1 |
Implementação eficiente em software de criptossistemas de curvas elipticasLópez Hernández, Julio César, 1961- 26 July 2018 (has links)
Orientador: Ricardo Dahab / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-07-26T19:17:04Z (GMT). No. of bitstreams: 1
LopezHernandez_JulioCesar_D.pdf: 17430192 bytes, checksum: e33429e97349921dee73898396b5c0a6 (MD5)
Previous issue date: 2000 / Resumo: A criptografia de chave-pública é, reconhecidamente, uma ferramenta muito útil para prover requisitos de segurança tais como confidencialidade, integridade, autenticidade e não-repudio, parte integrante das comunicações. A principal vantagem dos criptossistemas de curvas elípticas (CCE) em relação a outras tecnologias de chave-pública concorrentes tais como RSA e DSA, é que parâmetros significativamente menores podem ser usados nos CCE com o mesmo nível de segurança. Essa vantagem é especialmente importante em aplicações em ambientes computacionais limitados como cartões inteligentes, telefones celulares, computadores de bolso e pagers. De um ponto de vista prático, a implementação dos CCE apresenta vários desafios. Uma aplicação baseada nos CCE precisa que várias escolhas sejam feitas tais como o nível de segurança, algoritmos para implementar a aritmética no corpo finito subjacente, algoritmos para implementar a aritmética na curva elíptica, protocolos de curvas elípticas e a plataforma computacional. Essas escolhas podem ter um grande impacto no desempenho da aplicação resultante. Esta dissertação trata do desenvolvimento de algoritmos eficientes para implementação em software de criptossistemas de curvas elípticas sobre o corpo finito F2m. Neste contexto, foram desenvolvidos métodos eficientes para implementar a aritmética no corpo finito F2m, e para calcular múltiplos de um ponto elíptico, a operação fundamental da criptografia pública baseada em curvas elípticas. Nesta dissertação também foi abordado o problema da implementação eficiente em software dos algoritmos propostos, em diferentes plataformas computacionais tais como PCs, estações de trabalho, e em dispositivos limitados como o pager da RIM. / Abstract: It is widely recognized that public-key cryptography is an important tool for providing security services such as confidentiality, data integrity, authentication and non-repudiation, which are requirements present in almost all communications. The main advantage of elliptic curve cryptography (ECC) over competing public-key technologies such as RSA and DSA is that significantly smaller parameters can be used in ECC, but with equivalent levels of security. This advantage is especially important for applications on constrained environments such as smart cards, cell phones, personal device assistants, and pagers. From a practical point of view, the implementation of ECC presents various challenges. An ECC-based application requires that several choices be made including the security level, algorithms for implementing the finite field arithmetic, algorithms for implementing the elliptic group operation, elliptic curve protocols, and the computer platform. These choices may have a significant impact on the performance of the resulting application. This dissertation focuses on developing efficient algorithms for software implementation of ECC over F2m. In this framework, we study different ways of efficiently implementing arithmetic in F2¿, and computing an elliptic scalar multiplication, the central operation of public-key cryptography based on elliptic curves. We also concentrate on the software implementation of these algorithms for different platforms including PCs, workstations, and constrained devices such as the RIM interactive pager. This dissertation is a collection of five papers written in English, with an introduction and conclusions written in Portuguese. / Doutorado / Doutor em Ciência da Computação
|
2 |
Aritmética das Curvas de gênero 0 e 1 sobre os corpos Fq e QPereira da Conceição, Ricardo January 2003 (has links)
Made available in DSpace on 2014-06-12T18:31:38Z (GMT). No. of bitstreams: 2
arquivo8515_1.pdf: 707761 bytes, checksum: b16634d469636d6aa87f4f265e37a694 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2003 / Este trabalho trata da parte introdutória sobre curvas elípticas, assunto que tem sido objeto de intensas pesquisas e que tem se mostrado uma ferramenta importantíssima na demonstração de diversos resultados em Teoria dos Números. Embora seja um tema bastante relevante para a Aritmética, em língua portuguesa a literatura sobre Curvas Elípticas ainda é escassa, a proposta então foi fazer um texto acessível àqueles que pretendem iniciar um estudo na área, englobando os principais resultados que necessitassem de ferramentas pouco avançadas
|
3 |
Formas Modulares e o Problema dos Números CongruentesREIS, A. S. 29 October 2015 (has links)
Made available in DSpace on 2018-08-01T22:30:15Z (GMT). No. of bitstreams: 1
