shown to target this pathway, resulting in reduced viral propagation; however, LMB's potent cytotoxicity has limited its use as a therapeutic agent. This thesis examined two novel selective inhibitors of nuclear export (SINE), KPT-335 and KPT-185, with less cytotoxicity. In vitro, KPT-335 inhibited replication of human and animal IAV strains in a dose-dependent manner with minimal cytotoxicity. To assess the resistance potential of KPT-335, IAV viruses were serially passaged in the presence of a sub-optimal concentration of the compound and assayed for the development of resistance. Resistance to KPT-335 became evident at 8-10 rounds of passage. Sequencing analysis of independently derived resistant virus clones identified 4 single amino acid changes on a surface exposed patch of the viral nucleoprotein (NP). Introduction of these amino acid changes, into otherwise wild type viruses by reverse genetics, confirmed that changes Q311R and N309T conferred a drug-resistant phenotype. However, these substitutions came at a fitness cost to virus replication. The molecular basis for resistance was unclear but Q311R and N309T NP-mutant viruses produced increased levels of M1 during infection as well as producing virus particles with increased M1:NP ratios. Furthermore, the KPT-335-resistance mutations were surprisingly similar to NP sequence polymorphisms previously associated with susceptibility to the innate defence protein MxA. Consistent with this, viruses harbouring the Q311R mutation displayed increased susceptibility to MxA inhibition compared to wild-type virus. Altogether this study confirms that SINEs have the potential to be successful therapeutic agents against IAV replication and that although resistance could be generated, it may be difficult for the virus to overcome both drug selection pressures and the human innate immune response restrictions by escape mutations.
|
7 |
A nuclear export sequence in Nup214 promotes its targeting to the nuclear pore complexHamed, Mohamed 20 May 2020 (has links)
No description available.
|
8 |
Characterizing the RanGAP1-RanBP2 complex in mitosis / Charakterisierung des RanGAP1-RanBP2 Komplexes in MitoseFlotho, Annette 30 October 2008 (has links)
No description available.
|
9 |
Die Funktion von NLP1 im CRM1-abhängigen Protein-Export aus dem Zellkern / The function of NLP1 in CRM1-dependent protein export out of the nucleusWaldmann, Inga Mareike 10 May 2011 (has links)
No description available.
|
10 |
Analysis of CRM1- and Nup214- dependent nuclear export of proteins / Analyse des CRM1- und Nup214- abhängigen Kernexportes von ProteinenRoloff, Stephanie 21 May 2012 (has links)
No description available.
|
Page generated in 0.0532 seconds