tese_9340_Dissertação 15-12-2015.pdf: 1459636 bytes, checksum: c14de6f7f9fd1d2bfc66ea8cae8c2d43 (MD5)
Previous issue date: 2015-10-29 / A teoria das curvas elípticas constitue um dos temas mais versáteis em
matemática, com abrangência desde a teoria dos códigos corretores de erros,
passando pela geometria diferencial de superfícies mínimas, até a teoria dos
números. Por exemplo, ela foi um dos importantes ingredientes usados na de-
monstração do teorema de Fermat, por Andrew Wiles em 1994. No presente
projeto de dissertação, as curvas elípticas serão abordadas de duas formas. Na
primeira, elas serão introduzidas a partir da ação do grupo linear no semiplano
superior do plano complexo. Isto permitir ́a considerar os chamados grupos modulares, com a finalidade de introduzir as chamadas formas modulares e também as curvas modulares. Em particular, por meio do invariante modular, descreve-se o espaço de moduli das curvas elípticas definidas sobre o corpo dos números complexos. Na segunda, as curvas elípticas serão abordadas por meio da função P de Weierstrass, associada a um reticulado do plano complexo. Neste caso, a partir das duas funções P e P, obtêm-se o corpo das funções meromorfas duplamente periódicas. Daí surge uma motivação natural para definição de curvas. Elípticas sobre um corpo qualquer. Como aplicação dos resultados desenvolvidos, consideraremos o problema dos números congruentes, isto é, os números inteiros que são dados como áreas de triângulos retângulos, tendo nacionais como medidas dos seus lados. Tal problema está relacionado com a estrutura de grupo de certas curvas elípticas, e a sua solução, em geral, depende da chamada conjectura de Birch e Swinnerton-Dyer. Essa conjectura é um dosseis famosos problemas do milênio, estabelecidos pelo instituto Clay.
|
4 |
Criptossistemas baseados em curvas elipticas : estudo de casos e implementação em processador de sinais digitaisAlmeida Junior, Arnaldo Jorge de, 1968- 01 August 2018 (has links)
Orientador : Marco Aurelio Amaral Henriques / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-01T22:13:17Z (GMT). No. of bitstreams: 1
AlmeidaJunior_ArnaldoJorgede_M.pdf: 605236 bytes, checksum: 2e581d70ca90b2c8412a7fc6947db565 (MD5)
Previous issue date: 2002 / Mestrado
|
5 |
Analise de seleção de parametros em criptografia baseada em curvas elipticas / Parameter selection analysis on elliptic curve cryptographySilva, Rosemberg André da, 1969- 28 July 2006 (has links)
Orientador: Ricardo Dahab / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-11T02:09:49Z (GMT). No. of bitstreams: 1
Silva_RosembergAndreda_M.pdf: 824860 bytes, checksum: 48ed40bc241415f1692ca283d3e1f65b (MD5)
Previous issue date: 2006 / Resumo: A escolha dos parâmetros sobre os quais uma dada implementação de Criptografia sobre Curvas Elípticas baseia-se tem influência direta sobre o desempenho das operações associadas bem como sobre seu grau de segurança. Este trabalho visa analisar a forma como os padrões mais usados na atulalidade lidam com este processo de seleção, mostrando as implicações que tais escolhas acarretam / Abstract: The choice of parameters associated with a given implementation of ECC (Elliptic Curve Cryptography) has direct impact on its performance and security leveI. This dissertation aims to compare the most common standards used now-a-days, taking into
account their selection criteria and their implications on performance and security / Mestrado / Engenharia de Software / Mestre em Ciência da Computação
|
6 |
Avaliação do custo computacional de emparelhamentos bilineares sobre curvas elípticas Barreto-Naehrig / Evaluation of computational cost of bilinear pairings over Barreto-Naehrig elliptic curvesSangalli, Leandro Aparecido 1988- 26 August 2018 (has links)
Orientador: Marco Aurélio Amaral Henriques / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T04:02:15Z (GMT). No. of bitstreams: 1
Sangalli_LeandroAparecido1988-_M.pdf: 2889538 bytes, checksum: 474d1ae695fc20d0f0b214ac8ba4716f (MD5)
Previous issue date: 2014 / Resumo: Emparelhamentos bilineares sobre curvas elípticas são funções matemáticas que podem viabilizar protocolos criptográficos promissores. Porém, um fato que enfraquece o desenvolvimento destes protocolos é o alto custo computacional para calcular estes emparelhamentos. Diversas técnicas de otimização foram propostas nos últimos anos para realizar este cálculo de forma mais eficiente. Dentre estas técnicas existem as que mudam o tipo de emparelhamentos, o tipo de curvas elípticas ou a forma de cálculo dos emparelhamentos. As curvas Barreto-Naehrig são conhecidas como curvas amigáveis para emparelhamentos, pois se destacam para aplicações que buscam eficiência no cálculo dos mesmos. Este trabalho avalia em detalhes o custo das operações presentes no cálculo de alguns dos emparelhamentos mais utilizados atualmente definidos sobre curvas Barreto-Naehrig. Por meio desta análise, foi possível realizar uma comparação destes emparelhamentos no nível de operações de adição, multiplicação, quadrado, inversão e redução modular sobre um corpo finito primo e sobre um processador genérico. Os resultados mostram que de acordo com os parâmetros adotados, um dos emparelhamentos mais utilizados (Optimal Ate) pode não apresentar o melhor desempenho entre os analisados. Além disso, foi possível avaliar como o cálculo dos emparelhamentos é afetado pela adoção de diferentes processadores, desde aqueles com palavras curtas até aqueles que no futuro poderão ter palavras muito longas / Abstract: Bilinear pairings over elliptic curves are functions that support promising cryptographic protocols. However, a fact that hinders the development of these protocols is their high computational cost. Many techniques seeking more efficiency in the calculation of pairings have been proposed in the last years. Among these techniques are those that change the pairing type, the curve type and/or the pairing calculation method. Barreto-Naehrig curves are known as pairing-friendly curves, because they perform well in applications that require more efficiency in the pairing calculation. This work evaluates the cost of operations present in the most used pairings that are based on Barreto-Naehrig curves. With this evaluation, it was possible to compare these pairings at the level of basic operations as addition, multiplication, square, inversion and modular reduction over a prime finite field in a generic processor. The results show that, for the security parameters adopted in this work, one of the most used pairing algorithms (Optimal Ate) is not the fastest among those evaluated. Moreover, this work estimates the impact caused in the pairing calculation by different processors, ranging from the current short-medium word processors to the future very long word ones / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
7 |
Co-processador para algoritmos de criptografia assimetricaDias, Mauricio Araujo 03 November 2002 (has links)
Orientador : Jose Raimundo de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-02T00:50:06Z (GMT). No. of bitstreams: 1
Dias_MauricioAraujo_M.pdf: 5205799 bytes, checksum: 983ca32a97e31a92d42806addbfdc977 (MD5)
Previous issue date: 2002 / Resumo: Este trabalho tem como objetivo o desenvolvimento de um co-processador para algoritmos de criptografia assimétrica. Trata-se de um co-processador que pode servir de base para a implementação de algoritmos de criptografia assimétrica, não apenas de um dispositivo dedicado a um único algoritmo criptográfico. Para tanto, ele dispõe de uma biblioteca de módulos de circuitos que implem~ntamrotinas básicas úteis a vários desses algoritmos. A implementação é feita em um dispositivo do tipo FPGA. Para testar o funcionamento do co-processador foi escolhido o algoritmo de criptografia assimétrica, baseado no problema do logaritmo discreto sobre curvas elípticas. Os testes práticos do coprocessador apóiam-se no uso de curvas elípticas distintas e de diferentes pontos pertencentes a cada uma dessas mesmas curvas / Abstract: This work has as main objective the development of a co-processor for asymmetric cryptography algorithms. It is a co-processor that can serve for the implementation of asymmetríc cryptography algorithms. It isn't a devíce dedicated to only a cryptographic algorithm. So, it uses a library of hardware modules that implement basic routines useful to several of these algorithms. The implementation is made in a FPGA device. In order to test the operation of this co-processor, we choose the asymmetric cryptography algorithm based on tbe elliptic curve discrete logarithm problem. The practical tests of the co-processor are based on the use of distinct elliptical curves and different points over tbese same curves / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
8 |
Curvas elípticas : e o teorema de Mordell /Silva, Rodrigo de Paula. January 2019 (has links)
Orientador: Parham Salehyan / Banca: Michelle Ferreira Zanchetta Morgado / Banca: Behrooz Mirzaii / Resumo: Faremos neste trabalho um estudo das curvas elípticas. Do primeiro capítulo até o terceiro mostraremos as principais noções para o estudo desses objetos. Alguns resultados como o teorema de Riemann-Roch serão vistos em sequência. Veremos que curvas elípticas são dadas por equações de Weierstrass juntamente com uma estrutura de grupo nesse conjunto. O conteúdo dessa teoria servirá de base para o capítulo 4, onde demonstramos o teorema de Mordell-Weil. O procedimento de descida será mostrado, em seguida veremos o teorema de Mordell-Weil sobre o corpo dos números racionais. As funções altura serão definidas e então demonstraremos nosso principal resultado. Por fim, como um apêndice, veremos um pouco de pontos integrais sobre curvas elípticas. Apresentaremos a teoria de aproximação diofantina e alguns resultados de como as funções distância podem nos ajudar num estudo métrico ou topológico por meio dessas aproximações / Abstract: We will do in this work a study of the elliptic curves. From the first chapter to the third we will show the main notions for the study of these objects. Some results such as the Riemann-Roch theorem will be seen in sequence. We will see that elliptic curves are given by Weierstrass equations together with a group structure in that set. The content of this theory will serve as the basis for chapter 4, where we demonstrate Mordell-Weil's theorem. The descent procedure will be shown, then we will see Mordell-Weil's theorem on the field Q. The height functions will be defined and then we will demonstrate our main result. Finally, as an appendix, we will see some integral points on elliptic curves. We will present the theory of diophantine approximation and some results of how distance functions can help us in a metric or topological study through these approximations / Mestre
|
9 |
Segurança do bit menos significativo no RSA e em curvas elípticas / Least significant bit security of the RSA and elliptic curvesNakamura, Dionathan 16 December 2011 (has links)
Sistemas criptográficos como o RSA e o Diffie-Hellman sobre Curvas Elípticas (DHCE) têm fundamento em problemas computacionais considerados difíceis, por exemplo, o problema do logaritmo (PLD) e o problema da fatoração de inteiros (PFI). Diversos trabalhos têm relacionado a segurança desses sistemas com os problemas subjacentes. Também é investigada a segurança do LSB (bit menos significativo) da chave secreta no DHCE (no RSA é o LSB da mensagem) com relação à segurança de toda a chave. Nesses trabalhos são apresentados algoritmos que conseguem inverter os sistemas criptográficos citados fazendo uso de oráculos que predizem o LSB. Nesta dissertação, fazemos a implementação de dois desses algoritmos. Identificamos parâmetros críticos e mudamos a amostragem do formato original. Com essa mudança na amostragem conseguimos uma melhora significativa nos tempos de execução. Um dos algoritmos (ACGS), para valores práticos do RSA, era mais lento que a solução para o PFI, com nosso resultado passou a ser mais veloz. Ainda, mostramos como provas teóricas podem não definir de maneira precisa o tempo de execução de um algoritmo. / Cryptographic systems like RSA and Elliptic Curve Diffie-Hellman (DHCE) is based on computational problems that are considered hard, e.g. the discrete logarithm (PLD) and integer factorization (PFI) problems. Many papers investigated the relationship between the security of these systems to the computational difficulty of the underlying problems. Moreover, they relate the bit security, actually the LSB (Least Significant Bit), of the secret key in the DHCE and the LSB of the message in the RSA, to the security of the whole key. In these papers, algorithms are presented to invert these cryptographic systems making use of oracles that predict the LSB. In this dissertation we implement two of them. Critical parameters are identified and the original sampling is changed. With the modified sampling we achieve an improvement in the execution times. For practical values of the RSA, the algorithm ACGS becomes faster than the PFI. Moreover, we show how theoretical proofs may lead to inaccurate timing estimates.
|
10 |
Implementação em Java do emparelhamento de Tate para aplicação em criptografia de curvas elípticas.Rodrigo Cunha de Paiva 15 February 2005 (has links)
Atualmente, a segurança da informação é um assunto muito discutido e alvo de muitos estudos. É imprescindível o uso de mecanismos de segurança em qualquer tipo de comunicação eletrônica, pois as mensagens trocadas são, muitas vezes, sigilosas e carregam informações valiosas. Com o poder computacional cada vez maior e o aparecimento de algoritmos que ameaçam a segurança de alguns sistemas criptográficos, os pesquisadores estão estudando novas técnicas e métodos para a elaboração de cripto sistemas mais seguros e mais robustos. Uma das teorias mais estudadas atualmente promete fazer parte da próxima geração de cripto sistemas. Essa teoria, conhecida por teoria de curvas elípticas, foi inicialmente proposta por Victor Miller e Neal Koblitz. Um cripto sistema baseado em curvas elípticas é capaz de oferecer segurança comparável a cripto sistemas já consagrados tal como o RSA, porém com chaves muito menores. A teoria de curvas elípticas é bastante extensa e as técnicas envolvidas têm sido estudadas para o desenvolvimento de novos cripto sistemas. Uma dessas técnicas é o emparelhamento bilinear. Recentemente descobriu-se que emparelhamentos poderiam ser usados em cripto sistemas. Desde então, os emparelhamentos têm sido utilizados em aplicações tais como criptografia baseada em identidade e assinaturas curtas. Dentre os emparelhamentos existentes, o de Tate merece destaque por oferecer algumas vantagens, sendo uma delas a facilidade de implementação.
|
Page generated in 0.167 seconds